More than 30 species of benthic Prorocentrum have been identified,some of which produce okadaic acid(OA)and its derivatives,dinophysistoxins(DTXs),which cause diarrhetic shellfish poisoning(DSP).Increasing numbers of ...More than 30 species of benthic Prorocentrum have been identified,some of which produce okadaic acid(OA)and its derivatives,dinophysistoxins(DTXs),which cause diarrhetic shellfish poisoning(DSP).Increasing numbers of benthic Prorocentrum species have been reported in tropical and subtropical waters of China.In contrast,only a few benthic Prorocentrum species have been reported in temperate waters.In this study,morphological descriptions obtained using light microscopy,scanning electron microscopy and molecular characterization of one Prorocentrum clipeus strain isolated from the Yellow Sea are presented.Prorocentrum clipeus cells were nearly circular in shape,with a collar,ridge,and one protrusion.The periflagellar area was wide U-shaped,with two curved projections on platelet 1a.Nine periflagellar platelets of different sizes were observed.The morphology closely fits that of the species isolated from other locations.Phylogenetic analysis based on the molecular sequences of the small subunit(SSU)rDNA,internal transcribed spacer(ITS),and large subunit(LSU)rDNA was performed.A comprehensive metabolomic analysis incorporating target,suspect and non-target screenings was first applied to investigate the intracellular and extracellular metabolite profiles of the current isolate of P.clipeus.According to the results of the target and suspect screenings,179 metabolites or toxins produced by DSP-related algal species,including OA,dinophysistoxin-1(DTX1),dinophysistoxin-2(DTX2)and pectenotoxin-2(PTX2),were not detected.Non-target screening involving feature-based molecular networking(FBMN)provided a global view of major metabolites produced by the P.clipeus DF128 strain and revealed 23 clusters belonging to at least 13 compound classes,with organometallic compounds,lipids and lipid-like molecules,phenylpropanoids and polyketides,and benzenoids as major types.To date,this is the first record of the characterization of P.clipeus in samples from Chinese waters.Our results support the wide distribution of epibenthic Prorocentrum species.展开更多
The sinking of diatoms is critic al to the formation of oceanic biological pumps and coastal hypoxic zones.However,little is known about the effects of different nutrient restrictions on diatom sinking.In this study,w...The sinking of diatoms is critic al to the formation of oceanic biological pumps and coastal hypoxic zones.However,little is known about the effects of different nutrient restrictions on diatom sinking.In this study,we measured the sinking velocity(SV) of Thalassiosira weissflogii using a new phytoplankton video observation instrument and analyzed major biochemical components under varying nutrient conditions.Our results showed that the SV of T.weissflogii under different nutrient limitation conditions varied substantially.The highest SV of(1.77±0.02) m/d was obtained under nitrate limitation,signific antly surpassing that under phosphate limitation at(0.98±0.13) m/d.As the nutrient limitation was released,the SV steadily decreased to(0.32±0.03) m/d and(0.15±0.05) m/d,respectively.Notably;under conditions with limited nitrate and phosphate concentrations,the SV values of T.weissflogii significantly positively correlated with the lipid content(P <0.001),with R^(2) values of 0.86 and 0.69,respectively.The change of the phytoplankton SV was primarily related to the intracellular compo sition,which is controlled by nutrient conditions but did not significantly correlate with transparent extracellular polymer and biosilica contents.The results of this study help to understand the regulation of the vertical sinking process of diatoms by nutrient restriction and provide new insights into phytoplankton dynamics and their relationship with the marine nutrient structure.展开更多
Ocean fronts play important roles in nutrient transport and in the shaping ecological patterns.Frontal zones in small bays are typically small in scale,have a complex structure,and they are spatially and temporally va...Ocean fronts play important roles in nutrient transport and in the shaping ecological patterns.Frontal zones in small bays are typically small in scale,have a complex structure,and they are spatially and temporally variable,but there are limited data on how biological communities respond to this variation.Hangzhou Bay,a mediumsized estuary in China,is an ideal place in which to study the response of plankton to small-scale ocean fronts,because three water masses(Qiantang River Diluted Water,Changjiang River Diluted Water,and the East China Sea current) converge here and form dynamic salinity fronts throughout the year.We investigate zooplankton communities,and temperature,salinity and chlorophyll a(Chl a) in Hangzhou Bay in June(wet perio d) and December(dry period) of 2022 and examine the dominant environmental factors that affect zooplankton community spatial variability.We then match the spatial distributions of zooplankton communities with those of salinity fronts.S alinity is the most important explanatory variable to affect zooplankton community spatial variability during both wet and dry periods,in that it contributes>60% of the variability in community structure.Furthermore,the spatial distributions of zooplankton match well with salinity fronts.During December,with weaker Qiantang River Diluted Water and a stronger secondary Changjiang River Plume,zooplankton communities occur in moderate salinity(MS,salinity range 15.6±2.2) and high salinity(HS,22.4±1.7) regions,and their ecological boundaries closely match the Qiantang River Diluted Water front.In June,different zooplankton communities occur in low salinity(LS,3.9±1.0),MS(11.7±3.6) and HS(21.3±1.9) regions.Although the LS region occurs abnormally in the central bay rather than its apex because of the anomalous influence of rising and falling tides during the sampling perio d,the ecological boundaries still match salinity interfaces.Low-salinity or brackish-water zooplankter taxa are relatively more abundant in LS or MS regions,and the biomass and abundance of zooplankton is higher in the MS region.展开更多
The use of agricultural straw for algal bloom control has been studied for more than 30 years.In this article,we have reviewed the promising potentials of using agricultural straw as source of anti-algal agents,includ...The use of agricultural straw for algal bloom control has been studied for more than 30 years.In this article,we have reviewed the promising potentials of using agricultural straw as source of anti-algal agents,including the effectiveness of each major straw type so far used in this regard,and the investigated algal species.Various pre-treatment methods have also been widely reviewed.Significant progress has been made in natural product chemistry and molecular biology with regards to agricultural straw,especially in relation to the extraction of antialgal allelochemicals,degradation processes of agricultural straws and the mechanisms through which these inhibitions occur.The development of biotechnologies using agricultural straw to successfully inhibit growth of bloom forming algae has been generally accepted as environmentally friendly.The current research status and that of the future should include isolation and discovery of antialgal allelochemicals,development of models that would illustrate the sequence of physiologic events that match the species-specific inhibitor phenomenon,and products fit in the field applications.展开更多
Sulfate-reducing bacteria(SRB)are ubiquitous anaerobic microorganisms that play signifi cant roles in the global biogeochemical cycle.Coastal wetlands,one of the major habitats of SRB,exhibit high sulfate-reducing act...Sulfate-reducing bacteria(SRB)are ubiquitous anaerobic microorganisms that play signifi cant roles in the global biogeochemical cycle.Coastal wetlands,one of the major habitats of SRB,exhibit high sulfate-reducing activity and thus play signifi cant roles in organic carbon remineralization,benthic geochemical action,and plant-microbe interactions.Recent studies have provided credible evidence that the functional rather than the taxonomic composition of microbes responds more closely to environmental factors.Therefore,in this study,functional gene prediction based on PacBio single molecular real-time sequencing of 16S rDNA was applied to determine the sulfate-reducing and organic substrate-decomposing activities of SRB in the rhizospheres of two typical coastal wetland plants in North and South China:Zostera japonica and Scirpus mariqueter.To this end,some physicochemical characteristics of the sediments as well as the phylogenetic structure,community composition,diversity,and proportions of several functional genes of the SRB in the two plant rhizospheres were analyzed.The Z.japonic a meadow had a higher dissimilatory sulfate reduction capability than the S.mariqueter-comprising saltmarsh,owing to its larger proportion of SRB in the microbial community,larger proportions of functional genes involved in dissimilatory sulfate reduction,and the stronger ability of the SRB to degrade organic substrates completely.This study confi rmed the feasibility of applying microbial community function prediction in research on the metabolic features of SRB,which will be helpful for gaining new knowledge of the biogeochemical and ecological roles of these bacteria in coastal wetlands.展开更多
Conspecific seagrass living in differing environments may develop different root system acclimation patterns.We applied X-ray computed tomography(CT)for imaging and quantifying roots systems of Zostera japonica collec...Conspecific seagrass living in differing environments may develop different root system acclimation patterns.We applied X-ray computed tomography(CT)for imaging and quantifying roots systems of Zostera japonica collected from typical oligotrophic and eutrophic sediments in two coastal sites of northern China,and determined sediment physicochemical properties that might influence root system morphology,density,and distribution.The trophic status of sediments had little influence on the Z.japonica root length,and diameters of root and rhizome.However,Z.japonica in oligotrophic sediment developed the root system with longer rhizome node,deeper rhizome distribution,and larger allocation to below-ground tissues in order to acquire more nutrients and relieve the N deficiency.And the lower root and rhizome densities of Z.japonica in eutrophic sediment were mainly caused by fewer shoots and shorter longevity,which was resulted from the more serious sulfide inhibition.Our results systematically revealed the effect of sediment trophic status on the phenotypic plasticity,quantity,and distribution of Z.japonica root system,and demonstrated the feasibly of X-ray CT in seagrass root system research.展开更多
Obvious spatiotemporal heterogeneity is a distinct characteristic of ecosystems in subtropical bays.To aid targeted management and ecological restoration in long and narrow semi-enclosed subtropical bays,we analyzed s...Obvious spatiotemporal heterogeneity is a distinct characteristic of ecosystems in subtropical bays.To aid targeted management and ecological restoration in long and narrow semi-enclosed subtropical bays,we analyzed seasonal and regional differences in long-term changes(1980-2019)in the biomass and abundance of large mesozooplankton(LMZ;>505μm)in Xiangshan Bay,Zhejiang,China.We found spatiotemporal heterogeneity in the historical changes of LMZ.Significant negative trends in LMZ biomass were found in the inner and middle bay during the warm season(summer and autumn),when the nutrient concentration(especially dissolved inorganic nitrogen)and temperature increased simultaneously.Nutrient changes in Xiangshan Bay began in the late 1980s or early 1990s,coinciding with large-scale fish cage development.A rapid decline in LMZ biomass occurred after 2005 when power plants commenced operation,accelerating the warming trend.Therefore,the joint stress of eutrophication and warming likely precipitated the decline in LMZ biomass.Conversely,a significant increase in LMZ biomass was found in the outer bay in spring.This trend was consistent with the trend of LMZ biomass near the Changjiang(Yangtze)River estuary,which indicates that the pelagic ecosystem in the outer bay was aff ected by water from the Changjiang River estuary during spring.Based on our results,ecosystem management and restoration in semi-enclosed subtropical bays should focus on internal waters,which have a poor capacity for water exchange.For Xiangshan Bay,the changes in the Changjiang River estuary ecosystem during the cold season(winter and spring)should also be considered.展开更多
基金The National Natural Science Foundation of China under contract Nos 41706191 and 41961144013the Natural Science Foundation of Zhejiang Province under contract No.LY20D060004+2 种基金the National Natural Science Foundation of China under contract Nos 41676111,41876139 and 41906140the Program of Bureau of Science and Technology of Zhoushan Grant under contract No.2019C81031the Basic Public Welfare Research Project of Zhejiang Province under contract No.LGC22B050032.
文摘More than 30 species of benthic Prorocentrum have been identified,some of which produce okadaic acid(OA)and its derivatives,dinophysistoxins(DTXs),which cause diarrhetic shellfish poisoning(DSP).Increasing numbers of benthic Prorocentrum species have been reported in tropical and subtropical waters of China.In contrast,only a few benthic Prorocentrum species have been reported in temperate waters.In this study,morphological descriptions obtained using light microscopy,scanning electron microscopy and molecular characterization of one Prorocentrum clipeus strain isolated from the Yellow Sea are presented.Prorocentrum clipeus cells were nearly circular in shape,with a collar,ridge,and one protrusion.The periflagellar area was wide U-shaped,with two curved projections on platelet 1a.Nine periflagellar platelets of different sizes were observed.The morphology closely fits that of the species isolated from other locations.Phylogenetic analysis based on the molecular sequences of the small subunit(SSU)rDNA,internal transcribed spacer(ITS),and large subunit(LSU)rDNA was performed.A comprehensive metabolomic analysis incorporating target,suspect and non-target screenings was first applied to investigate the intracellular and extracellular metabolite profiles of the current isolate of P.clipeus.According to the results of the target and suspect screenings,179 metabolites or toxins produced by DSP-related algal species,including OA,dinophysistoxin-1(DTX1),dinophysistoxin-2(DTX2)and pectenotoxin-2(PTX2),were not detected.Non-target screening involving feature-based molecular networking(FBMN)provided a global view of major metabolites produced by the P.clipeus DF128 strain and revealed 23 clusters belonging to at least 13 compound classes,with organometallic compounds,lipids and lipid-like molecules,phenylpropanoids and polyketides,and benzenoids as major types.To date,this is the first record of the characterization of P.clipeus in samples from Chinese waters.Our results support the wide distribution of epibenthic Prorocentrum species.
基金The Key R&D Program of Zhejiang under contract No.2023C03120the Science Foundation of Donghai Laboratory under contract No.DH-2022KF0215+2 种基金the National Key Research and Development Program of China under contract No.2021YFC3101702the National Programme on Global Change and Air-Sea Interaction (PhaseⅡ)—Hypoxia and Acidification Monitoring Warning Project in the Changjiang EstuaryLong-term Observation and Research Plan in the Changjiang Estuary and Adjacent East China Sea (LORCE) Project under contract No.SZ2001。
文摘The sinking of diatoms is critic al to the formation of oceanic biological pumps and coastal hypoxic zones.However,little is known about the effects of different nutrient restrictions on diatom sinking.In this study,we measured the sinking velocity(SV) of Thalassiosira weissflogii using a new phytoplankton video observation instrument and analyzed major biochemical components under varying nutrient conditions.Our results showed that the SV of T.weissflogii under different nutrient limitation conditions varied substantially.The highest SV of(1.77±0.02) m/d was obtained under nitrate limitation,signific antly surpassing that under phosphate limitation at(0.98±0.13) m/d.As the nutrient limitation was released,the SV steadily decreased to(0.32±0.03) m/d and(0.15±0.05) m/d,respectively.Notably;under conditions with limited nitrate and phosphate concentrations,the SV values of T.weissflogii significantly positively correlated with the lipid content(P <0.001),with R^(2) values of 0.86 and 0.69,respectively.The change of the phytoplankton SV was primarily related to the intracellular compo sition,which is controlled by nutrient conditions but did not significantly correlate with transparent extracellular polymer and biosilica contents.The results of this study help to understand the regulation of the vertical sinking process of diatoms by nutrient restriction and provide new insights into phytoplankton dynamics and their relationship with the marine nutrient structure.
基金The National Key Research and Development Program of China under contact No.2021YFC3101702the Natural Science Foundation of Zhejiang Province under contact Nos LY22D060006 and LY14D060007+1 种基金the Key R&D Program of Zhejiang under contact No.2022C03044the Project of Long-term Observation and Research Plan in the Changjiang Estuary and Adjacent East China Sea (LORCE) under contact No.SZ2001。
文摘Ocean fronts play important roles in nutrient transport and in the shaping ecological patterns.Frontal zones in small bays are typically small in scale,have a complex structure,and they are spatially and temporally variable,but there are limited data on how biological communities respond to this variation.Hangzhou Bay,a mediumsized estuary in China,is an ideal place in which to study the response of plankton to small-scale ocean fronts,because three water masses(Qiantang River Diluted Water,Changjiang River Diluted Water,and the East China Sea current) converge here and form dynamic salinity fronts throughout the year.We investigate zooplankton communities,and temperature,salinity and chlorophyll a(Chl a) in Hangzhou Bay in June(wet perio d) and December(dry period) of 2022 and examine the dominant environmental factors that affect zooplankton community spatial variability.We then match the spatial distributions of zooplankton communities with those of salinity fronts.S alinity is the most important explanatory variable to affect zooplankton community spatial variability during both wet and dry periods,in that it contributes>60% of the variability in community structure.Furthermore,the spatial distributions of zooplankton match well with salinity fronts.During December,with weaker Qiantang River Diluted Water and a stronger secondary Changjiang River Plume,zooplankton communities occur in moderate salinity(MS,salinity range 15.6±2.2) and high salinity(HS,22.4±1.7) regions,and their ecological boundaries closely match the Qiantang River Diluted Water front.In June,different zooplankton communities occur in low salinity(LS,3.9±1.0),MS(11.7±3.6) and HS(21.3±1.9) regions.Although the LS region occurs abnormally in the central bay rather than its apex because of the anomalous influence of rising and falling tides during the sampling perio d,the ecological boundaries still match salinity interfaces.Low-salinity or brackish-water zooplankter taxa are relatively more abundant in LS or MS regions,and the biomass and abundance of zooplankton is higher in the MS region.
基金financially supported by the Major Science and Technology Program forWater Pollution Control and Treatment(2018ZX07208-009)the National Natural Science Foundation of China(21677122 and 21876148)+4 种基金the open fund of the Key Laboratory of Marine Eco-monitoring and Remediation Technology,Ministry of Natural Resources(MATHAB201809)the open fund of the Key Laboratory of Marine Ecosystem Dynamics,Second Institute of Oceanography,Ministry of Natural Resources(LMEB201709)Key Projects of Philosophy and Social Sciences Research,Ministry of Education(18JZD059)Fundamental Research Funds for the Central Universities(2019QNA4051)the China Scholarship Council(201806325035).
文摘The use of agricultural straw for algal bloom control has been studied for more than 30 years.In this article,we have reviewed the promising potentials of using agricultural straw as source of anti-algal agents,including the effectiveness of each major straw type so far used in this regard,and the investigated algal species.Various pre-treatment methods have also been widely reviewed.Significant progress has been made in natural product chemistry and molecular biology with regards to agricultural straw,especially in relation to the extraction of antialgal allelochemicals,degradation processes of agricultural straws and the mechanisms through which these inhibitions occur.The development of biotechnologies using agricultural straw to successfully inhibit growth of bloom forming algae has been generally accepted as environmentally friendly.The current research status and that of the future should include isolation and discovery of antialgal allelochemicals,development of models that would illustrate the sequence of physiologic events that match the species-specific inhibitor phenomenon,and products fit in the field applications.
基金Supported by the Scientifi c Research Fund of the Second Institute of Oceanography,Ministry of Natural Resources(MNR)(Nos.JB1906,JG1616,JG1910)the Zhejiang Qingshan Lake Innovation Platform for Marine Science and Technology(No.2017E80001)+4 种基金the Key Projects of Philosophy and Social Sciences Research,Ministry of Education(No.18JZD059)the National Key Technology Research and Development Program of the Ministry of Science and Technology of the China(No.2015BAD08B01)the State Key Laboratory of Satellite Ocean Environment Dynamics(No.SOEDZZ1902)the National Natural Science Foundation of China(No.41806136)the Project of Long Term Observation and Research Plan in the Changjiang Estuary and the Adjacent East China Sea(LORCE,14282)。
文摘Sulfate-reducing bacteria(SRB)are ubiquitous anaerobic microorganisms that play signifi cant roles in the global biogeochemical cycle.Coastal wetlands,one of the major habitats of SRB,exhibit high sulfate-reducing activity and thus play signifi cant roles in organic carbon remineralization,benthic geochemical action,and plant-microbe interactions.Recent studies have provided credible evidence that the functional rather than the taxonomic composition of microbes responds more closely to environmental factors.Therefore,in this study,functional gene prediction based on PacBio single molecular real-time sequencing of 16S rDNA was applied to determine the sulfate-reducing and organic substrate-decomposing activities of SRB in the rhizospheres of two typical coastal wetland plants in North and South China:Zostera japonica and Scirpus mariqueter.To this end,some physicochemical characteristics of the sediments as well as the phylogenetic structure,community composition,diversity,and proportions of several functional genes of the SRB in the two plant rhizospheres were analyzed.The Z.japonic a meadow had a higher dissimilatory sulfate reduction capability than the S.mariqueter-comprising saltmarsh,owing to its larger proportion of SRB in the microbial community,larger proportions of functional genes involved in dissimilatory sulfate reduction,and the stronger ability of the SRB to degrade organic substrates completely.This study confi rmed the feasibility of applying microbial community function prediction in research on the metabolic features of SRB,which will be helpful for gaining new knowledge of the biogeochemical and ecological roles of these bacteria in coastal wetlands.
基金Supported by the National Key Research and Development Program of China(Nos.2018YFD0900901,2019YFD0901300)the Scientific Research Fund of the Second Institute of Oceanography,MNR(Nos.JG1906,JG1616,JG1910)+4 种基金the National Natural Science Foundation of China(Nos.41606192/41176140,41706125,41806136)the National Science&Technology Basic Work Program of China(No.2015FY110600)the Key Projects of Philosophy and Social Sciences Research,Ministry of Education,China(No.18JZD059)the Zhejiang Qingshan Lake Innovation Platform for Marine Science and Technology(No.2017E80001)the Project of Long-term Observation and Research Plan in the Changjiang Estuary and Adjacent East China Sea(No.LORCE,14282)。
文摘Conspecific seagrass living in differing environments may develop different root system acclimation patterns.We applied X-ray computed tomography(CT)for imaging and quantifying roots systems of Zostera japonica collected from typical oligotrophic and eutrophic sediments in two coastal sites of northern China,and determined sediment physicochemical properties that might influence root system morphology,density,and distribution.The trophic status of sediments had little influence on the Z.japonica root length,and diameters of root and rhizome.However,Z.japonica in oligotrophic sediment developed the root system with longer rhizome node,deeper rhizome distribution,and larger allocation to below-ground tissues in order to acquire more nutrients and relieve the N deficiency.And the lower root and rhizome densities of Z.japonica in eutrophic sediment were mainly caused by fewer shoots and shorter longevity,which was resulted from the more serious sulfide inhibition.Our results systematically revealed the effect of sediment trophic status on the phenotypic plasticity,quantity,and distribution of Z.japonica root system,and demonstrated the feasibly of X-ray CT in seagrass root system research.
基金Supported by the National Key Research and Development Program of China(Nos.2018YFD0900901,2018YFD0900905)the Long Term Observation and Research Plan in the Changjiang River estuary and the Adjacent East China Sea Project(LORCE)(No.14282)+1 种基金the National Natural Science Foundation of China(Nos.41806149,41806181,41706125)the NSFC-Zhejiang Joint Fund,China(No.U1709202)。
文摘Obvious spatiotemporal heterogeneity is a distinct characteristic of ecosystems in subtropical bays.To aid targeted management and ecological restoration in long and narrow semi-enclosed subtropical bays,we analyzed seasonal and regional differences in long-term changes(1980-2019)in the biomass and abundance of large mesozooplankton(LMZ;>505μm)in Xiangshan Bay,Zhejiang,China.We found spatiotemporal heterogeneity in the historical changes of LMZ.Significant negative trends in LMZ biomass were found in the inner and middle bay during the warm season(summer and autumn),when the nutrient concentration(especially dissolved inorganic nitrogen)and temperature increased simultaneously.Nutrient changes in Xiangshan Bay began in the late 1980s or early 1990s,coinciding with large-scale fish cage development.A rapid decline in LMZ biomass occurred after 2005 when power plants commenced operation,accelerating the warming trend.Therefore,the joint stress of eutrophication and warming likely precipitated the decline in LMZ biomass.Conversely,a significant increase in LMZ biomass was found in the outer bay in spring.This trend was consistent with the trend of LMZ biomass near the Changjiang(Yangtze)River estuary,which indicates that the pelagic ecosystem in the outer bay was aff ected by water from the Changjiang River estuary during spring.Based on our results,ecosystem management and restoration in semi-enclosed subtropical bays should focus on internal waters,which have a poor capacity for water exchange.For Xiangshan Bay,the changes in the Changjiang River estuary ecosystem during the cold season(winter and spring)should also be considered.