In the fiber winding process,strong disturbance,uncertainty,strong coupling,and fiber friction complicate the winding constant tension control.In order to effectively reduce the influence of these problems on the tens...In the fiber winding process,strong disturbance,uncertainty,strong coupling,and fiber friction complicate the winding constant tension control.In order to effectively reduce the influence of these problems on the tension output,this paper proposed a tension fluctuation rejection strategy based on feedforward compensation.In addition to the bias harmonic curve of the unknown state,the tension fluctuation also contains the influence of bounded noise.A tension fluctuation observer(TFO)is designed to cancel the uncertain periodic signal,in which the frequency generator is used to estimate the critical parameter information.Then,the fluctuation signal is reconstructed by a third-order auxiliary filter.The estimated signal feedforward compensates for the actual tension fluctuation.Furthermore,a time-varying parameters fractional-order PID controller(TPFOPID)is realized to attenuate the bounded noise in the fluctuation.Finally,TPFOPID is enhanced by TFO and applied to control a tension control system considering multi-source disturbances.The stability of the method is analyzed by using the Lyapunov theorem.Finally,numerical simulations verify that the proposed scheme improves the tracking ability and robustness of the system in response to tension fluctuations.展开更多
An electricity generation planning model of the six major Chinese power grids was developed based on the General Algebraic Modeling System to evaluate and analyze the CDM (clean development mechanism), including con...An electricity generation planning model of the six major Chinese power grids was developed based on the General Algebraic Modeling System to evaluate and analyze the CDM (clean development mechanism), including consideration of the environmental co-benefits of reductions in air pollutants (SO~, NO~ and particulate matter) achieved by advanced electricity generation technologies incorporating CCS (carbon capture and storage). An objective function was developed that included revenue from sales of electric power, total system cost, the cost of CO2 transport and storage, and emissions reduction co-benefits for SOx, NO~, and particulate matter. The objective function was minimized using an optimization model. We also developed a method for evaluating and analyzing the potential for transferring advanced power generation technologies into the Chinese power system through the CDM. We found that: (1) thermal power generation is predominant in the Chinese electricity system and will remain so for a long time; (2) advanced thermal plants are being installed as a result of the CDM, which contribute to decreasing emissions of CO2 and other air pollutants; and (3) CCS projects have significant potential to reduce substantial and sustained CO2 emissions from the Chinese power and industrial sectors.展开更多
The paper proposes a topology optimization method for 1D phononic structures to minimize the tangential component of particle velocity at the objective boundary.The tangential derivative of the boundary integral equat...The paper proposes a topology optimization method for 1D phononic structures to minimize the tangential component of particle velocity at the objective boundary.The tangential derivative of the boundary integral equation(TDBIE)is employed for the evaluation of the objective function involves the tangential derivative quantities.The topological derivative is derived through the adjoint method and the Neumann boundary condition of the adjoint field is obtained using the TDBIE.The average topological derivative which is obtained by calculating the average value of the topological derivative in each layer of design domains,is employed for the updating of the level set function.Numerical implementations demonstrate the proposed method is effective for the design of the 1D phononic crystals with the objective function involving tangential derivative quantities.展开更多
Amorphous metal-based catalysts(AMCs)have sparked intense research interests in the field of electrocatalysis elicited by their hallmark features such as unlimited volume and morphology,manipulated electronic structur...Amorphous metal-based catalysts(AMCs)have sparked intense research interests in the field of electrocatalysis elicited by their hallmark features such as unlimited volume and morphology,manipulated electronic structures,enriched defects,and unsaturated surface atom coordination.Nevertheless,the manipulation of the amorphous phase in metal-based catalysts is so far impractical,and thus their electrocatalytic mechanism yet remains ambiguous.In this review,the latest advances in AMCs are systematically reviewed,covering amorphous-phase engineering strategy,structure manipulation,and amorphization of various material categories for electrocatalysis.Specifically,a series of applications of AMCs in electrocatalysis for the oxygen reduction reaction(ORR),hydrogen evolution reaction(HER),and oxygen evolution reaction(OER)are summarized based on the classification criteria of substances.Finally,we put forward current challenges that have not yet been clarified in the field of AMCs,and propose possible solutions,particularly from the perspective of the evolution of electron microscopy.It is expected to promote the understanding of the amorphization-catalysis relationship and provide a guideline for designing high-performance electrocatalysts.展开更多
基金funded by the National Natural Science Foundation of China(Grant Number 52075361)Shanxi Province Science and Technology Major Project(Grant Number 20201102003)+3 种基金Lvliang Science and Technology Guidance Special Key R&D Project(Grant Number 2022XDHZ08)National Natural Science Foundation of China(Grant Number 51905367)Shanxi Natural Science Foundation General Project(Grant Numbers 202103021224271,202203021211201)Shanxi Province Key Research and Development Plan(Grant Number 202102020101013).
文摘In the fiber winding process,strong disturbance,uncertainty,strong coupling,and fiber friction complicate the winding constant tension control.In order to effectively reduce the influence of these problems on the tension output,this paper proposed a tension fluctuation rejection strategy based on feedforward compensation.In addition to the bias harmonic curve of the unknown state,the tension fluctuation also contains the influence of bounded noise.A tension fluctuation observer(TFO)is designed to cancel the uncertain periodic signal,in which the frequency generator is used to estimate the critical parameter information.Then,the fluctuation signal is reconstructed by a third-order auxiliary filter.The estimated signal feedforward compensates for the actual tension fluctuation.Furthermore,a time-varying parameters fractional-order PID controller(TPFOPID)is realized to attenuate the bounded noise in the fluctuation.Finally,TPFOPID is enhanced by TFO and applied to control a tension control system considering multi-source disturbances.The stability of the method is analyzed by using the Lyapunov theorem.Finally,numerical simulations verify that the proposed scheme improves the tracking ability and robustness of the system in response to tension fluctuations.
文摘An electricity generation planning model of the six major Chinese power grids was developed based on the General Algebraic Modeling System to evaluate and analyze the CDM (clean development mechanism), including consideration of the environmental co-benefits of reductions in air pollutants (SO~, NO~ and particulate matter) achieved by advanced electricity generation technologies incorporating CCS (carbon capture and storage). An objective function was developed that included revenue from sales of electric power, total system cost, the cost of CO2 transport and storage, and emissions reduction co-benefits for SOx, NO~, and particulate matter. The objective function was minimized using an optimization model. We also developed a method for evaluating and analyzing the potential for transferring advanced power generation technologies into the Chinese power system through the CDM. We found that: (1) thermal power generation is predominant in the Chinese electricity system and will remain so for a long time; (2) advanced thermal plants are being installed as a result of the CDM, which contribute to decreasing emissions of CO2 and other air pollutants; and (3) CCS projects have significant potential to reduce substantial and sustained CO2 emissions from the Chinese power and industrial sectors.
基金supported by the Fundamental Research Program of Shanxi Province(Grant No.202203021221053)the Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(Grant No.2022SX-TD021)+3 种基金the National Natural Science Foundation of China(Grant Nos.52075361,and 52274222)the Lvliang Science and Technology Guidance Special Key R&D Project(Grant No.2022XDHZ08)the Major Science and Technology Project of Shanxi Province(Grant No.20201102003)the Key Research and Development Projects in Shanxi province(Grant No.201903D421030).
文摘The paper proposes a topology optimization method for 1D phononic structures to minimize the tangential component of particle velocity at the objective boundary.The tangential derivative of the boundary integral equation(TDBIE)is employed for the evaluation of the objective function involves the tangential derivative quantities.The topological derivative is derived through the adjoint method and the Neumann boundary condition of the adjoint field is obtained using the TDBIE.The average topological derivative which is obtained by calculating the average value of the topological derivative in each layer of design domains,is employed for the updating of the level set function.Numerical implementations demonstrate the proposed method is effective for the design of the 1D phononic crystals with the objective function involving tangential derivative quantities.
基金the National Natural Science Foundation of China(Nos.52001222,52075361,and U21A20174)the Key National Scientific and Technological Cooperation Projects of Shanxi Province(No.202104041101008)+5 种基金the Major Science and Technology Project of Shanxi Province(No.20201102003)the Key Research and Development Projects in Shanxi Province(No.201903D421030)the Natural Science Foundation of Shanxi Province(Nos.201701D221073 and 201901D111107)the Program for the Innovative Talents of Higher Education Institutions of Shanxi(PTIT)the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(STIP,No.2019L025)the Special Foundation for Youth San Jin scholars。
文摘Amorphous metal-based catalysts(AMCs)have sparked intense research interests in the field of electrocatalysis elicited by their hallmark features such as unlimited volume and morphology,manipulated electronic structures,enriched defects,and unsaturated surface atom coordination.Nevertheless,the manipulation of the amorphous phase in metal-based catalysts is so far impractical,and thus their electrocatalytic mechanism yet remains ambiguous.In this review,the latest advances in AMCs are systematically reviewed,covering amorphous-phase engineering strategy,structure manipulation,and amorphization of various material categories for electrocatalysis.Specifically,a series of applications of AMCs in electrocatalysis for the oxygen reduction reaction(ORR),hydrogen evolution reaction(HER),and oxygen evolution reaction(OER)are summarized based on the classification criteria of substances.Finally,we put forward current challenges that have not yet been clarified in the field of AMCs,and propose possible solutions,particularly from the perspective of the evolution of electron microscopy.It is expected to promote the understanding of the amorphization-catalysis relationship and provide a guideline for designing high-performance electrocatalysts.