期刊文献+
共找到11篇文章
< 1 >
每页显示 20 50 100
Mechanical mechanism of overlying strata breaking and development of fractured zone during close-distance coal seam group mining 被引量:26
1
作者 jianguo ning Jun Wang +1 位作者 Yunliang Tan Qiang Xu 《International Journal of Mining Science and Technology》 SCIE EI CSCD 2020年第2期207-215,共9页
This study mainly investigates the mechanical mechanism of overlying strata breaking and the development of fractured zones during close-distance coal seam group mining in the Gaojialiang coal mine.First,a mechanical ... This study mainly investigates the mechanical mechanism of overlying strata breaking and the development of fractured zones during close-distance coal seam group mining in the Gaojialiang coal mine.First,a mechanical model for the second"activation"of broken overlying strata is established,and the related mechanical"activation"conditions are obtained.A recursive formula for calculating the separation distance of overlying strata is deduced.Second,a height determining method for predicting the height of fractured zones during close-distance coal seam group mining is proposed based on two values,namely,the separation distance and ultimate subsidence value of overlying strata.This method is applied to calculate the fractured zone heights in nos.20107 and 20307 mining faces.The calculated results are almost equal to the field observation results.Third,a modified formula for calculating the height of a waterflowing fractured zone is proposed.A comparison of the calculated and observed results shows that the errors are small.The height determining method and modified formula not only build a theoretical foundation for water conservation mining at the Gaojialiang coal mine,but also provide a reference for estimating the height of water-flowing fractured zones in other coal mines with similar conditions. 展开更多
关键词 Coal SEAM group Activation mechanism Separation Water-flowing fractured ZONE Modified FORMULA
下载PDF
Stability Control of Gob-Side Entry Retaining in Fully Mechanized Caving Face Based on a Compatible Deformation Model 被引量:2
2
作者 Xinshuai Shi Hongwen Jing +2 位作者 jianguo ning Zhenlong Zhao Junfu Zhu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第7期315-343,共29页
The stability control of gob-side entry retaining in fully mechanized caving face is a typical challenge in many coal mines in China.The rotation and subsidence of the lateral cantilever play a critical role in a coal... The stability control of gob-side entry retaining in fully mechanized caving face is a typical challenge in many coal mines in China.The rotation and subsidence of the lateral cantilever play a critical role in a coal mine,possibly leading to instability in a coal seam wall or a gob-side wall due to its excessive rotation subsidence.Hence,the presplitting blasting measures in the roof was implemented to cut down the lower main roof and convert it to caved immediate roof strata,which can significantly reduce the rotation space for the lateral cantilever and effectively control its rotation.Firstly,the compatible deformation model was established to investigate the quantitative relationship between the deformation of the coal seam wall and the gob-side wall and the subsidence of the lateral cantilever.Then,the instability judgments for the coal seam wall and gob-side wall were revealed,and the determination method for the optimal roof cutting height were obtained.Furthermore,The Universal Distinct Element Code numerical simulation was adopted to investigate the effect of roof-cutting height on the stability of the retained entry.The numerical simulation results indicated that the deformation of the roadway could be effectively controlled when the roofcutting height reached to 18 m,which verified the theoretical deduction well.Finally,a field application was performed at the No.3307 haulage gateway in the Tangan coal mine,Ltd.,Shanxi Province,China.The field monitoring results showed that the blasting roof cutting method could effectively control the large deformation of surrounding rocks,which provided helpful references for coal mine safety production under similar conditions. 展开更多
关键词 Gob-side entry retaining fully mechanized caving face lateral cantilever
下载PDF
Influence analysis of complex crack geometric parameters on mechanical properties of soft rock
3
作者 Yang Zhao Xin He +3 位作者 Lishuai Jiang Zongke Wang jianguo ning Atsushi Sainoki 《International Journal of Coal Science & Technology》 EI CAS CSCD 2023年第4期290-304,共15页
Soft rocks, such as coal, are afected by sedimentary efects, and the surrounding rock mass of underground coal mines is generally soft and rich in joints and cracks. A clear and deep understanding of the relationship ... Soft rocks, such as coal, are afected by sedimentary efects, and the surrounding rock mass of underground coal mines is generally soft and rich in joints and cracks. A clear and deep understanding of the relationship between crack geometric parameters and rock mechanics properties in cracked rock is greatly important to the design of engineering rock mass struc‑tures. In this study, computed tomography (CT) scanning was used to extract the internal crack network of coal specimens. Based on the crack size and dominant crack number, the parameters of crack area, volume, length, width, and angle were statistically analyzed by diferent sampling thresholds. In addition, the Pearson correlation coefcients between the crack parameters and uniaxial compression rock mechanics properties (uniaxial compressive strength UCS, elasticity modulus E) were calculated to quantitatively analyze the impact of each parameter. Furthermore, a method based on Pearson coefcients was used to grade the correlation between crack geometric parameters and rock mechanical properties to determine threshold values. The results indicated that the UCS and E of the specimens changed with the varied internal crack structures of the specimens, the crack parameters of area, volume, length and width all showed negative correlations with UCS and E, and the dominant crack played an important role both in weakening strength and stifness. The crack parameters of the angle are all positively correlated with the UCS and E. More crack statistics can signifcantly improve the correlation between the parameters of the crack angle and the rock mechanics properties, and the statistics of the geometric parameters of at least 16 cracks or the area larger than 5 mm2 are suggested for the analysis of complex cracked rock masses or physical reproduction using 3D printing. The results are validated and further analyzed with triaxial tests. The fndings of this study have important reference value for future research regarding the accurate and efcient selection of a few cracks with a signifcant infuence on the rock mechanical properties of surrounding rock mass structures in coal engineering. 展开更多
关键词 CT scanning Complex crack Sampling threshold Soft rock Rock mechanics Crack geometric parameters
下载PDF
Mechanical behaviors and damage constitutive model of ceramics under shock compression 被引量:10
4
作者 jianguo ning Huilan Ren Ping Li 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2008年第3期305-315,共11页
One-stage light gas gun was utilized to study the dynamic mechanical properties of AD90 alumina subjected to the shock loading. Manganin gauges were adopted to obtain the stress-time histories. The velocity interferom... One-stage light gas gun was utilized to study the dynamic mechanical properties of AD90 alumina subjected to the shock loading. Manganin gauges were adopted to obtain the stress-time histories. The velocity interferometer system for any reflector (VISAR) was used to obtain the free surface velocity profile and determine the Hugoniot elastic limit. The Hugoniot curves were fitted with the experimental data. From Hugoniot curves the compressive behaviors of AD90 alumina were found to change typically from elastic to "plastic". The dynamic mechanical behaviors for alumina under impact loadings were analyzed by using the path line principle of Lagrange analysis, including the nonlinear characteristics, the strain rate dependence, the dispersion and declination of shock wave in the material. A damage model applicable to ceramics subjected to dynamic compressive loading has been developed. The model was based on the damage micromechanics and wing crack nucleation and growth. The effects of parameters of both the micro-cracks nucleation and the initial crack size on the dynamic fracture strength were discussed. The results of the dynamic damage evolution model were compared with the experimental results and a good agreement was found. 展开更多
关键词 Mechanical behaviors Lagrange analysis DAMAGE Tensile wing crack
下载PDF
Similar simulation study on the deformation and failure of surrounding rock of a large section chamber group under dynamic loading 被引量:10
5
作者 Xuesheng Liu Shilin Song +4 位作者 Yunliang Tan Deyuan Fan jianguo ning Xuebin Li Yanchun Yin 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2021年第3期495-505,共11页
Large and super-large section chamber groups in coal mines are frequently affected by dynamic loads resulting from production activities such as roadway driving and blasting.The stability of the surrounding rock is po... Large and super-large section chamber groups in coal mines are frequently affected by dynamic loads resulting from production activities such as roadway driving and blasting.The stability of the surrounding rock is poor,and it is difficult to control.In this paper,a similar simulation test was used to study the deformation and evolution laws of the surrounding rock of a triangle-shaped chamber group under different dynamic loads.The results showed that under dynamic loading,the vertical stress of the surrounding rock of the chamber group increased in an oscillatory form.The maximum stress concentration coefficient reached 4.09.The damage degree of the roof was greater than that of the two sides.The deformation of the roof was approximately 1.2 times that of the two sides.For the chamber closer to the power source,the stress oscillation amplitude of the surrounding rock was larger,and the failure was more serious.The force of the anchorage structure showed a phased increasing characteristic;additionally,the force of the anchorage structure on the adjacent side of the chambers was greater than that on the other side.This study reveals the deformation and failure evolution laws of the surrounding rock of large section chamber groups under dynamic loading. 展开更多
关键词 Dynamic disturbance Large section chamber group Deformation and failure Similar simulation test
下载PDF
Fragment spatial distribution of prismatic casing under internal explosive loading 被引量:3
6
作者 Tianbao Ma Xinwei Shi +1 位作者 Jian Li jianguo ning 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第4期910-921,共12页
Non-cylindrical casings filled with explosives have undergone rapid development in warhead design and explosion control.The fragment spatial distribution of prismatic casings is more complex than that of traditional c... Non-cylindrical casings filled with explosives have undergone rapid development in warhead design and explosion control.The fragment spatial distribution of prismatic casings is more complex than that of traditional cylindrical casings.In this study,numerical and experimental investigations into the fragment spatial distribution of a prismatic casing were conducted.A new numerical method,which adds the Lagrangian marker points to the Eulerian grid,was proposed to track the multi-material interfaces and material dynamic fractures.Physical quantity mappings between the Lagrangian marker points and Eulerian grid were achieved by their topological relationship.Thereafter,the fragment spatial distributions of the prismatic casing with different fragment sizes,fragment shapes,and casing geometries were obtained using the numerical method.Moreover,fragment spatial distribution experiments were conducted on the prismatic casing with different fragment sizes and shapes,and the experimental data were compared with the numerical results.The effects of the fragment and casing geometry on the fragment spatial distributions were determined by analyzing the numerical results and experimental data.Finally,a formula including the casing geometry parameters was fitted to predict the fragment spatial distribution of the prismatic casing under internal explosive loading. 展开更多
关键词 Fragment spatial distribution Prismatic casing Internal explosive loading Numerical fitting formula Marker-point weighted method
下载PDF
Dynamic constitutive modeling of frozen soil under impact loading 被引量:5
7
作者 jianguo ning Yuexiang He Zhiwu Zhu 《Chinese Science Bulletin》 SCIE EI CAS 2014年第26期3255-3259,共5页
In this study, an isotropic hardening constitutive model is presented to study the behavior of frozen soil under impact loading. In plasticity, a modified Drucker–Prager yield function is adopted. Based on the experi... In this study, an isotropic hardening constitutive model is presented to study the behavior of frozen soil under impact loading. In plasticity, a modified Drucker–Prager yield function is adopted. Based on the experimental investigations at different strain rates and different temperatures by means of split Hopkinson pressure bar, the Drucker–Prager criterion has been modified with consideration in the effect of strain rate, and the model parameters have been determined. Compared the constitutive model with the experimental results, the predicted tendencies of the model corresponded well to the test curves. 展开更多
关键词 动态本构模型 冲击载荷 冻土 霍普金森压杆 应变速率 各向同性 屈服函数 模型参数
原文传递
Experimental Study on the Dynamic Mechanical Properties of Reinforced Concrete under Shock Loading 被引量:5
8
作者 Haifeng Liu Jie Fu jianguo ning 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2016年第1期22-30,共9页
A simple experimental method was introduced to study the mechanical properties of reinforced concrete under shock loading. The one-stage light gas gun was used to test the me- chanical properties of reinforced concret... A simple experimental method was introduced to study the mechanical properties of reinforced concrete under shock loading. The one-stage light gas gun was used to test the me- chanical properties of reinforced concrete with different reinforcement ratios under various impact velocities. Three Mn-Cu piezoresistive pressure gauges embedded in the target were used to record the voltage-time signals, from which the stress-strain curves of reinforced concrete were obtained using Lagrangian analysis. Experimental results indicated that the load-bearing capacities of re- inforced concrete increased greatly with the impact velocity and the reinforcement ratio. The peak stress of the shock wave decreased exponentially with the propagation distance. 展开更多
关键词 reinforced concrete shock loading Lagrangian analysis dynamic mechanical properties
原文传递
Functional Morphology and Bending Characteristics of the Honeybee Forewing 被引量:2
9
作者 Yun Ma Huilan Ren +1 位作者 jianguo ning Pengfei Zhang 《Journal of Bionic Engineering》 SCIE EI CSCD 2017年第1期111-118,共8页
The present work aimed to reveal the functional morphology and bending characteristics of the worker honeybee (Apis mellifera) forewing. Honeybee wings including the forewing and hindwing, which are mainly composed ... The present work aimed to reveal the functional morphology and bending characteristics of the worker honeybee (Apis mellifera) forewing. Honeybee wings including the forewing and hindwing, which are mainly composed of veins and membranes, are a kind of typical hierarchical biomaterials. We investigated the cross-sections of membranes, veins and wing hairs through Scanning Electron Microscopy (SEM). Based on the microscopic observation, it was found that the vein is a thick-walled cylinder, and the membrane possesses multilayered structure and so does the wing hair which shows the thread surface. At the vein-membrane conjunctive position, membranes and veins are assembled seamlessly and veins are packed smoothly and tightly by membranes into a whole, allowing honeybees to perform excellent flapping flight. In such a case, we also conducted the cantilevered bending experiment of honeybee forewing to explore their bending characteristics using a MTS Tytron 250 micro force tester. Experiment results indicate that the anti-bending capacity of the forewing along the spanwise direction is higher than that along the chordwise direction which is partly caused by the wing corrugation along the wing span detected by the micro-Computed Tomography (micro-CT), and ventral load bearing ability is better than dorsal one along the spanwise and chordwise direction of the wing which is due to the stress-stiffening of membranes. It could be concluded that the structural configuration of the wing is closely relevant to wing biomechanical behaviors. All results above would provide a significant support for the design of bioinspired wings for Flapping Micro Aerial Vehicles (FMAV). 展开更多
关键词 honeybee forewing functional morphology hierarchical structure bending stiffness
原文传递
A mass abrasion model with the melting and cutting mechanisms during high-speed projectile penetration into concrete slabs
10
作者 jianguo ning Huilan Ren +1 位作者 Zhao Li Xiangzhao Xu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2022年第10期14-27,共14页
In this study,ogive-nose projectile penetration into concrete slabs was tested at initial projectile impact velocities ranging from 1325.0 m/s to 1425.0 m/s.The depth of penetration and mass loss of the projectiles we... In this study,ogive-nose projectile penetration into concrete slabs was tested at initial projectile impact velocities ranging from 1325.0 m/s to 1425.0 m/s.The depth of penetration and mass loss of the projectiles were measured,and the residual projectiles were recovered after the penetration tests.Scanning electron microscopy and metallographic microscopy of the microstructures were performed on various sections and outer surfaces of the projectiles taken from different locations of the residual projectiles,to analyze the intrinsic mechanisms of mass abrasion.The analysis results reveal that,during high-speed projectile penetration,projectile abrasion is caused by multiple mechanisms.Based on the cavity expansion theory,a projectile penetration model was established by considering the two main mass loss mechanisms observed in the microscopic tests.The theoretical predictions of the penetration depth,mass loss rate,and change of projectile head are consistent with the experimental results obtained both in this study and previous research. 展开更多
关键词 Projectile abrasion Microscopic observation High-speed penetration Concrete target
原文传递
Numerical simulations of cellular detonation diffraction in a stable gaseous mixture
11
作者 Jian Li jianguo ning +1 位作者 Charles B.Kiyanda Hoi Dick Ng 《Propulsion and Power Research》 SCIE 2016年第3期177-183,共7页
In this paper,the diffraction phenomenon of gaseous cellular detonations emerging from a confined tube into a sudden open space is simulated using the reactive Euler equations with a two-step Arrhenius chemistry model... In this paper,the diffraction phenomenon of gaseous cellular detonations emerging from a confined tube into a sudden open space is simulated using the reactive Euler equations with a two-step Arrhenius chemistry model.Both two-dimensional and axisymmetric configurations are used for modeling cylindrical and spherical expansions,respectively.The chemical parameters are chosen for a stable gaseous explosive mixture in which the cellular detonation structure is highly regular.Adaptive mesh refinement(AMR)is used to resolve the detonation wave structure and its evolution during the transmission.The numerical results show that the critical channel width and critical diameter over the detonation cell size are about 1371 and 2571,respectively.These numerical findings are comparable with the experimental observation and confirm again that the critical channel width and critical diameter differ essentially by a factor close to 2,equal to the geometrical scaling based on front curvature theory.Unlike unstable mixtures where instabilities manifested in the detonation front structure play a significant role during the transmission,the present numerical results and the observed geometrical scaling provide again evidence that the failure of detonation diffraction in stable mixtures with a regular detonation cellular pattern is dominantly caused by the global curvature due to the wave divergence resulting in the global decoupling of the reaction zone with the expanding shock front. 展开更多
关键词 DETONATIONS DIFFRACTION Pulse detonation engine Stable mixture Adaptive mesh refinement(AMR)
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部