In this work,the mass transfer characteristics of two immiscible fluids were investigated in a rotating helical microchannel with hydraulic diameter of 932μm.Aqueous phosphoric acid solution and 80%tri-n-butyl phosph...In this work,the mass transfer characteristics of two immiscible fluids were investigated in a rotating helical microchannel with hydraulic diameter of 932μm.Aqueous phosphoric acid solution and 80%tri-n-butyl phosphate(TBP)in kerosene were selected for the investigation of mass transfer performance in quartz glass/high density polyethylene(HDPE)microchannel.High dispersion between the two immiscible fluids can be obtained in the microchannel due to the intensifying action of centrifugal force,and the majority of the droplets with average diameter of 20–100μm were produced in the microchannel.The flow rate and rotation speed were found to have great effects on the extraction efficiency and average residence time.The empirical correlation of average residence time based on experimental data was developed by theoretical analysis and data fitting method,and a mathematical model of the mass transfer coefficient in dispersed phase was proposed.展开更多
Rotor–stator reactor(RSR), an efficient mass transfer enhancer, has been applied in many fields. However,the hydrodynamic characteristics of liquid flow in RSR are still a mystery despite they are fundamental for the...Rotor–stator reactor(RSR), an efficient mass transfer enhancer, has been applied in many fields. However,the hydrodynamic characteristics of liquid flow in RSR are still a mystery despite they are fundamental for the mass transfer performance and processing capacity. In view of the above, this paper studies the liquid–liquid flow and liquid holdup in RSR under various conditions with a high-speed camera. The paper firstly demonstrates two flow patterns and liquid holdup patterns that we obtained from our experiment and then presents in succession a flow pattern and a liquid holdup criterion for the transition of film flow to filament flow and complete filling to incomplete filling. It is found that experimental parameters, including rotor–stator distance, rotational speed and volume flow rate exert great influence on the average droplet diameter and size distribution. Besides, by comparison and contrast, we also find that the experimental values match well with our previous predicted calculations of the average diameter, and the relation between the average diameter and the mean energy dissipation rate.展开更多
In this work,a novel rotating microchannel extractor(RME)is designed and further used for the extraction of chromium(Ⅲ)from water.Unexpectedly,the micro-extraction had the same effect as carrying out 2.9-stage cross-...In this work,a novel rotating microchannel extractor(RME)is designed and further used for the extraction of chromium(Ⅲ)from water.Unexpectedly,the micro-extraction had the same effect as carrying out 2.9-stage cross-flow extractions.Various factors,including the gas intake methods,gas intake quantity(Qg),distance between inner rotor and outer wall(D),rotational inner rotor speed(R)and volumetric flow rate(Qa,Qo),were selected to investigate their effect on the extraction efficiency(η)thoroughly.The relation map ofηwith Weaand We(o-g)for RME provides a comprehension for the gas–liquid–liquid extraction process in this RME system.展开更多
An improved rotating microchannel(IRM) separator was further explored in the intensification for demulsification and separation process. Oil-in-water(O/W) emulsion system of 2-ethylhexyl phosphoric acid-2-ethylhexyl e...An improved rotating microchannel(IRM) separator was further explored in the intensification for demulsification and separation process. Oil-in-water(O/W) emulsion system of 2-ethylhexyl phosphoric acid-2-ethylhexyl ester(P507)–water without emulsifier was employed to evaluate the performance of the new equipment. In this experiment, the influence on demulsification separation process was explored by changing the geometrical structure and channel height of the microchannel and combining the liquid–liquid two-phase flow pattern, and the correlation general graph between demulsification efficiency and dimensionless parameters was established. The total demulsification effect of the IRM and the separation capacity of the clear organic phase recovered from demulsification are significantly improved. In addition, the liquid–liquid two-phase flow pattern of the clear organic phase after demulsification and the remaining emulsion in the IRM are observed and recorded by high-speed photography. The separation ability of organic phase from the upper outlet can be significantly improved when the total demulsification rate of IRM is up to 90%. There are 3 types and 6 kinds of flow patterns observed. The results demonstrated that the suitable demulsification performance is obtained when the liquid–liquid two-phase inside the IRM is in a parallel pattern. Finally, the relation map between total demulsification efficiency and the universal flow is drawn, which provides a basis for the accurate control of the IRM device.展开更多
Ion channel activation upon ligand gating triggers a myriad of biological events and,therefore,evolution of ligand gating mechanism is of fundamental importance.TRPM2,a typical ancient ion channel,is activated by aden...Ion channel activation upon ligand gating triggers a myriad of biological events and,therefore,evolution of ligand gating mechanism is of fundamental importance.TRPM2,a typical ancient ion channel,is activated by adenosine diphosphate ribose(ADPR)and calcium and its activation has evolved from a simple mode in invertebrates to a more complex one in vertebrates,but the evolutionary process is still unknown.Molecular evolutionary analysis of TRPM2s from more than 280 different animal species has revealed that,the C-terminal NUDT9-H domain has evolved from an enzyme to a ligand binding site for activation,while the N-terminal MHR domain maintains a conserved ligand binding site.Calcium gating pattern has also evolved,from one Ca^(2+)-binding site as in sea anemones to three sites as in human.Importantly,we identified a new group represented by olTRPM2,which has a novel gating mode and fills the missing link of the channel gating evolution.We conclude that the TRPM2 ligand binding or activation mode evolved through at least three identifiable stages in the past billion years from simple to complicated and coordinated.Such findings benefit the evolutionary investigations of other channels and proteins.展开更多
Rifapentine crystals with different habits were prepared by recrystallization from selected solvents,such as methanol,ethanol,chloroform,and acetic acid.Scanning electron microscopy,X-ray powder diffractometry,infrare...Rifapentine crystals with different habits were prepared by recrystallization from selected solvents,such as methanol,ethanol,chloroform,and acetic acid.Scanning electron microscopy,X-ray powder diffractometry,infrared spectrometry,and differential scanning calorimetry were used to investigate the physicochemical characteristics of the prepared crystals.The comparative dissolution behaviors of the newly developed crystals and of rifapentine without being treated were also studied.Results show that the newly developed crystals were different from each other with respect to physical properties but were identical chemically.Needle-shaped crystals were obtained from methanol,ethanol,and chloroform solvents,and the block-shaped crystals were obtained from acetic acid solvent.X-ray diffraction spectra and differential scanning calorimetry investigation on those developed crystals clearly indicate that rifapentine has different crystal structure modification.When the crystal was obtained from acetic acid,the change of crystal habit was originated from the crystal structure modification.The dissolution rate of newly developed crystals was found to be higher than that of rifapentine without being treated.However,the modified crystal obtained from acetic acid shows the lower dissolution rate than crystals obtained from other solvents.展开更多
Accumulating evidence indicates that the synaptic activation of N-methyl-o-aspartate receptors (NMDARs) has a neuroprotective effect on neurons. Our previous study demonstrated that APPL1 (adaptor protein containin...Accumulating evidence indicates that the synaptic activation of N-methyl-o-aspartate receptors (NMDARs) has a neuroprotective effect on neurons. Our previous study demonstrated that APPL1 (adaptor protein containing pleckstrin homology domain, phosphotyrosine- binding domain, and leucine zipper motif) mediates the synaptic activity-dependent activation of PI3K-Akt signaling via coupling this pathway with NMDAR-PSD95 (postsynaptic density protein 95) complexes. However, the molecular mechanism underlying this process is still unknown. In the present study, we investigated the inter- action of APPL1 with PSD95 using co-immunocyto- chemical staining and western blotting. We found that the PDZ2 domain of PSD95 is a binding partner of APPL1. Furthermore, we identified serine 707 of APPL1, a pre- dicted phosphorylation site within the PDZ-binding motif at the C-terminus, as critical for the binding of APPL1 to PSD95, as well as for activation of the Akt signaling pathway during synaptic activity. This suggests that serine 707 of APPL1 is a potential phosphorylation site and may be involved in regulating the neuroprotective Akt signaling pathway that depends on synaptic NMDAR activity.展开更多
cFos is one of the most widely-studied genes in the field of neuroscience.Currently,there is no systematic database focusing on cFos in neuroscience.We developed a curated database-cFos-ANAB-a cFos-based web tool for ...cFos is one of the most widely-studied genes in the field of neuroscience.Currently,there is no systematic database focusing on cFos in neuroscience.We developed a curated database-cFos-ANAB-a cFos-based web tool for exploring activated neurons and associated behaviors in rats and mice,comprising 398 brain nuclei and sub-nuclei,and five associated behaviors:pain,fear,feeding,aggression,and sexual behavior.Direct relationships among behaviors and nuclei(even cell types)under specific stimulating conditions were constructed based on cFos expression profiles extracted from original publications.Moreover,overlapping nuclei and sub-nuclei with potentially complex functions among different associated behaviors were emphasized,leading to results serving as important clues to the development of valid hypotheses for exploring as yet unknown circuits.Using the analysis function of cFos-ANAB,multi-layered pictures of networks and their relationships can quickly be explored depending on users’purposes.These features provide a useful tool and good reference for early exploration in neuroscience.The cFos-ANAB database is available at www.cfos-db.net.展开更多
基金supported by the National Natural Science Foundation of China(No.21776180,21776181,21306116).
文摘In this work,the mass transfer characteristics of two immiscible fluids were investigated in a rotating helical microchannel with hydraulic diameter of 932μm.Aqueous phosphoric acid solution and 80%tri-n-butyl phosphate(TBP)in kerosene were selected for the investigation of mass transfer performance in quartz glass/high density polyethylene(HDPE)microchannel.High dispersion between the two immiscible fluids can be obtained in the microchannel due to the intensifying action of centrifugal force,and the majority of the droplets with average diameter of 20–100μm were produced in the microchannel.The flow rate and rotation speed were found to have great effects on the extraction efficiency and average residence time.The empirical correlation of average residence time based on experimental data was developed by theoretical analysis and data fitting method,and a mathematical model of the mass transfer coefficient in dispersed phase was proposed.
基金Supported by the National Natural Science Foundation of China(21776180,21776181,21306116)Hou Hua Ku Project of Sichuan University(2018SCUH0012).
文摘Rotor–stator reactor(RSR), an efficient mass transfer enhancer, has been applied in many fields. However,the hydrodynamic characteristics of liquid flow in RSR are still a mystery despite they are fundamental for the mass transfer performance and processing capacity. In view of the above, this paper studies the liquid–liquid flow and liquid holdup in RSR under various conditions with a high-speed camera. The paper firstly demonstrates two flow patterns and liquid holdup patterns that we obtained from our experiment and then presents in succession a flow pattern and a liquid holdup criterion for the transition of film flow to filament flow and complete filling to incomplete filling. It is found that experimental parameters, including rotor–stator distance, rotational speed and volume flow rate exert great influence on the average droplet diameter and size distribution. Besides, by comparison and contrast, we also find that the experimental values match well with our previous predicted calculations of the average diameter, and the relation between the average diameter and the mean energy dissipation rate.
基金financial support from the National Natural Science Foundation of China(21776181)Sichuan University innovation spark project(2018SCUH0012)+1 种基金Chinese National Key Research and Development Plan(2018YFC1900203-03)Special Project of Building World-class Universities(2030704401004)。
文摘In this work,a novel rotating microchannel extractor(RME)is designed and further used for the extraction of chromium(Ⅲ)from water.Unexpectedly,the micro-extraction had the same effect as carrying out 2.9-stage cross-flow extractions.Various factors,including the gas intake methods,gas intake quantity(Qg),distance between inner rotor and outer wall(D),rotational inner rotor speed(R)and volumetric flow rate(Qa,Qo),were selected to investigate their effect on the extraction efficiency(η)thoroughly.The relation map ofηwith Weaand We(o-g)for RME provides a comprehension for the gas–liquid–liquid extraction process in this RME system.
文摘An improved rotating microchannel(IRM) separator was further explored in the intensification for demulsification and separation process. Oil-in-water(O/W) emulsion system of 2-ethylhexyl phosphoric acid-2-ethylhexyl ester(P507)–water without emulsifier was employed to evaluate the performance of the new equipment. In this experiment, the influence on demulsification separation process was explored by changing the geometrical structure and channel height of the microchannel and combining the liquid–liquid two-phase flow pattern, and the correlation general graph between demulsification efficiency and dimensionless parameters was established. The total demulsification effect of the IRM and the separation capacity of the clear organic phase recovered from demulsification are significantly improved. In addition, the liquid–liquid two-phase flow pattern of the clear organic phase after demulsification and the remaining emulsion in the IRM are observed and recorded by high-speed photography. The separation ability of organic phase from the upper outlet can be significantly improved when the total demulsification rate of IRM is up to 90%. There are 3 types and 6 kinds of flow patterns observed. The results demonstrated that the suitable demulsification performance is obtained when the liquid–liquid two-phase inside the IRM is in a parallel pattern. Finally, the relation map between total demulsification efficiency and the universal flow is drawn, which provides a basis for the accurate control of the IRM device.
基金supported by the National Natural Science Foundation of China(82030108,31872796,32071102,and 32000707)the Zhejiang Provincial Natural Science Foundation of China(LD24H090004,R16H090001,LQ20H160039,LTY21H160003,and LY19B020013)+3 种基金National Major Scientific and Technological Special Project for“Significant New Drugs Development”(2018ZX09711001-004-005)Zhejiang Association for Science and Technology Talent Cultivation Project(CTZB-2020080127)the East-West Cooperation Project(2019BFH02003)the MOE Frontier Science Center for Brain Science&Brain-Machine Integration,Zhejiang University。
文摘Ion channel activation upon ligand gating triggers a myriad of biological events and,therefore,evolution of ligand gating mechanism is of fundamental importance.TRPM2,a typical ancient ion channel,is activated by adenosine diphosphate ribose(ADPR)and calcium and its activation has evolved from a simple mode in invertebrates to a more complex one in vertebrates,but the evolutionary process is still unknown.Molecular evolutionary analysis of TRPM2s from more than 280 different animal species has revealed that,the C-terminal NUDT9-H domain has evolved from an enzyme to a ligand binding site for activation,while the N-terminal MHR domain maintains a conserved ligand binding site.Calcium gating pattern has also evolved,from one Ca^(2+)-binding site as in sea anemones to three sites as in human.Importantly,we identified a new group represented by olTRPM2,which has a novel gating mode and fills the missing link of the channel gating evolution.We conclude that the TRPM2 ligand binding or activation mode evolved through at least three identifiable stages in the past billion years from simple to complicated and coordinated.Such findings benefit the evolutionary investigations of other channels and proteins.
文摘Rifapentine crystals with different habits were prepared by recrystallization from selected solvents,such as methanol,ethanol,chloroform,and acetic acid.Scanning electron microscopy,X-ray powder diffractometry,infrared spectrometry,and differential scanning calorimetry were used to investigate the physicochemical characteristics of the prepared crystals.The comparative dissolution behaviors of the newly developed crystals and of rifapentine without being treated were also studied.Results show that the newly developed crystals were different from each other with respect to physical properties but were identical chemically.Needle-shaped crystals were obtained from methanol,ethanol,and chloroform solvents,and the block-shaped crystals were obtained from acetic acid solvent.X-ray diffraction spectra and differential scanning calorimetry investigation on those developed crystals clearly indicate that rifapentine has different crystal structure modification.When the crystal was obtained from acetic acid,the change of crystal habit was originated from the crystal structure modification.The dissolution rate of newly developed crystals was found to be higher than that of rifapentine without being treated.However,the modified crystal obtained from acetic acid shows the lower dissolution rate than crystals obtained from other solvents.
基金supported by grants from the National Natural Science Foundation of China(91232303,81221003,and 81561168)
文摘Accumulating evidence indicates that the synaptic activation of N-methyl-o-aspartate receptors (NMDARs) has a neuroprotective effect on neurons. Our previous study demonstrated that APPL1 (adaptor protein containing pleckstrin homology domain, phosphotyrosine- binding domain, and leucine zipper motif) mediates the synaptic activity-dependent activation of PI3K-Akt signaling via coupling this pathway with NMDAR-PSD95 (postsynaptic density protein 95) complexes. However, the molecular mechanism underlying this process is still unknown. In the present study, we investigated the inter- action of APPL1 with PSD95 using co-immunocyto- chemical staining and western blotting. We found that the PDZ2 domain of PSD95 is a binding partner of APPL1. Furthermore, we identified serine 707 of APPL1, a pre- dicted phosphorylation site within the PDZ-binding motif at the C-terminus, as critical for the binding of APPL1 to PSD95, as well as for activation of the Akt signaling pathway during synaptic activity. This suggests that serine 707 of APPL1 is a potential phosphorylation site and may be involved in regulating the neuroprotective Akt signaling pathway that depends on synaptic NMDAR activity.
基金by the National Natural Science Foundation of China(71974167 and 71573225).
文摘cFos is one of the most widely-studied genes in the field of neuroscience.Currently,there is no systematic database focusing on cFos in neuroscience.We developed a curated database-cFos-ANAB-a cFos-based web tool for exploring activated neurons and associated behaviors in rats and mice,comprising 398 brain nuclei and sub-nuclei,and five associated behaviors:pain,fear,feeding,aggression,and sexual behavior.Direct relationships among behaviors and nuclei(even cell types)under specific stimulating conditions were constructed based on cFos expression profiles extracted from original publications.Moreover,overlapping nuclei and sub-nuclei with potentially complex functions among different associated behaviors were emphasized,leading to results serving as important clues to the development of valid hypotheses for exploring as yet unknown circuits.Using the analysis function of cFos-ANAB,multi-layered pictures of networks and their relationships can quickly be explored depending on users’purposes.These features provide a useful tool and good reference for early exploration in neuroscience.The cFos-ANAB database is available at www.cfos-db.net.