In this paper,we propose mesoscience-guided deep learning(MGDL),a deep learning modeling approach guided by mesoscience,to study complex systems.When establishing sample dataset based on the same system evolution data...In this paper,we propose mesoscience-guided deep learning(MGDL),a deep learning modeling approach guided by mesoscience,to study complex systems.When establishing sample dataset based on the same system evolution data,different from the operation of conventional deep learning method,MGDL introduces the treatment of the dominant mechanisms of complex system and interactions between them according to the principle of compromise in competition(CIC)in mesoscience.Mesoscience constraints are then integrated into the loss function to guide the deep learning training.Two methods are proposed for the addition of mesoscience constraints.The physical interpretability of the model-training process is improved by MGDL because guidance and constraints based on physical principles are provided.MGDL was evaluated using a bubbling bed modeling case and compared with traditional techniques.With a much smaller training dataset,the results indicate that mesoscience-constraint-based model training has distinct advantages in terms of convergence stability and prediction accuracy,and it can be widely applied to various neural network configurations.The MGDL approach proposed in this paper is a novel method for utilizing the physical background information during deep learning model training.Further exploration of MGDL will be continued in the future.展开更多
To conduct extensive research on the application of ionic liquids as collectors in mineral flotation,ethanol(EtOH)was used as a solvent to dissolve hydrophobic ionic liquids(ILs)to simplify the reagent regime.Interest...To conduct extensive research on the application of ionic liquids as collectors in mineral flotation,ethanol(EtOH)was used as a solvent to dissolve hydrophobic ionic liquids(ILs)to simplify the reagent regime.Interesting phenomena were observed in which EtOH exerted different effects on the flotation efficiency of two ILs with similar structures.When EtOH was used to dissolve 1-dodecyl-3-methylimidazolium chloride(C12[mim]Cl)and as a collector for pure quartz flotation tests at a concentration of 1×10^(−5)mol·L^(−1),quartz recovery increased from 23.77%to 77.91%compared with ILs dissolved in water.However,quartz recovery of 1-dodecyl-3-methylim-idazolium hexafluorophosphate(C12[mim]PF6)decreased from 60.45%to 24.52%under the same conditions.The conditional experi-ments under 1×10^(−5)mol·L^(−1)ILs for EtOH concentration and under 2vol%EtOH for ILs concentration confirmed this difference.After being affected by EtOH,the mixed ore flotation tests of quartz and hematite showed a decrease in the hematite concentrate grade and re-covery for the C12[mim]Cl collector,whereas the hematite concentrate grade and recovery for the C12[mim]PF6 collector increased.On the basis of these differences and observations of flotation foam,two-phase bubble observation tests were carried out.The EtOH promoted the foam height of two ILs during aeration.It accelerated static froth defoaming after aeration stopped,and the foam of C12[mim]PF6 de-foaming especially quickly.In the discussion of flotation tests and foam observation,an attempt was made to explain the reasons and mechanisms behind the diverse phenomena using the dynamic surface tension effect and solvation effect results from EtOH.The solva-tion effect was verified through Fourier transform infrared(FT-IR),X-ray photoelectron spectroscopy(XPS),and Zeta potential tests.Al-though EtOH affects the adsorption of ILs on the ore surface during flotation negatively,it holds an positive value of inhibiting foam mer-ging during flotation aeration and accelerating the defoaming of static foam.And induce more robust secondary enrichment in the mixed ore flotation of the C12[mim]PF6 collector,facilitating effective mixed ore separation even under inhibitor-free conditions.展开更多
Ternary strategy with a suitable third component is a successful strategy to improve the photovoltaic performance of organic solar cells(OSCs).Very recently,Y-series based giant molecule acceptors or oligomerized acce...Ternary strategy with a suitable third component is a successful strategy to improve the photovoltaic performance of organic solar cells(OSCs).Very recently,Y-series based giant molecule acceptors or oligomerized acceptors have emerged as promising materials for achieving highly efficient and stable binary OSCs,while application as third component for ternary OSCs is limited.Here a novelπ-extended giant dimeric acceptor,GDF,is developed based on central Y series core fusion and rigid BDT as linker,and then incorporated into the state-of-the-art PM1:PC6 system to construct ternary OSCs.The GDF has a near planar backbone,resulting in increasedπ-conjugation,excellent crystallinity,and good electron transport capacity.When GDF is introduced into the PM1:PC6 system,it ensues in a cascade like the lowest unoccupied molecular orbitals(LUMO)energy level alignment,a complementary absorption band with PM1 and PC6,higher and balanced hole and electron mobility,slightly smaller domain size,and a higher exciton dissociation probability for PM1:PC6:GDF(1:1.1:0.1)blend film.As a consequence,the PM1:PC6:GDF(1:1.1:0.1)ternary OSC achieves a champion PCE of 19.22%,with a significantly higher open-circuit voltage and short-circuit current density,compared to 18.45%for the PM1:PC6(1:1.2)binary OSC.Our findings show that employing aπ-extended giant dimeric acceptor as a third component significantly improves the photovoltaic performance of ternary OSCs.展开更多
Single-component ambipolar polymers are highly desirable for organic electrochem-ical transistors(OECTs)and integration into complementary logic circuits with reduced process complexity.However,they often suffer from ...Single-component ambipolar polymers are highly desirable for organic electrochem-ical transistors(OECTs)and integration into complementary logic circuits with reduced process complexity.However,they often suffer from imbalanced p-type and n-type characteristics and/or stability issues.Herein,a novel single-component ambipolar polymer,namely,gIDT–BBT is reported based on indacenodithiophene(IDT)as the electron donor,benzobisthiadiazole(BBT)as the electron acceptor and oligo ethylene glycol(OEG)as the side chain.Benefitting from the extended backbone planarity and rigidity of IDT,pronounced electron-withdrawing capabil-ity of BBT,favored ionic transport from OEG together with vertical OECT device structure,a nearly balanced ambipolar OECT performance is achieved for gIDT–BBT,revealing a high transconductance of 155.05±1.58/27.28±0.92 mS,a high current on/off ratio>10^(6) and an excellent operational stability under both p-type and n-type operation conditions.With gIDT–BBT in hand,furthermore,vertically stacked complementary inverters are successfully fabricated to show a maximum voltage gain of 28 V V^(-1)(V_(IN)=0.9 V)and stable operation over 1000 switching cycles,and then used for efficient electrooculogram recording.This work provides a new approach for the development of ambipolar single-component organic mixed ionic–electronic conductors and establishes a foundation for the manufacture of high-performance ambipolar OECTs and associated complementary circuits.展开更多
The production environment of greenhouse cultivation is relatively closed,the multiple cropping index is high,the management of fertilizationwatering and pesticideapplication isblindtosomeextent,andthe phenomenonofcon...The production environment of greenhouse cultivation is relatively closed,the multiple cropping index is high,the management of fertilizationwatering and pesticideapplication isblindtosomeextent,andthe phenomenonofcontinuous cropping isalsocommonSoilquali-ty affects the sustainable development of greenhouse cultivation.Earthworm is a ubiquitous invertebrate organism in soil,an important part of soil system,a link between terrestrial organisms and soil organisms,an important link in the small cycle of soil material organisms,and plays an important role in maintaining the structure and function of soil ecosystem.Different ecotypes of earthworms are closely related to their habi-tats(soil layers)and food resource preferences,and then affect their ecological functions.The principle of earthworm regulating soil function is essentially the close connection and interaction between earthworm and soil microorganism.Using different ecotypes of earthworms and bio-logical agents to carry out combined remediation of greenhouse cultivation soil is a technical model to realize sustainable development of green-house cultivation.展开更多
Chalcopyrite is a common copper-bearing mineral with antiferromagnetic properties.However,this property has rarely been considered in previous studies for detailed adsorption behaviors of molecules on chalcopyrite.Bas...Chalcopyrite is a common copper-bearing mineral with antiferromagnetic properties.However,this property has rarely been considered in previous studies for detailed adsorption behaviors of molecules on chalcopyrite.Based on density functional theory(DFT),new adsorption pathways by H_(2)O and O_(2)on the chalcopyrite metal terminated(112)surface((112)-M)is found in this work.First,through simulating the adsorption of an isolated water molecule and monolayer water molecules,it is confirmed that H_(2)O molecules tend to adsorb on the surface Fe atoms more than on the surface Cu atoms.Then,we studied various adsorption behaviors of the O_(2)molecule.It is found that the adsorption on the hollow FeAFe site is the most stable case;however,O_(2)is undissociated.Two adsorption cases will happen when H_(2)OAO_(2)adsorb simultaneously on the surface.For the S site,the H_(2)O molecule thoroughly dissociated and formed SAO species,and the other case is H_(2)O undissociated adsorbing at the Cu site.For the former case,it is interesting that H_(2)O is dissociated before O_(2).展开更多
Iron is an impurity widely occurred in sphalerite,and its effect on sphalerite flotation is complex.In this work,the effects of iron content and spin state on electronic properties and floatability of iron-bearing sph...Iron is an impurity widely occurred in sphalerite,and its effect on sphalerite flotation is complex.In this work,the effects of iron content and spin state on electronic properties and floatability of iron-bearing sphalerite are comprehensively studied using density functional theory Hubbard U(DFT+U)calculations combined with coordination chemistry flotation.The band gap of ideal sphalerite is 3.723 eV,and thus electron transition is difficult to occur,resulting in poor floatability.The results suggest the band gap of sphalerite decreases with increasing iron content.For low iron content,the decreased band gap facilitates electron transition;at this case,Fe^(2+)in a high-spin state possesses oneπelectron pair,which can form a weakπ-backbonding with xanthate,causing increasing floatability.However,for medium and high iron-bearing sphalerite,with the further decrease of band gap,Fe^(2+)is oxidized to Fe^(3+)due to electrochemical interaction,and henceπ-backbonding is eliminated,leading to lower floatability of iron-bearing sphalerite,which is consistent with the flotation experimental results.This work could give a deeper understanding of how sphalerite flotation behaviors are affected by iron content.展开更多
Organic solar cells(OSCs)processed without halogenated solvents and complex treatments are essential for future commercialization.Herein,we report three novel small molecule acceptors(NFAs)consisting of a Y6-like core...Organic solar cells(OSCs)processed without halogenated solvents and complex treatments are essential for future commercialization.Herein,we report three novel small molecule acceptors(NFAs)consisting of a Y6-like core but withπ-extended naphthalene with progressively more chlorinated end-capping groups and a longer branched chain on the Nitrogen atom.These NFAs exhibit good solubilities in nonchlorinated organic solvents,broad optical absorptions,closeπ-πstacking distances(3.63–3.84A),and high electron mobilities(~10^(-3)cm^(2)V^(-1)s^(-1)).The o-xylene processed and as-cast binary devices using PM6 as the donor polymer exhibit a PCE increasing upon progressive chlorination of the naphthalene end-capping group from 8.93%for YN to 14.38%for YN-Cl to 15.00%for YN-2Cl.Furthermore similarly processed ternary OSCs were fabricated by employing YN-Cl and YN-2Cl as the third component of PM6:CH1007 blends(PCE=15.75%).Compared to all binary devices,the ternary PM6:CH1007:YN-Cl(1:1:0.2)and PM6:CH1007:YN-2Cl(1:1:0.2)cells exhibit significantly improved PCEs of 16.49%and15.88%,respectively,which are among the highest values reported to date for non-halogenated solvent processed OSCs without using any additives and blend post-deposition treatments.展开更多
Organic electrochemical transistors(OECTs)have attracted attention due to their unique function of converting ionic and biological signals into electronic signals,high transconductance,low energy consumption(below 1 V...Organic electrochemical transistors(OECTs)have attracted attention due to their unique function of converting ionic and biological signals into electronic signals,high transconductance,low energy consumption(below 1 V),stable operation in aqueous media,good biocompatibility[1,2].However,most OECTs are usually built on brittle and stiff substrates,and inappropriate to be adhered to or contacted with delicate human skin,thus impeding their use in wearable electronics.It is desirable to exploit stretchable OECTs to reduce the mechanical mismatch with soft tissues.展开更多
In the present paper, a metal–organic framework Cr-BDC was prepared and used as adsorbent for adsorption of o-nitrophenol(ONP) and p-nitrophenol(PNP) from aqueous solutions. Cr-BDC was characterized by scanning elect...In the present paper, a metal–organic framework Cr-BDC was prepared and used as adsorbent for adsorption of o-nitrophenol(ONP) and p-nitrophenol(PNP) from aqueous solutions. Cr-BDC was characterized by scanning electron microscopy, transmission electron microscope, X-ray diffraction and BET methods. The results indicate that Cr-BDC gets a very large specific surface area of 4128 m^2·g^(-1)and pore sizes are concentrated in 1 nm, which is a benefit for using for wastewater treatment. The influences of the adsorption conditions, such as temperature,solution concentration, adsorption time and reusability on adsorption performance were investigated. Cr-BDC exhibited an encouraging uptake capacity of 310.0 mg·g^(-1)for ONP, and adsorption capacity of Cr-BDC for ONP is significantly higher than that for PNP under suitable adsorption conditions. The characterizations of adsorption process were examined with the Lagergren pseudo-first-order, the pseudo-second-order kinetic model, and the intra-particular diffusion model. Kinetics experiments indicated that the pseudo-second-order model displayed the best correlation with adsorption kinetics data. Furthermore, our adsorption equilibrium data could be better described by the Freundlich equation. The results indicate that the as-prepared Cr-BDC is promising for use as an effective and economical adsorbent for ONP removal.展开更多
Flotation is a complex process that occurs in solid-liquid-gas multiphase systems,and its main factors include the minerals,separation medium,as well as various flotation reagents.The study of mineral properties and i...Flotation is a complex process that occurs in solid-liquid-gas multiphase systems,and its main factors include the minerals,separation medium,as well as various flotation reagents.The study of mineral properties and interactions with other components such as reagents and water lays the basic theoretical foundation for flotation.Density functional theory(DFT) calculations can qualitatively evaluate the exchange of matter and energy between the mineral system and the surroundings and quantitatively characterize these behaviors,which greatly expands the breadth and depth of flotation studies.This review systematically summarizes the advances of flotation research based on DFT studies,including the study of mineral crystal chemistry represented by the theory of lattice defects,mineral surface hydration such as hydrophilicity and hydrophobicity,surface regulation mechanism,and collecting mechanism based on surface adsorption theory.More significantly,it systematically elaborates different types of collectors according to their characteristics and emphatically explains the mechanism of some typical collectors in detail.展开更多
Investigation on the mineralwater interactions is crucial for understanding the subsequent interfacial reactions.Currently,the hydration mechanisms of smithsonite are still obscure.In this paper,the adsorption of H_(2...Investigation on the mineralwater interactions is crucial for understanding the subsequent interfacial reactions.Currently,the hydration mechanisms of smithsonite are still obscure.In this paper,the adsorption of H_(2)O at different coverage rates on smithsonite(101)surface was innovatively investigated using density-functional theory(DFT)calculations and molecular dynamics(MD)simulations by analyzing adsorption model,interaction energy,atomic distance,density of state,electron density difference,concentration profile,radial distribution function and self-diffusion coefficient.We found that single H_(2)O preferred to be dissociated on smithsonite(101)surface via the interaction of surface Zn with the Ow of H_(2)O and H-bond between Hw of H_(2)O and surface Os.However,dissociation adsorption and molecular adsorption coexisted on the smithsonite surface at a high coverage rate of H_(2)O,and dissociation adsorption remained the main adsorption mechanism.Moreover,we found the interaction between smithsonite surface and H_(2)O was weakened as a function of H_(2)O coverage,which was because the presence of interlayer H_(2)O and different layers of H_(2)O decreased the reactivity of the smithsonite surface.The H_(2)O is mainly adsorbed on the smithsonite surface by forming three layers of H_(2)O(about 10–15Å),with the ordering degree gradually decreasing.展开更多
Marcasite(FeS2)is widespread in nature,its oxidation plays a vital role in acid mine drainage,mineral resource recovery,and photoelectric material applications.In this paper,the oxidation mechanism of marcasite has be...Marcasite(FeS2)is widespread in nature,its oxidation plays a vital role in acid mine drainage,mineral resource recovery,and photoelectric material applications.In this paper,the oxidation mechanism of marcasite has been studied for the first time using density functional theory(DFT).It is found that,unlike the oxidation of pyrite,the oxidation of marcasite merely occurs at surface S atoms.Under the coexistence of water and oxygen,S atoms around surface Fe atoms are replaced by O atoms.The surface S sites are initially oxidized to form S==O bonds,and continue to adsorb oxygen to gradually generate SO3^2-,SO4^2-species,and eventually FeSO4.In this process,H2O molecules participate in neither oxidation nor dissociation,and they are adsorbed on surface Fe sites in the form of molecules,i.e.,all O atoms in SO4^2-derive from oxygen rather than water molecules.展开更多
The utilization of Ca ion as assistant depressant of CMC on talc has been widely reported.Thus,the study on the adsorption mechanism of Ca ion on talc surface is very crucial for understanding the performance of CMC o...The utilization of Ca ion as assistant depressant of CMC on talc has been widely reported.Thus,the study on the adsorption mechanism of Ca ion on talc surface is very crucial for understanding the performance of CMC on talc depression.In this paper,mechanism insights into hydrated Ca ion adsorption on talc(001) basal surface were creatively provided using DFT calculation.[Ca(H_(2)O)_6]^(2+) and [Ca(OH)(H_(2)O)_(3)]^(+) were determined as the effective hydrate components for Ca ion adsorption,and the top O site was the most favorable position for their adsorptions on talc surface.Furthermore,the adsorption mechanisms of [Ca(H_(2)O)_6]^(2+) and [Ca(OH)(H_(2)O)_(3)]^(+) on talc surface were found to be not the Ca-O chemical bond,but the hydrogen bonding formed by the H atom of the H_(2)O ligand and the surface O atom.H_(2)O acted like a bridge to connect them to the talc surface.Moreover,the hydrogen bonding was formed due to the hybridization of H 1s orbital with the O 2s,O 2p orbitals.Simultaneously,electrons transferred between the H atom and the surface O atom.This work provides theoretical insights into the Ca ion adsorption on talc surface,which can help deeply understand the talc flotation using CMC as depression.展开更多
Aims and objectives:To evaluate intensive care unit(ICU)nurses'knowledge of the updated guidelines for the prevention of intravascular catheter-related infections;to identify the factors that affect the nurses'...Aims and objectives:To evaluate intensive care unit(ICU)nurses'knowledge of the updated guidelines for the prevention of intravascular catheter-related infections;to identify the factors that affect the nurses'knowledge and to explore the barriers to adherence to evidence-based guidelines in clinical practice in China.Methods:Cross-sectional surveys were carried out in Chinese ICUs from January 2013 to March 2014.The nurses'demographic information,knowledge of the guidelines,and barriers to adherence were assessed by a validated questionnaire and then analyzed statistically.Results:The questionnaires were completed by 455 ICU nurses from 4 provinces of China.The mean score was 8.17 of 20,and higher scores were significantly associated with province,years of experience,and years of ICU experience.Forty-nine(10.7%)nurses had not heard of the guidelines,whereas 231(50.7%)nurses heard of the guidelines but did not receive training for them.Trained nurses'scores were higher than untrained nurses'scores.The three main barriers to compliance with the guidelines were an unfamiliarity with them,an excessive workload due to a shortage of nurses,and a lack of training.Conclusions:ICU nurses'knowledge of the updated guidelines is quite low,which could be a potential risk factor for patient safety.Multidisciplinary interventions and continuous.展开更多
The cohesive solids in liquid flows are featured by the dynamic growth and breakage of agglomerates, and the difficulties in the development, design and optimization of these systems are related to this significant fe...The cohesive solids in liquid flows are featured by the dynamic growth and breakage of agglomerates, and the difficulties in the development, design and optimization of these systems are related to this significant feature.In this paper, discrete particle method is used to simulate a solid–liquid flow system including millions of cohesive particles, the growth rate and breakage rate of agglomerates are then systematically investigated. It was found that the most probable size of the agglomerates is determined by the balance of growth and breakage of the agglomerates the cross point of the lines of growth rate and breakage rate as a function of the particle numbers in an agglomerate, marks the most stable agglomerate size. The finding here provides a feasible way to quantify the dynamic behaviors of growth and breakage of agglomerates, and therefore offers the possibility of quantifying the effects of agglomerates on the hydrodynamics of fluid flows with cohesive particles.展开更多
Extracting and synthesizing information from existing and massive amounts of geology spatial data sets is of great scientific significance and has considerable value in its applications. To make mineral exploration le...Extracting and synthesizing information from existing and massive amounts of geology spatial data sets is of great scientific significance and has considerable value in its applications. To make mineral exploration less expensive, more efficient, and more accurate, it is important to move beyond traditional concepts and establish a rapid, efficient, and intelligent method of predicting the existence and location of minerals. This paper describes a case-based reasoning (CBR) method for mineral prospectivity mapping that takes spatial features of geology data into account and offers an intelligent approach. This method include a metallogenic case representation that combines spatial and attribute features, metallogenic case-based storage organization, and a metallogenic case similarity retrieval model. The experiments were performed in the eastern Kunlun Mountains, China using CBR and weights-of-evidence (WOE), respectively. The results show that the prediction accuracy of the CBR is higher than that of the WOE.展开更多
Objective To discuss the value of partial hepatectomy in patients with hilar cholangiocarcinoma.Methods English articles related to hilar cholangiocarcinoma were screened from January 1,1990 to May 12,2019 in the Pub ...Objective To discuss the value of partial hepatectomy in patients with hilar cholangiocarcinoma.Methods English articles related to hilar cholangiocarcinoma were screened from January 1,1990 to May 12,2019 in the Pub Med,MEDLINE,EMBASE,and Cochrane Library databases.Information on postoperative radical cure,survival,morbidity,and mortality after surgery were extracted from articles that met the inclusion criteria for the meta-analysis.Results Twenty-two articles that met the inclusion criteria were classified into 4 study groups: the hepatectomy radical cure group(19 articles),the hepatectomy survival group(16 articles),the hepatectomy morbidity group(9 articles),and the hepatectomy mortality group(17 articles).We found that the rate of radical cure after partial hepatectomy(odds ratio [OR] 0.32,95% confidence interval [CI] 0.20-0.51) and the survival rate(hazard ratio [HR] 0.67,95% CI 0.58-0.79) were significantly higher than after simple bile duct resection,but that morbidity(OR 1.99,95% CI 1.37-2.90) and mortality(OR 2.71,95% CI 1.47-4.98) in patients within the partial hepatectomy group were also higher than in the simple bile duct resection group,taking into account the significant heterogeneity in the articles pertaining to the hepatectomy radical cure group(I^2=68.3%,P=0.000),a sub-group analysis was subsequently conducted.Its results showed that when the branches of the secondary bile ducts were not involved during hilar cholangiocarcinoma,then a bile duct resection had a similar radical cure outcome as combined partial hepatectomy(OR 0.94,95% CI 0.54-1.65).Conclusion Partial hepatectomy can increase the proportion of radical cure in patients with hilar cholangiocarcinoma and extend the survival time after surgery.However,the morbidity and mortality after surgery are higher than those in simple bile duct resections.Therefore,simple bile duct resection is still a relevant and efficient tool in the treatment of Bismuth-Corlette Type Ⅰ and Ⅱ hilar cholangiocarcinomas.展开更多
基金supported by the National Natural Science Foundation of China(62050226 and 22078327)the International Partnership Program of Chinese Academy of Sciences(122111KYSB20170068).
文摘In this paper,we propose mesoscience-guided deep learning(MGDL),a deep learning modeling approach guided by mesoscience,to study complex systems.When establishing sample dataset based on the same system evolution data,different from the operation of conventional deep learning method,MGDL introduces the treatment of the dominant mechanisms of complex system and interactions between them according to the principle of compromise in competition(CIC)in mesoscience.Mesoscience constraints are then integrated into the loss function to guide the deep learning training.Two methods are proposed for the addition of mesoscience constraints.The physical interpretability of the model-training process is improved by MGDL because guidance and constraints based on physical principles are provided.MGDL was evaluated using a bubbling bed modeling case and compared with traditional techniques.With a much smaller training dataset,the results indicate that mesoscience-constraint-based model training has distinct advantages in terms of convergence stability and prediction accuracy,and it can be widely applied to various neural network configurations.The MGDL approach proposed in this paper is a novel method for utilizing the physical background information during deep learning model training.Further exploration of MGDL will be continued in the future.
基金supported by the National Natural Science Foundation of China(No.51874221)the Open Foundation of Guangxi Key Laboratory of Processing for Nonferrous Metals and Featured Materials,Guangxi University(No.2022GXYSOF 11).
文摘To conduct extensive research on the application of ionic liquids as collectors in mineral flotation,ethanol(EtOH)was used as a solvent to dissolve hydrophobic ionic liquids(ILs)to simplify the reagent regime.Interesting phenomena were observed in which EtOH exerted different effects on the flotation efficiency of two ILs with similar structures.When EtOH was used to dissolve 1-dodecyl-3-methylimidazolium chloride(C12[mim]Cl)and as a collector for pure quartz flotation tests at a concentration of 1×10^(−5)mol·L^(−1),quartz recovery increased from 23.77%to 77.91%compared with ILs dissolved in water.However,quartz recovery of 1-dodecyl-3-methylim-idazolium hexafluorophosphate(C12[mim]PF6)decreased from 60.45%to 24.52%under the same conditions.The conditional experi-ments under 1×10^(−5)mol·L^(−1)ILs for EtOH concentration and under 2vol%EtOH for ILs concentration confirmed this difference.After being affected by EtOH,the mixed ore flotation tests of quartz and hematite showed a decrease in the hematite concentrate grade and re-covery for the C12[mim]Cl collector,whereas the hematite concentrate grade and recovery for the C12[mim]PF6 collector increased.On the basis of these differences and observations of flotation foam,two-phase bubble observation tests were carried out.The EtOH promoted the foam height of two ILs during aeration.It accelerated static froth defoaming after aeration stopped,and the foam of C12[mim]PF6 de-foaming especially quickly.In the discussion of flotation tests and foam observation,an attempt was made to explain the reasons and mechanisms behind the diverse phenomena using the dynamic surface tension effect and solvation effect results from EtOH.The solva-tion effect was verified through Fourier transform infrared(FT-IR),X-ray photoelectron spectroscopy(XPS),and Zeta potential tests.Al-though EtOH affects the adsorption of ILs on the ore surface during flotation negatively,it holds an positive value of inhibiting foam mer-ging during flotation aeration and accelerating the defoaming of static foam.And induce more robust secondary enrichment in the mixed ore flotation of the C12[mim]PF6 collector,facilitating effective mixed ore separation even under inhibitor-free conditions.
基金supported by the Yunnan Fundamental Research Project(202301BF070001-009,KC-22222357)the Sichuan Science and Technology Program(2023NSFSC0990)the School of Materials Science and Engineering,Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications。
文摘Ternary strategy with a suitable third component is a successful strategy to improve the photovoltaic performance of organic solar cells(OSCs).Very recently,Y-series based giant molecule acceptors or oligomerized acceptors have emerged as promising materials for achieving highly efficient and stable binary OSCs,while application as third component for ternary OSCs is limited.Here a novelπ-extended giant dimeric acceptor,GDF,is developed based on central Y series core fusion and rigid BDT as linker,and then incorporated into the state-of-the-art PM1:PC6 system to construct ternary OSCs.The GDF has a near planar backbone,resulting in increasedπ-conjugation,excellent crystallinity,and good electron transport capacity.When GDF is introduced into the PM1:PC6 system,it ensues in a cascade like the lowest unoccupied molecular orbitals(LUMO)energy level alignment,a complementary absorption band with PM1 and PC6,higher and balanced hole and electron mobility,slightly smaller domain size,and a higher exciton dissociation probability for PM1:PC6:GDF(1:1.1:0.1)blend film.As a consequence,the PM1:PC6:GDF(1:1.1:0.1)ternary OSC achieves a champion PCE of 19.22%,with a significantly higher open-circuit voltage and short-circuit current density,compared to 18.45%for the PM1:PC6(1:1.2)binary OSC.Our findings show that employing aπ-extended giant dimeric acceptor as a third component significantly improves the photovoltaic performance of ternary OSCs.
基金Sichuan Science and Technology Program,Grant/Award Number:2023ZYD0161Chengdu Science and Technology Bureau,Grant/Award Number:2023-YF06-00028-HZ+5 种基金National Natural Science Foundation of China,Grant/Award Numbers:92163132,52263019,52273316,62273073Yunnan Fundamental Research Project,Grant/Award Number:202301AT070313Yunling Scholar Project of“Yunnan Revitalization Talent Support Program”National Key Research and Development Program of China,Grant/Award Numbers:2022YFE0134800,2023YFC2411800Aeronautical Science Foundation of China,Grant/Award Number:20230024080002Yunnan Provincial Department of Education Science Research Fund Graduate Program,Grant/Award Number:2023Y0236。
文摘Single-component ambipolar polymers are highly desirable for organic electrochem-ical transistors(OECTs)and integration into complementary logic circuits with reduced process complexity.However,they often suffer from imbalanced p-type and n-type characteristics and/or stability issues.Herein,a novel single-component ambipolar polymer,namely,gIDT–BBT is reported based on indacenodithiophene(IDT)as the electron donor,benzobisthiadiazole(BBT)as the electron acceptor and oligo ethylene glycol(OEG)as the side chain.Benefitting from the extended backbone planarity and rigidity of IDT,pronounced electron-withdrawing capabil-ity of BBT,favored ionic transport from OEG together with vertical OECT device structure,a nearly balanced ambipolar OECT performance is achieved for gIDT–BBT,revealing a high transconductance of 155.05±1.58/27.28±0.92 mS,a high current on/off ratio>10^(6) and an excellent operational stability under both p-type and n-type operation conditions.With gIDT–BBT in hand,furthermore,vertically stacked complementary inverters are successfully fabricated to show a maximum voltage gain of 28 V V^(-1)(V_(IN)=0.9 V)and stable operation over 1000 switching cycles,and then used for efficient electrooculogram recording.This work provides a new approach for the development of ambipolar single-component organic mixed ionic–electronic conductors and establishes a foundation for the manufacture of high-performance ambipolar OECTs and associated complementary circuits.
基金Supported by Key Scientific Research Project in Colleges and Universities of Henan Province(22B180011)Project of Henan Provincial Department of Science and Technology(232102320262)+1 种基金Education and Teaching Reform Research Project of Pingdingshan University(2021-JY55)Key Demonstration Course of Pingdingshan University in 2022——Comprehensive Experiment of Environmental Biology.
文摘The production environment of greenhouse cultivation is relatively closed,the multiple cropping index is high,the management of fertilizationwatering and pesticideapplication isblindtosomeextent,andthe phenomenonofcontinuous cropping isalsocommonSoilquali-ty affects the sustainable development of greenhouse cultivation.Earthworm is a ubiquitous invertebrate organism in soil,an important part of soil system,a link between terrestrial organisms and soil organisms,an important link in the small cycle of soil material organisms,and plays an important role in maintaining the structure and function of soil ecosystem.Different ecotypes of earthworms are closely related to their habi-tats(soil layers)and food resource preferences,and then affect their ecological functions.The principle of earthworm regulating soil function is essentially the close connection and interaction between earthworm and soil microorganism.Using different ecotypes of earthworms and bio-logical agents to carry out combined remediation of greenhouse cultivation soil is a technical model to realize sustainable development of green-house cultivation.
基金The authors are grateful for the financial support provided by the National Natural Science Foundation of China(NSFC)(Nos.51974094,51964004,and U20A20269).
文摘Chalcopyrite is a common copper-bearing mineral with antiferromagnetic properties.However,this property has rarely been considered in previous studies for detailed adsorption behaviors of molecules on chalcopyrite.Based on density functional theory(DFT),new adsorption pathways by H_(2)O and O_(2)on the chalcopyrite metal terminated(112)surface((112)-M)is found in this work.First,through simulating the adsorption of an isolated water molecule and monolayer water molecules,it is confirmed that H_(2)O molecules tend to adsorb on the surface Fe atoms more than on the surface Cu atoms.Then,we studied various adsorption behaviors of the O_(2)molecule.It is found that the adsorption on the hollow FeAFe site is the most stable case;however,O_(2)is undissociated.Two adsorption cases will happen when H_(2)OAO_(2)adsorb simultaneously on the surface.For the S site,the H_(2)O molecule thoroughly dissociated and formed SAO species,and the other case is H_(2)O undissociated adsorbing at the Cu site.For the former case,it is interesting that H_(2)O is dissociated before O_(2).
基金This work was supported by the National Natural Science Foundation of People’s Republic of China(No.NSFC52174246)the Interdisciplinary Scientific Research Foundation of Guangxi University(No.2022JCC016).
文摘Iron is an impurity widely occurred in sphalerite,and its effect on sphalerite flotation is complex.In this work,the effects of iron content and spin state on electronic properties and floatability of iron-bearing sphalerite are comprehensively studied using density functional theory Hubbard U(DFT+U)calculations combined with coordination chemistry flotation.The band gap of ideal sphalerite is 3.723 eV,and thus electron transition is difficult to occur,resulting in poor floatability.The results suggest the band gap of sphalerite decreases with increasing iron content.For low iron content,the decreased band gap facilitates electron transition;at this case,Fe^(2+)in a high-spin state possesses oneπelectron pair,which can form a weakπ-backbonding with xanthate,causing increasing floatability.However,for medium and high iron-bearing sphalerite,with the further decrease of band gap,Fe^(2+)is oxidized to Fe^(3+)due to electrochemical interaction,and henceπ-backbonding is eliminated,leading to lower floatability of iron-bearing sphalerite,which is consistent with the flotation experimental results.This work could give a deeper understanding of how sphalerite flotation behaviors are affected by iron content.
基金supported by the National Natural Science Foundation of China(61804073)the Center for Light Energy Activated Redox Processes(LEAP),an Energy Frontier Research Center funded by the U.S.Department of Energy,Office of Science,Office of Basic Energy Sciences,under award DE-SC0001059+3 种基金the Mat CI Facility which receives support from the National Science Foundation MRSEC Program(NSF DMR-1720139)of the Materials Research Center at Northwestern Universitysupport from the US Office of Naval Research Contract N00014-20-1-2116the U.S.Department of Energy under contract No.DE-AC02-05CH11231at beamline 8-ID-E of the Advanced Photon Source,a U.S.Department of Energy(DOE)Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No.DE-AC0206CH11357。
文摘Organic solar cells(OSCs)processed without halogenated solvents and complex treatments are essential for future commercialization.Herein,we report three novel small molecule acceptors(NFAs)consisting of a Y6-like core but withπ-extended naphthalene with progressively more chlorinated end-capping groups and a longer branched chain on the Nitrogen atom.These NFAs exhibit good solubilities in nonchlorinated organic solvents,broad optical absorptions,closeπ-πstacking distances(3.63–3.84A),and high electron mobilities(~10^(-3)cm^(2)V^(-1)s^(-1)).The o-xylene processed and as-cast binary devices using PM6 as the donor polymer exhibit a PCE increasing upon progressive chlorination of the naphthalene end-capping group from 8.93%for YN to 14.38%for YN-Cl to 15.00%for YN-2Cl.Furthermore similarly processed ternary OSCs were fabricated by employing YN-Cl and YN-2Cl as the third component of PM6:CH1007 blends(PCE=15.75%).Compared to all binary devices,the ternary PM6:CH1007:YN-Cl(1:1:0.2)and PM6:CH1007:YN-2Cl(1:1:0.2)cells exhibit significantly improved PCEs of 16.49%and15.88%,respectively,which are among the highest values reported to date for non-halogenated solvent processed OSCs without using any additives and blend post-deposition treatments.
基金supported by the National Natural Science Foundation of China (52263019)the National Natural Science Foundation of China (21961160720)+3 种基金the Yunnan Fundamental Research Project (202301AT070313)the Yunnan Provincial Department of Education Science Research Fund (2023Y0236)the National Key Research and Development Program of China (2022YFB3803300)the open research fund of Songshan Lake Materials Laboratory (2021SLABFK02)。
文摘Organic electrochemical transistors(OECTs)have attracted attention due to their unique function of converting ionic and biological signals into electronic signals,high transconductance,low energy consumption(below 1 V),stable operation in aqueous media,good biocompatibility[1,2].However,most OECTs are usually built on brittle and stiff substrates,and inappropriate to be adhered to or contacted with delicate human skin,thus impeding their use in wearable electronics.It is desirable to exploit stretchable OECTs to reduce the mechanical mismatch with soft tissues.
基金Supported by the National Natural Science Foundation of China(No.21676133)the Natural Science Foundation of Fujian Province(2014J01051)
文摘In the present paper, a metal–organic framework Cr-BDC was prepared and used as adsorbent for adsorption of o-nitrophenol(ONP) and p-nitrophenol(PNP) from aqueous solutions. Cr-BDC was characterized by scanning electron microscopy, transmission electron microscope, X-ray diffraction and BET methods. The results indicate that Cr-BDC gets a very large specific surface area of 4128 m^2·g^(-1)and pore sizes are concentrated in 1 nm, which is a benefit for using for wastewater treatment. The influences of the adsorption conditions, such as temperature,solution concentration, adsorption time and reusability on adsorption performance were investigated. Cr-BDC exhibited an encouraging uptake capacity of 310.0 mg·g^(-1)for ONP, and adsorption capacity of Cr-BDC for ONP is significantly higher than that for PNP under suitable adsorption conditions. The characterizations of adsorption process were examined with the Lagergren pseudo-first-order, the pseudo-second-order kinetic model, and the intra-particular diffusion model. Kinetics experiments indicated that the pseudo-second-order model displayed the best correlation with adsorption kinetics data. Furthermore, our adsorption equilibrium data could be better described by the Freundlich equation. The results indicate that the as-prepared Cr-BDC is promising for use as an effective and economical adsorbent for ONP removal.
基金financially supported by the Natural Science Foundation of China under grants: U20A20269, 51874106, and 51574092。
文摘Flotation is a complex process that occurs in solid-liquid-gas multiphase systems,and its main factors include the minerals,separation medium,as well as various flotation reagents.The study of mineral properties and interactions with other components such as reagents and water lays the basic theoretical foundation for flotation.Density functional theory(DFT) calculations can qualitatively evaluate the exchange of matter and energy between the mineral system and the surroundings and quantitatively characterize these behaviors,which greatly expands the breadth and depth of flotation studies.This review systematically summarizes the advances of flotation research based on DFT studies,including the study of mineral crystal chemistry represented by the theory of lattice defects,mineral surface hydration such as hydrophilicity and hydrophobicity,surface regulation mechanism,and collecting mechanism based on surface adsorption theory.More significantly,it systematically elaborates different types of collectors according to their characteristics and emphatically explains the mechanism of some typical collectors in detail.
基金This work was supported in part by the High Performance Com-puting Center of Central South UniversityThis study was finan-cially supported by the National Natural Science Foundation of China(No.51674291).
文摘Investigation on the mineralwater interactions is crucial for understanding the subsequent interfacial reactions.Currently,the hydration mechanisms of smithsonite are still obscure.In this paper,the adsorption of H_(2)O at different coverage rates on smithsonite(101)surface was innovatively investigated using density-functional theory(DFT)calculations and molecular dynamics(MD)simulations by analyzing adsorption model,interaction energy,atomic distance,density of state,electron density difference,concentration profile,radial distribution function and self-diffusion coefficient.We found that single H_(2)O preferred to be dissociated on smithsonite(101)surface via the interaction of surface Zn with the Ow of H_(2)O and H-bond between Hw of H_(2)O and surface Os.However,dissociation adsorption and molecular adsorption coexisted on the smithsonite surface at a high coverage rate of H_(2)O,and dissociation adsorption remained the main adsorption mechanism.Moreover,we found the interaction between smithsonite surface and H_(2)O was weakened as a function of H_(2)O coverage,which was because the presence of interlayer H_(2)O and different layers of H_(2)O decreased the reactivity of the smithsonite surface.The H_(2)O is mainly adsorbed on the smithsonite surface by forming three layers of H_(2)O(about 10–15Å),with the ordering degree gradually decreasing.
基金financial support provided by the National Natural Science Foundation of China(NSFC)(51974094,51874106,and U20A20269).
文摘Marcasite(FeS2)is widespread in nature,its oxidation plays a vital role in acid mine drainage,mineral resource recovery,and photoelectric material applications.In this paper,the oxidation mechanism of marcasite has been studied for the first time using density functional theory(DFT).It is found that,unlike the oxidation of pyrite,the oxidation of marcasite merely occurs at surface S atoms.Under the coexistence of water and oxygen,S atoms around surface Fe atoms are replaced by O atoms.The surface S sites are initially oxidized to form S==O bonds,and continue to adsorb oxygen to gradually generate SO3^2-,SO4^2-species,and eventually FeSO4.In this process,H2O molecules participate in neither oxidation nor dissociation,and they are adsorbed on surface Fe sites in the form of molecules,i.e.,all O atoms in SO4^2-derive from oxygen rather than water molecules.
基金supported in part by the High Performance Computing Center of Central South Universityfinancially supported by the National Natural Science Foundation of China (No.51674291)。
文摘The utilization of Ca ion as assistant depressant of CMC on talc has been widely reported.Thus,the study on the adsorption mechanism of Ca ion on talc surface is very crucial for understanding the performance of CMC on talc depression.In this paper,mechanism insights into hydrated Ca ion adsorption on talc(001) basal surface were creatively provided using DFT calculation.[Ca(H_(2)O)_6]^(2+) and [Ca(OH)(H_(2)O)_(3)]^(+) were determined as the effective hydrate components for Ca ion adsorption,and the top O site was the most favorable position for their adsorptions on talc surface.Furthermore,the adsorption mechanisms of [Ca(H_(2)O)_6]^(2+) and [Ca(OH)(H_(2)O)_(3)]^(+) on talc surface were found to be not the Ca-O chemical bond,but the hydrogen bonding formed by the H atom of the H_(2)O ligand and the surface O atom.H_(2)O acted like a bridge to connect them to the talc surface.Moreover,the hydrogen bonding was formed due to the hybridization of H 1s orbital with the O 2s,O 2p orbitals.Simultaneously,electrons transferred between the H atom and the surface O atom.This work provides theoretical insights into the Ca ion adsorption on talc surface,which can help deeply understand the talc flotation using CMC as depression.
文摘Aims and objectives:To evaluate intensive care unit(ICU)nurses'knowledge of the updated guidelines for the prevention of intravascular catheter-related infections;to identify the factors that affect the nurses'knowledge and to explore the barriers to adherence to evidence-based guidelines in clinical practice in China.Methods:Cross-sectional surveys were carried out in Chinese ICUs from January 2013 to March 2014.The nurses'demographic information,knowledge of the guidelines,and barriers to adherence were assessed by a validated questionnaire and then analyzed statistically.Results:The questionnaires were completed by 455 ICU nurses from 4 provinces of China.The mean score was 8.17 of 20,and higher scores were significantly associated with province,years of experience,and years of ICU experience.Forty-nine(10.7%)nurses had not heard of the guidelines,whereas 231(50.7%)nurses heard of the guidelines but did not receive training for them.Trained nurses'scores were higher than untrained nurses'scores.The three main barriers to compliance with the guidelines were an unfamiliarity with them,an excessive workload due to a shortage of nurses,and a lack of training.Conclusions:ICU nurses'knowledge of the updated guidelines is quite low,which could be a potential risk factor for patient safety.Multidisciplinary interventions and continuous.
基金Supported by TOTAL(DS-2885)the National Natural Science Foundation of China(91434201,21422608)the “Strategic Priority Research Program” of the Chinese Academy of Sciences(XDA07080000)
文摘The cohesive solids in liquid flows are featured by the dynamic growth and breakage of agglomerates, and the difficulties in the development, design and optimization of these systems are related to this significant feature.In this paper, discrete particle method is used to simulate a solid–liquid flow system including millions of cohesive particles, the growth rate and breakage rate of agglomerates are then systematically investigated. It was found that the most probable size of the agglomerates is determined by the balance of growth and breakage of the agglomerates the cross point of the lines of growth rate and breakage rate as a function of the particle numbers in an agglomerate, marks the most stable agglomerate size. The finding here provides a feasible way to quantify the dynamic behaviors of growth and breakage of agglomerates, and therefore offers the possibility of quantifying the effects of agglomerates on the hydrodynamics of fluid flows with cohesive particles.
文摘Extracting and synthesizing information from existing and massive amounts of geology spatial data sets is of great scientific significance and has considerable value in its applications. To make mineral exploration less expensive, more efficient, and more accurate, it is important to move beyond traditional concepts and establish a rapid, efficient, and intelligent method of predicting the existence and location of minerals. This paper describes a case-based reasoning (CBR) method for mineral prospectivity mapping that takes spatial features of geology data into account and offers an intelligent approach. This method include a metallogenic case representation that combines spatial and attribute features, metallogenic case-based storage organization, and a metallogenic case similarity retrieval model. The experiments were performed in the eastern Kunlun Mountains, China using CBR and weights-of-evidence (WOE), respectively. The results show that the prediction accuracy of the CBR is higher than that of the WOE.
基金Supported by a grant from the Science and Technology Research and Development Project of Chengde(No.201804A023)
文摘Objective To discuss the value of partial hepatectomy in patients with hilar cholangiocarcinoma.Methods English articles related to hilar cholangiocarcinoma were screened from January 1,1990 to May 12,2019 in the Pub Med,MEDLINE,EMBASE,and Cochrane Library databases.Information on postoperative radical cure,survival,morbidity,and mortality after surgery were extracted from articles that met the inclusion criteria for the meta-analysis.Results Twenty-two articles that met the inclusion criteria were classified into 4 study groups: the hepatectomy radical cure group(19 articles),the hepatectomy survival group(16 articles),the hepatectomy morbidity group(9 articles),and the hepatectomy mortality group(17 articles).We found that the rate of radical cure after partial hepatectomy(odds ratio [OR] 0.32,95% confidence interval [CI] 0.20-0.51) and the survival rate(hazard ratio [HR] 0.67,95% CI 0.58-0.79) were significantly higher than after simple bile duct resection,but that morbidity(OR 1.99,95% CI 1.37-2.90) and mortality(OR 2.71,95% CI 1.47-4.98) in patients within the partial hepatectomy group were also higher than in the simple bile duct resection group,taking into account the significant heterogeneity in the articles pertaining to the hepatectomy radical cure group(I^2=68.3%,P=0.000),a sub-group analysis was subsequently conducted.Its results showed that when the branches of the secondary bile ducts were not involved during hilar cholangiocarcinoma,then a bile duct resection had a similar radical cure outcome as combined partial hepatectomy(OR 0.94,95% CI 0.54-1.65).Conclusion Partial hepatectomy can increase the proportion of radical cure in patients with hilar cholangiocarcinoma and extend the survival time after surgery.However,the morbidity and mortality after surgery are higher than those in simple bile duct resections.Therefore,simple bile duct resection is still a relevant and efficient tool in the treatment of Bismuth-Corlette Type Ⅰ and Ⅱ hilar cholangiocarcinomas.