In this paper,we present an overview of numerical simulation methods for the flow around typical underwater vehicles at high Reynolds numbers,which highlights the dominant flow structures in different regions of inter...In this paper,we present an overview of numerical simulation methods for the flow around typical underwater vehicles at high Reynolds numbers,which highlights the dominant flow structures in different regions of interest.This overview covers the forebody,midbody,stern,wake region,and appendages and summarizes flow phenomena,including laminar-to-turbulent transition,turbulent boundary layers,flow under the influence of curvatures,wake interactions,and all associated complex vortex structures.Furthermore,the current issues and challenges of capturing these flow structures are addressed.This overview provides a deep insight into the use of numerical simulation methods,including the Reynolds-averaged Navier–Stokes(RANS)method,large eddy simulation(LES)method,and the hybrid RANS/LES method,and evaluates their applicability in capturing detailed flow features.展开更多
As a prominent contributor to air pollution,nitric oxide(NO)has emerged as a critical agent causing detrimental environmental and health ramifications.To mitigate emissions and facilitate downstream utilization,adsorp...As a prominent contributor to air pollution,nitric oxide(NO)has emerged as a critical agent causing detrimental environmental and health ramifications.To mitigate emissions and facilitate downstream utilization,adsorption-based techniques offer a compelling approach for direct NO capture from both stationary and mobile sources.In this study,a comprehensive exploration of NO capture under oxygen-lean and oxygenrich conditions was conducted,employing Ni ion-exchanged chabazite(CHA-type)zeolites as the adsorbents.Remarkably,Ni/Na-CHA zeolites,with Ni loadings ranging from 3 to 4 wt%,demonstrate remarkable dynamic uptake capacities and exhibit exceptional NO capture efficiencies(NO-to-Ni ratio)for both oxygen-lean(0.17-0.31 mmol/g,0.32-0.43 of NO/Ni)and oxygen-rich(1.64-1.18 mmol/g)under ambient conditions.An NH3 reduction methodology was designed for the regeneration of absorbents at a relatively low temperature of 673 K.Comprehensive insights into the NO_(x) adsorption mechanism were obtained through temperature-programmed desorption experiments,in situ Fourier transform infrared spectroscopy,and density functional theory calculations.It is unveiled that NO and NO_(2) exhibit propensity to coordinate with Ni^(2+) via N-terminal or O-terminal,yielding thermally stable complexes and metastable species,respectively,while the low-temperature desorption substances are generated in close proximity to Na^(+).This study not only offers micro-level perspectives but imparts crucial insights for the advancement of capture and reduction technologies utilizing precious-metal-free materials.展开更多
Offshore carbon capture, utilization, and storage(OCCUS) is regarded as a crucial technology for mitigating greenhouse gas emissions.Quantitative monitoring maps of sealed carbon dioxide are necessary in a comprehensi...Offshore carbon capture, utilization, and storage(OCCUS) is regarded as a crucial technology for mitigating greenhouse gas emissions.Quantitative monitoring maps of sealed carbon dioxide are necessary in a comprehensive OCCUS project. A potential high-resolution method for the aforementioned purpose lies in the full-waveform inversion(FWI) of time-lapse seismic data. However, practical applications of FWI are severely restricted by the well-known cycle-skipping problem. A new time-lapse FWI method using cross-correlation-based dynamic time warping(CDTW) is proposed to detect changes in the subsurface property due to carbon dioxide(CO_(2)) injection and address the aforementioned issue. The proposed method, namely CDTW, which combines the advantages of cross-correlation and dynamic time warping, is employed in the automatic estimation of the discrepancy between the seismic signals simulated using the baseline/initial model and those acquired. The proposed FWI method can then back-project the estimated discrepancy to the subsurface space domain, thereby facilitating retrieval of the induced subsurface property change by taking the difference between the inverted baseline and monitor models. Numerical results on pairs of signals prove that CDTW can obtain reliable shifts under amplitude modulation and noise contamination conditions. The performance of CDTW substantially outperforms that of the conventional dynamic time warping method. The proposed time-lapse fullwaveform inversion(FWI) method is applied to the Frio-2 CO_(2) storage model. The baseline and monitor models are inverted from the corresponding time-lapse seismic data. The changes in velocity due to CO_(2) injection are reconstructed by the difference between the baseline and the monitor models.展开更多
The seed storage materials accumulate during seed development,and are essential for seed germination and seedling establishment.Here we employed two bi-parental populations of an F2:3 population developed from a cross...The seed storage materials accumulate during seed development,and are essential for seed germination and seedling establishment.Here we employed two bi-parental populations of an F2:3 population developed from a cross of improved 220(I220,small seeds with low starch)and PH4CV(large seeds with high starch),as well as recombinant-inbred lines(RILs)of X178(high starch)and its improved introgression line I178(low starch),to identify the genes that control seed storage materials.We identified a total of 12 QTLs for starch,protein and oil,which explained 3.44-10.79%of the phenotypic variances.Among them,qSTA2-1 identified in F2:3 and qSTA2-2 identified in the RILs partially overlapped at an interval of 7.314-9.554 Mb,and they explained 3.44-10.21%of the starch content variation,so they were selected for further study.Fine mapping of qSTA2-2 with the backcrossed populations of ^(I220)/PH4CV in each generation narrowed it down to a 199.7 kb interval that contains 14 open reading frames(ORFs).Transcriptomic analysis of developing seeds from the near-isogenic lines(NILs)of ^(I220)/PH4CV(BC_(5)F_(2))showed that only 11 ORFs were expressed in 20 days after pollination(DAP)seeds.Five of them were upregulated and six of them were downregulated in NIL^(I220),and the differentially expressed genes(DEGs)between NIL^(I220) and NIL^(PH4CV) were enriched in starch metabolism,hormone signal transduction and glycosaminoglycan degradation.Of the eleven NIL^(I220) differential expressed ORFs,ORF4(Zm00001d002260)and ORF5(Zm00001d002261)carry 75%protein sequence similarity,both encodes an glycolate oxidase,were the possible candidates of qSTA2-2.Further analysis and validation indicated that mutation of the qSTA2-2 locus resulted in the dysfunction of ABA accumulation,the embryo/endosperm ratio and the starch and hormone levels.展开更多
According to the data of banana transcriptome sequencing, an E3 ubiquitin-protein ligase gene was cloned by RT-PCR method using the cDNA sample of banana leaves. The complete ORF of E3 ubiquitin-protein ligase is 681 ...According to the data of banana transcriptome sequencing, an E3 ubiquitin-protein ligase gene was cloned by RT-PCR method using the cDNA sample of banana leaves. The complete ORF of E3 ubiquitin-protein ligase is 681 bp long and its encoded protein showed 100% sequence identity to homologue RING-H2 finger protein (XP_009407047.1) of Musa_acuminata. Bioinformatic analysis indicated that E3 ubiquitin-protein ligase contains the Ring finger domain in C terminus and eight cross-brace motifs are found in the domain. The target gene was digested by EcoR V and EcoR I, and was inserted into prokaryotic expression vector pET-32a of the same digestions to obtain the plasmid pET32a-E3 ubiquitin-protein ligase. The recombinant plasmid was introduced into Escherichia coli strain BL21 (DE3), and induced at 25°C with 0.4 mmol/L IPTG for 6 hours. The soluble fusion protein was expressed and high purity fusion protein was obtained by Ni<sup>2+</sup>-NTA agarose affinity chromatography purification. The fusion protein was injected into mice 3 times to prepare the antiserum. Western blot analysis showed a specific protein band was detected in total protein sample of banana leaves, but not for the samples of wild-type Nicotiana benthamiana (N.B.) and wild-type Arabidopsis thaliana (A.T.), implying the antiserum was specific to banana E3 ubiquitin-protein ligase.展开更多
Ship maneuvering in waves includes the performance of ship resistance, seakeeping, propulsion, and maneuverability. It is a complex hydrodynamic problem with the interaction of many factors. With the purpose of direct...Ship maneuvering in waves includes the performance of ship resistance, seakeeping, propulsion, and maneuverability. It is a complex hydrodynamic problem with the interaction of many factors. With the purpose of directly predicting the behavior of ship maneuvering in waves, a CFD solver named naoe-FOAM-SJTU is developed by the Computational Marine Hydrodynamics Lab(CMHL) in Shanghai Jiao Tong University. The solver is based on open source platform OpenFOAM and has introduced dynamic overset grid technology to handle complex ship hull-propeller-rudder motion system. Maneuvering control module based on feedback control mechanism is also developed to accurately simulate corresponding motion behavior of free running ship maneuver. Inlet boundary wavemaker and relaxation zone technique is used to generate desired waves. Based on the developed modules, unsteady Reynolds-averaged Navier-Stokes(RANS) computations are carried out for several validation cases of free running ship maneuver in waves including zigzag, turning circle, and course keeping maneuvers. The simulation results are compared with available benchmark data. Ship motions, trajectories, and other maneuvering parameters are consistent with available experimental data, which indicate that the present solver can be suitable and reliable in predicting the performance of ship maneuvering in waves. Flow visualizations, such as free surface elevation, wake flow, vortical structures, are presented to explain the hydrodynamic performance of ship maneuvering in waves. Large flow separation can be observed around propellers and rudders. It is concluded that RANS approach is not accurate enough for predicting ship maneuvering in waves with large flow separations and detached eddy simulation(DES) or large eddy simulation(LES) computations are required to improve the prediction accuracy.展开更多
Drought is one of the most critical abiotic stresses influencing maize yield. Improving maize cultivars with drought tolerance using marker-assisted selection requires a better understanding of its genetic basis. In t...Drought is one of the most critical abiotic stresses influencing maize yield. Improving maize cultivars with drought tolerance using marker-assisted selection requires a better understanding of its genetic basis. In this study, a doubled haploid(DH) population consisting of 217 lines was created by crossing the inbred lines Han 21(drought-tolerant) and Ye 478(drought-sensitive). The population was genotyped with a 6 K SNP assay and 756 SNP(single nucleotide polymorphism) markers were used to construct a linkage map with a length of 1344 c M. Grain yield(GY), ear setting percentage(ESP), and anthesis–silking interval(ASI) were recorded in seven environments under well-watered(WW) and water-stressed(WS) regimes. High phenotypic variation was observed for all traits under both water regimes. Using the LSMEAN(least-squares mean) values from all environments for each trait, 18 QTL were detected, with 9 associated with the WW and 9 with the WS regime. Four chromosome regions,Chr. 3: 219.8–223.7 Mb, Chr. 5: 191.5–194.7 Mb, Chr. 7: 132.2–135.6 Mb, and Chr. 10: 88.2–89.4 Mb, harbored at least 2 QTL in each region, and QTL co-located in a region inherited favorable alleles from the same parent. A set of 64 drought-tolerant BC_3F_6 lines showed preferential accumulation of the favorable alleles in these four regions, supporting an association between the four regions and maize drought tolerance. QTL-by-environment interaction analysis revealed 28 ed QTL(environment-dependent QTL) associated with the WS regime and 22 associated with the WW regime for GY, ESP, and ASI. All WS QTL and55.6% of WW QTL were located in the ed QTL regions. The hotspot genomic regions identified in this work will support further fine mapping and marker-assisted breeding of drought-tolerant maize.展开更多
Complex flow around floating structures is a highly nonlinear problem,and it is a typical feature in ship and ocean engineering.Traditional experimental methods and potential flow theory have limitations in predicting...Complex flow around floating structures is a highly nonlinear problem,and it is a typical feature in ship and ocean engineering.Traditional experimental methods and potential flow theory have limitations in predicting complex viscous flows.With the improvement of high-performance computing and the development of numerical techniques,computational fluid dynamics(CFD)has become increasingly powerful in predicting the complex viscous flow around floating structures.This paper reviews the recent progress in CFD techniques for numerical solutions of typical complex viscous flows in ship and ocean engineering.Applications to free-surface flows,breaking bow waves of high-speed ship,ship hull-propeller-rudder interaction,vortexinduced vibration of risers,vortex-induced motions of deep-draft platforms,and floating offshore wind turbines are discussed.Typical techniques,including volume of fluid for sharp interface,dynamic overset grid,detached eddy simulation,and fluid-structure coupling,are reviewed along with their applications.Some novel techniques,such as high-efficiency Cartesian grid method and GPU acceleration technique,are discussed in the last part as the future perspective for further enhancement of accuracy and efficiency for CFD simulations of complex flow in ship and ocean engineering.展开更多
[Objective] This study aimed to investigate the allelopathic effects of Torreya fargesii aril. [Method] By indoor bioassay, the effects of different con-centrations (10, 20,40, 80 g/L) of aqueous extract of T...[Objective] This study aimed to investigate the allelopathic effects of Torreya fargesii aril. [Method] By indoor bioassay, the effects of different con-centrations (10, 20,40, 80 g/L) of aqueous extract of T. fargesii aril on seed germination rate, seedling root length, seedling height, fresh weight, chlorophyll content, malondialdehyde (MDA) content and anti oxidative enzyme activities of radish, mustard and cabbage were analyzed and compared. [ Result] Different concentrations of aqueous extract of T. fargesii aril inhibited seed germination and seedling growth of three crops, and the inhibitory effects were enhanced with the increase of concentration. Seedling height and fresh weight of three crops were improved by low concentrations of aqueous extract of T. fargesii aril and inhibited by high concentrations of aqueous extract. Overall, aqueous extract of T. fargesii aril exhibited allelopathic inhibitory effects on three crops, and the level of allelopath-ic inhibitory effects demonstrated a descending order of radish 〉 mustard 〉 cabbage. Compared with the control group, 80 g/L aqueous extract of T. fargesii aril almost significantly reduced seed germination rate, seedling root length, seedling height, fresh weight and chlorophyll content, and significantly improved MDA con-tent and antioxidative enzyme (SOD, CAT, POD) activities of radish, mustard and cabbage (P 〈 0 .0 5 ) . [ Conclusion] Aqueous extract of T. fargesii aril exhibited remarkable allelopathic inhibitory effects on seed germination of radish, mustard and cabbage, which indicated that there might be dormancy-associated germination in-hibiting allelochemicals in T. fargesii aril. This study provided theoretical basis for subsequent clarification of the mechanism of seed dormancy of T. fargesii.展开更多
Objective:To evaluate the safety and efficacy of percutaneous microwave ablation(MWA)combined with simultaneous transarterial chemoembolization(TACE)in patients with hepatocellular carcinoma(HCC)patients with microvas...Objective:To evaluate the safety and efficacy of percutaneous microwave ablation(MWA)combined with simultaneous transarterial chemoembolization(TACE)in patients with hepatocellular carcinoma(HCC)patients with microvascular invasion(MVI)or extrahepatic metastases(EHM).Methods:Between August 2012 and April 2017,101 patients with MVI/EHM of HCC underwent percutaneous MWA combined with simultaneous TACE at our center.The clinical data were collected and analyzed for survival and prognostic factors.Results:The mean follow-up time was 23.6±14.7 months.One patient had grade 3 complications,and the median overall survival was 12.0 months(95%confidence interval 9.7-14.3).Multivariate analysis showed that ChildPugh class,serum alpha-fetoprotein level,and Eastern Cooperative Oncology Group performance status were independent factors of survival.Conclusion:Our results suggest that percutaneous MWA combined with simultaneous TACE is a safe and effective treatment for HCC with MVI/EHM.展开更多
A series of molybdenum modified Ni/MgO catalysts (Ni-Mo/MgO) with different loading ratios of Ni : Mo were prepared by impregnation method. Ethanol decomposition to co-produce multi-walled carbon nanotubes and hydr...A series of molybdenum modified Ni/MgO catalysts (Ni-Mo/MgO) with different loading ratios of Ni : Mo were prepared by impregnation method. Ethanol decomposition to co-produce multi-walled carbon nanotubes and hydrogen-rich gas at temperatures of 600-800 ℃ was inves- tigated over the synthesized Ni-Mo/MgO catalysts. The results showed that the catalytic activity depended strongly on the reaction temperature and loading ratio of Ni : Mo. According to the gaseous and solid products obtained, the reaction pathways for ethanol decomposition were suggested.展开更多
[Objective] To reveal the leaf functional traits and adaptive strategy of Torreya fargesii at different altitude gradients.[Method] Leaves of T. fargesii were selected from the altitudes of 1 570, 1 700, 1 900, 2 125 ...[Objective] To reveal the leaf functional traits and adaptive strategy of Torreya fargesii at different altitude gradients.[Method] Leaves of T. fargesii were selected from the altitudes of 1 570, 1 700, 1 900, 2 125 and 2 360 m in Jiajinshan forest area of Sichuan Baoxing County, and the altitudes of 1 000, 1 200, 1 450, and 1 700 m in Hua'eshan Mountain Nature Reserve of Sichuan Wanyuan County as the research materials. Leaf blade traits such as leaf length, leaf width, leaf girth, leaf area and leaf dry weight were determined, and the influence of altitude on each index and correlation between characters were analyzed. [Result] For the leaves from both Baoxing County and Wanyuan County, leaf length, leaf width, leaf girth, leaf aspect ratio and leaf area decreased with the increase of altitude. There was no significant difference in the changes of leaf width, leaf girth and leaf aspect ratio among different altitudes(P>0.05), while the difference was significant in leaf length between high altitude and low attitude(P<0.05), and the difference was also significant in leaf area for the leaves from Baoxing County between high altitude and low altitude. However, there was no obvious correlation between leaf width and altitude, which could be considered as a relatively stable parameter. Leaf thickness and leaf dry weight increased first and then decreased with altitude,while the specific leaf area decreased first and then increased. In leaf length, leaf girth, leaf width and leaf area parameters, except for leaf width and leaf area for the T. fargesii from Wanyuan County, any two parameters reached significant or very significant positive correlation level(P<0.01). Leaf dry weight and leaf thickness had significant or very significant positive correlation, leaf dry weight and leaf area had a certain positive correlation but not significant. There existed no significant positive correlation between specific leaf area and leaf area, while specific leaf area was in negative correlation with leaf dry weight, and the negative correlation of specific leaf area with leaf area of T. fargesii from Wanyuan County reached the significant level.[Conclusion] T. fargesii adapted to different altitudes by changing leaf dry weight, leaf area and leaf area ratio, and the most suitable altitudes for the growth of T. fargesii were 1 900 and 1 450 m in Baoxing and Wanyuan area respectively.展开更多
In order to meet the clinical requirements of spine surgery,this paper proposed the exploratory research of computer-aided design and selective laser melting(SLM)fabrication of a bionic porous titanium spine implant.T...In order to meet the clinical requirements of spine surgery,this paper proposed the exploratory research of computer-aided design and selective laser melting(SLM)fabrication of a bionic porous titanium spine implant.The structural design of the spinal implant is based on CT scanning data to ensure correct matching,and the mechanical properties of the implant are verified by simulation analysis and laser selective melting experiment.The surface roughness of the spinal implant manufactured by SLM without post-processing is Ra 15μm,and the implant is precisely jointed with the photosensitive resin model of the upper and lower spine.The surface micro-hardness of the implant is HV 373,tensile strengthσ_(b)=1238.7 MPa,yield strengthσ_(0.2)=1043.9 MPa,the elongation is 6.43%,and the compressive strength of porous structure under 84.60%porosity is 184.09 MPa,which can meet the requirements of the reconstruction of stable spines.Compared with the traditional implant and intervertebral fusion cage,the bionic porous spinal implant has the advantages of accurate fit,porous bionic structure and recovery of patients,and the ion release experiment proved that implants manufactured by SLM are more suitable for clinical application after certain treatments.The elastic modulus of the sample is improved after heat treatment,mainly because the microstructure of the sample changes fromα’phase toα+βdual-phase after heat treatment.In addition,the design of high-quality bionic porous spinal implants still needs to be optimized for the actual needs of doctors.展开更多
Auditory evoked magnetic fields were recorded from 15 patients with acute cerebral infarction and 11 healthy volunteers using magnetoencephalography.The auditory stimuli of 2 kHz pure tone were binaurally presented wi...Auditory evoked magnetic fields were recorded from 15 patients with acute cerebral infarction and 11 healthy volunteers using magnetoencephalography.The auditory stimuli of 2 kHz pure tone were binaurally presented with an interstimulus interval of 1 second.The intensity of stimuli was 90 dB and the stimulus duration was 8 ms.The results showed that the M100 was the prominent response, peaking approximately 100 ms after stimulus onset in all subjects.It originated from the area close to Heschl’s gyrus.In the patient group,the peak latency of M100 responses was significantly prolonged,and the mean strength of equivalent current dipole was significantly smaller in the affected hemisphere.The three-dimensional inter-hemispheric difference of the M100 positions was increased in the patient group.Our experimental findings suggested that impairment of cerebral function in patients with acute ischemic stroke can be detected using magnetoencephalography with the higher spatial resolution and temporal resolution.Magnetoencephalography could provide objective and sensitive indices to estimate auditory cortex function in patients with acute cerebral infarction.展开更多
Cavitation is a complex flow phenomenon including unsteady characteristics, turbulence, gas-liquid two-phase flow. This paper provides a numerical investigation on comparing the simulation performance of three differe...Cavitation is a complex flow phenomenon including unsteady characteristics, turbulence, gas-liquid two-phase flow. This paper provides a numerical investigation on comparing the simulation performance of three different models in OpenFOAM-Merkle model, Kunz model and Schnerr-Sauer model, which is helpful for understanding the cavitation flow. Considering the influence of vapor-liquid mixing density on turbulent viscous coefficient, the modified SST k-ω model is adopted in this paper to increase the computing reliability. The InterPhaseChangeFoam solver is utilized to simulate the two-dimensional cavitation flow of the Clark-Y hydrofoil with three cavitation models. The hydrodynamic performance including lift coefficient, drag coefficient and cavitation flow shape of the hydrofoil is analyzed. Through the comparison of the numerical results and experimental data, it is found that the Schnerr-Sauer model can get the most accurate results among the three models. And from the simulation point of water and water vapor mixing, the Merkle model has the best water and water vapor mixing simulation.展开更多
Objective: To investigate the inhibitory effect and IC50, (rAdp53) in colorectal cancer cells in vitro and to guide (50% inhibiting concentration) of the recombinant adenoviral p53 gene clinical practice. Methods...Objective: To investigate the inhibitory effect and IC50, (rAdp53) in colorectal cancer cells in vitro and to guide (50% inhibiting concentration) of the recombinant adenoviral p53 gene clinical practice. Methods: We evaluated the efficiency (IC50)of the rAdp53 and six kinds of anti-cancer drugs(5-fluorouracil, tegafur, mitomycin c, cisplatin, oxaliplatin, paclitaxel) in human colorectal cancer cell line-174 through the cell culture and MTT chemosensitivity assay to make sure the anti-cancer capability of rAdp53. Expression of p53 protein in transfection cells of colorectal cancer line-174 with rAdp53 was evaluated by immunohistochemical staining. Results: The rAdp53 is a dose-and time-dependent anti-cancer drug, its IC50 is 5.73×10^11 VP/ml, but its effect was not obvious when compared with other anti-cancer drugs. In control group, the immunohistochemistry stain was negative. However, rAd-p53 of five different concentrations were all positive in infected colorectal cancer cells with rAd-p53 and the earliest positive result would present 24 hours after infection. Conclusion: The rAdp53 has good anti-cancer efficacy is colorectal cancer cell line-174 in vitro. But its anti-cancer efficacy was less than those of the classical chemical medicine mitomycin c, 5-fluorouracil and cisplatin etc., when it was used alone.展开更多
Rationally designed hierarchical structures and heteroatomic doping of carbon are effective strategies to enhance the stability and electrical conductivity of materials.Herein,SnSe_(2)flakes were generated in the doub...Rationally designed hierarchical structures and heteroatomic doping of carbon are effective strategies to enhance the stability and electrical conductivity of materials.Herein,SnSe_(2)flakes were generated in the double-walled hollow carbon spheres(DWHCSs),in which N and Se atoms were doped in the carbon walls,to construct SnSe_(2)@N,Se-DWHCSs by confined growth and in-situ derivatization.The N and Sedoped DWHCSs can effectively limit the size increase of SnSe_(2),promote ion diffusion kinetics,and buffer volume expansion,which can be proved by electron microscope observation and density functional theory calculation.Consequently,the SnSe_(2)@N,Se-DWHCSs as an anode material for sodium ion batteries(SIBs)demonstrated a distinguished reversible capacity of 322.8 mAh g^(-1)at 5 A g^(-1)after 1000 cycles and a superior rate ability of 235.3 m Ah g^(-1)at an ultrahigh rate of 15 A g^(-1).Furthermore,the structure evolution and electrochemical reaction processes of SnSe2@N,Se-DWHCSs in SIBs were analyzed by exsitu methods,which confirmed the consecutive hybrid mechanism and the phase transition process.展开更多
Even though switching in vacuum is a technology with almost 100 years of history,its recent develop-ments are still changing the future of power transmission and distribution systems.First,current switch-ing in vacuum...Even though switching in vacuum is a technology with almost 100 years of history,its recent develop-ments are still changing the future of power transmission and distribution systems.First,current switch-ing in vacuum is an eco-friendly technology compared to switching in SF 6 gas,which is the strongest greenhouse gas according to the Kyoto Protocol.Vacuum,an eco-friendly natural medium,is promising for reducing the usage of SF 6 gas in current switching in transmission voltage.Second,switching in vacuum achieves faster current interruption than existing alternating current(AC)switching technolo-gies.A vacuum circuit breaker(VCB)that uses an electromagnetic repulsion actuator is able to achieve a theoretical limit of AC interruption,which can interrupt a short-circuit current in the first half-cycle of a fault current,compared to the more common three cycles for existing current switching technologies.This can thus greatly enhance the transient stability of power networks in the presence of short-circuit faults,especially for ultra-and extra-high-voltage power transmission lines.Third,based on fast vacuum switching technology,various brilliant applications emerge,which are benefiting the power systems.They include the applications in the fields of direct current(DC)circuit breakers(CBs),fault current lim-iting,power quality improvement,generator CBs,and so forth.Fast vacuum switching technology is promising for controlled switching technology in power systems because it has low variation in terms of opening and closing times.With this controlled switching,vacuum switching technology may change the“gene”of power systems,by which power switching transients will become smoother.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No.52131102.
文摘In this paper,we present an overview of numerical simulation methods for the flow around typical underwater vehicles at high Reynolds numbers,which highlights the dominant flow structures in different regions of interest.This overview covers the forebody,midbody,stern,wake region,and appendages and summarizes flow phenomena,including laminar-to-turbulent transition,turbulent boundary layers,flow under the influence of curvatures,wake interactions,and all associated complex vortex structures.Furthermore,the current issues and challenges of capturing these flow structures are addressed.This overview provides a deep insight into the use of numerical simulation methods,including the Reynolds-averaged Navier–Stokes(RANS)method,large eddy simulation(LES)method,and the hybrid RANS/LES method,and evaluates their applicability in capturing detailed flow features.
基金supported by the National Natural Science Foundation of China(22302100,22025203,22121005)the Fundamental Research Funds for the Central Universities(Nankai University).
文摘As a prominent contributor to air pollution,nitric oxide(NO)has emerged as a critical agent causing detrimental environmental and health ramifications.To mitigate emissions and facilitate downstream utilization,adsorption-based techniques offer a compelling approach for direct NO capture from both stationary and mobile sources.In this study,a comprehensive exploration of NO capture under oxygen-lean and oxygenrich conditions was conducted,employing Ni ion-exchanged chabazite(CHA-type)zeolites as the adsorbents.Remarkably,Ni/Na-CHA zeolites,with Ni loadings ranging from 3 to 4 wt%,demonstrate remarkable dynamic uptake capacities and exhibit exceptional NO capture efficiencies(NO-to-Ni ratio)for both oxygen-lean(0.17-0.31 mmol/g,0.32-0.43 of NO/Ni)and oxygen-rich(1.64-1.18 mmol/g)under ambient conditions.An NH3 reduction methodology was designed for the regeneration of absorbents at a relatively low temperature of 673 K.Comprehensive insights into the NO_(x) adsorption mechanism were obtained through temperature-programmed desorption experiments,in situ Fourier transform infrared spectroscopy,and density functional theory calculations.It is unveiled that NO and NO_(2) exhibit propensity to coordinate with Ni^(2+) via N-terminal or O-terminal,yielding thermally stable complexes and metastable species,respectively,while the low-temperature desorption substances are generated in close proximity to Na^(+).This study not only offers micro-level perspectives but imparts crucial insights for the advancement of capture and reduction technologies utilizing precious-metal-free materials.
文摘Offshore carbon capture, utilization, and storage(OCCUS) is regarded as a crucial technology for mitigating greenhouse gas emissions.Quantitative monitoring maps of sealed carbon dioxide are necessary in a comprehensive OCCUS project. A potential high-resolution method for the aforementioned purpose lies in the full-waveform inversion(FWI) of time-lapse seismic data. However, practical applications of FWI are severely restricted by the well-known cycle-skipping problem. A new time-lapse FWI method using cross-correlation-based dynamic time warping(CDTW) is proposed to detect changes in the subsurface property due to carbon dioxide(CO_(2)) injection and address the aforementioned issue. The proposed method, namely CDTW, which combines the advantages of cross-correlation and dynamic time warping, is employed in the automatic estimation of the discrepancy between the seismic signals simulated using the baseline/initial model and those acquired. The proposed FWI method can then back-project the estimated discrepancy to the subsurface space domain, thereby facilitating retrieval of the induced subsurface property change by taking the difference between the inverted baseline and monitor models. Numerical results on pairs of signals prove that CDTW can obtain reliable shifts under amplitude modulation and noise contamination conditions. The performance of CDTW substantially outperforms that of the conventional dynamic time warping method. The proposed time-lapse fullwaveform inversion(FWI) method is applied to the Frio-2 CO_(2) storage model. The baseline and monitor models are inverted from the corresponding time-lapse seismic data. The changes in velocity due to CO_(2) injection are reconstructed by the difference between the baseline and the monitor models.
基金supported by grants from the STI 2030-Major Projects,China(2022ZD040190101,2022ZD040190502)the National Natural Science Foundation of China(32072130,32272162 and 31701437)+1 种基金the Project of Sanya Yazhou Bay Science and Technology City,China(SCKJ-JYRC-2023-64)the 2115 Talent Development Program of China Agricultural University,and the China Agriculture Research System(CARS-02-13)。
文摘The seed storage materials accumulate during seed development,and are essential for seed germination and seedling establishment.Here we employed two bi-parental populations of an F2:3 population developed from a cross of improved 220(I220,small seeds with low starch)and PH4CV(large seeds with high starch),as well as recombinant-inbred lines(RILs)of X178(high starch)and its improved introgression line I178(low starch),to identify the genes that control seed storage materials.We identified a total of 12 QTLs for starch,protein and oil,which explained 3.44-10.79%of the phenotypic variances.Among them,qSTA2-1 identified in F2:3 and qSTA2-2 identified in the RILs partially overlapped at an interval of 7.314-9.554 Mb,and they explained 3.44-10.21%of the starch content variation,so they were selected for further study.Fine mapping of qSTA2-2 with the backcrossed populations of ^(I220)/PH4CV in each generation narrowed it down to a 199.7 kb interval that contains 14 open reading frames(ORFs).Transcriptomic analysis of developing seeds from the near-isogenic lines(NILs)of ^(I220)/PH4CV(BC_(5)F_(2))showed that only 11 ORFs were expressed in 20 days after pollination(DAP)seeds.Five of them were upregulated and six of them were downregulated in NIL^(I220),and the differentially expressed genes(DEGs)between NIL^(I220) and NIL^(PH4CV) were enriched in starch metabolism,hormone signal transduction and glycosaminoglycan degradation.Of the eleven NIL^(I220) differential expressed ORFs,ORF4(Zm00001d002260)and ORF5(Zm00001d002261)carry 75%protein sequence similarity,both encodes an glycolate oxidase,were the possible candidates of qSTA2-2.Further analysis and validation indicated that mutation of the qSTA2-2 locus resulted in the dysfunction of ABA accumulation,the embryo/endosperm ratio and the starch and hormone levels.
文摘According to the data of banana transcriptome sequencing, an E3 ubiquitin-protein ligase gene was cloned by RT-PCR method using the cDNA sample of banana leaves. The complete ORF of E3 ubiquitin-protein ligase is 681 bp long and its encoded protein showed 100% sequence identity to homologue RING-H2 finger protein (XP_009407047.1) of Musa_acuminata. Bioinformatic analysis indicated that E3 ubiquitin-protein ligase contains the Ring finger domain in C terminus and eight cross-brace motifs are found in the domain. The target gene was digested by EcoR V and EcoR I, and was inserted into prokaryotic expression vector pET-32a of the same digestions to obtain the plasmid pET32a-E3 ubiquitin-protein ligase. The recombinant plasmid was introduced into Escherichia coli strain BL21 (DE3), and induced at 25°C with 0.4 mmol/L IPTG for 6 hours. The soluble fusion protein was expressed and high purity fusion protein was obtained by Ni<sup>2+</sup>-NTA agarose affinity chromatography purification. The fusion protein was injected into mice 3 times to prepare the antiserum. Western blot analysis showed a specific protein band was detected in total protein sample of banana leaves, but not for the samples of wild-type Nicotiana benthamiana (N.B.) and wild-type Arabidopsis thaliana (A.T.), implying the antiserum was specific to banana E3 ubiquitin-protein ligase.
基金the National Natural Science Foundation of China (51809169,51879159,51490675,11432009, 51579145)Chang Jiang Scholars Program (T2014099)+2 种基金Shanghai Excellent Academic Leaders Program (17XD1402300)Program for Professor of Special Appointment (Eastern Scholar)at Shanghai Institutions of Higher Learning (2013022)Innovative Special Project of Numerical Tank of Ministry of Industry and Information Technology of China (2016-23/09).
文摘Ship maneuvering in waves includes the performance of ship resistance, seakeeping, propulsion, and maneuverability. It is a complex hydrodynamic problem with the interaction of many factors. With the purpose of directly predicting the behavior of ship maneuvering in waves, a CFD solver named naoe-FOAM-SJTU is developed by the Computational Marine Hydrodynamics Lab(CMHL) in Shanghai Jiao Tong University. The solver is based on open source platform OpenFOAM and has introduced dynamic overset grid technology to handle complex ship hull-propeller-rudder motion system. Maneuvering control module based on feedback control mechanism is also developed to accurately simulate corresponding motion behavior of free running ship maneuver. Inlet boundary wavemaker and relaxation zone technique is used to generate desired waves. Based on the developed modules, unsteady Reynolds-averaged Navier-Stokes(RANS) computations are carried out for several validation cases of free running ship maneuver in waves including zigzag, turning circle, and course keeping maneuvers. The simulation results are compared with available benchmark data. Ship motions, trajectories, and other maneuvering parameters are consistent with available experimental data, which indicate that the present solver can be suitable and reliable in predicting the performance of ship maneuvering in waves. Flow visualizations, such as free surface elevation, wake flow, vortical structures, are presented to explain the hydrodynamic performance of ship maneuvering in waves. Large flow separation can be observed around propellers and rudders. It is concluded that RANS approach is not accurate enough for predicting ship maneuvering in waves with large flow separations and detached eddy simulation(DES) or large eddy simulation(LES) computations are required to improve the prediction accuracy.
基金supported by the National Key Research and Development Program of China(2016YFD0101803)the Key Transgenic Breeding Program of the Ministry of Agriculture of China(2016ZX08003-002)the China Agriculture Research System(CARS-02-10)。
文摘Drought is one of the most critical abiotic stresses influencing maize yield. Improving maize cultivars with drought tolerance using marker-assisted selection requires a better understanding of its genetic basis. In this study, a doubled haploid(DH) population consisting of 217 lines was created by crossing the inbred lines Han 21(drought-tolerant) and Ye 478(drought-sensitive). The population was genotyped with a 6 K SNP assay and 756 SNP(single nucleotide polymorphism) markers were used to construct a linkage map with a length of 1344 c M. Grain yield(GY), ear setting percentage(ESP), and anthesis–silking interval(ASI) were recorded in seven environments under well-watered(WW) and water-stressed(WS) regimes. High phenotypic variation was observed for all traits under both water regimes. Using the LSMEAN(least-squares mean) values from all environments for each trait, 18 QTL were detected, with 9 associated with the WW and 9 with the WS regime. Four chromosome regions,Chr. 3: 219.8–223.7 Mb, Chr. 5: 191.5–194.7 Mb, Chr. 7: 132.2–135.6 Mb, and Chr. 10: 88.2–89.4 Mb, harbored at least 2 QTL in each region, and QTL co-located in a region inherited favorable alleles from the same parent. A set of 64 drought-tolerant BC_3F_6 lines showed preferential accumulation of the favorable alleles in these four regions, supporting an association between the four regions and maize drought tolerance. QTL-by-environment interaction analysis revealed 28 ed QTL(environment-dependent QTL) associated with the WS regime and 22 associated with the WW regime for GY, ESP, and ASI. All WS QTL and55.6% of WW QTL were located in the ed QTL regions. The hotspot genomic regions identified in this work will support further fine mapping and marker-assisted breeding of drought-tolerant maize.
基金supported by the National Natural Science Foundation of China(51809169,51879159)Chang Jiang Scholars Program(T2014099)+2 种基金Shanghai Excellent Academic Leaders Program(17XD1402300)Innovative Special Project of Numerical Tank of Ministry of Industry and Information Technology of China(2016-23/09)National Key Research and Development Program of China(2019YFB1704203,2019YFC0312400).
文摘Complex flow around floating structures is a highly nonlinear problem,and it is a typical feature in ship and ocean engineering.Traditional experimental methods and potential flow theory have limitations in predicting complex viscous flows.With the improvement of high-performance computing and the development of numerical techniques,computational fluid dynamics(CFD)has become increasingly powerful in predicting the complex viscous flow around floating structures.This paper reviews the recent progress in CFD techniques for numerical solutions of typical complex viscous flows in ship and ocean engineering.Applications to free-surface flows,breaking bow waves of high-speed ship,ship hull-propeller-rudder interaction,vortexinduced vibration of risers,vortex-induced motions of deep-draft platforms,and floating offshore wind turbines are discussed.Typical techniques,including volume of fluid for sharp interface,dynamic overset grid,detached eddy simulation,and fluid-structure coupling,are reviewed along with their applications.Some novel techniques,such as high-efficiency Cartesian grid method and GPU acceleration technique,are discussed in the last part as the future perspective for further enhancement of accuracy and efficiency for CFD simulations of complex flow in ship and ocean engineering.
基金Supported by National Natural Science Foundation of China(31470568)Scientific and Technological Research Program of Chongqing Municipal Education Commission(KJ1401204)Program for Innovation Team Building of Yangtze Normal University(2014XJTD06)
文摘[Objective] This study aimed to investigate the allelopathic effects of Torreya fargesii aril. [Method] By indoor bioassay, the effects of different con-centrations (10, 20,40, 80 g/L) of aqueous extract of T. fargesii aril on seed germination rate, seedling root length, seedling height, fresh weight, chlorophyll content, malondialdehyde (MDA) content and anti oxidative enzyme activities of radish, mustard and cabbage were analyzed and compared. [ Result] Different concentrations of aqueous extract of T. fargesii aril inhibited seed germination and seedling growth of three crops, and the inhibitory effects were enhanced with the increase of concentration. Seedling height and fresh weight of three crops were improved by low concentrations of aqueous extract of T. fargesii aril and inhibited by high concentrations of aqueous extract. Overall, aqueous extract of T. fargesii aril exhibited allelopathic inhibitory effects on three crops, and the level of allelopath-ic inhibitory effects demonstrated a descending order of radish 〉 mustard 〉 cabbage. Compared with the control group, 80 g/L aqueous extract of T. fargesii aril almost significantly reduced seed germination rate, seedling root length, seedling height, fresh weight and chlorophyll content, and significantly improved MDA con-tent and antioxidative enzyme (SOD, CAT, POD) activities of radish, mustard and cabbage (P 〈 0 .0 5 ) . [ Conclusion] Aqueous extract of T. fargesii aril exhibited remarkable allelopathic inhibitory effects on seed germination of radish, mustard and cabbage, which indicated that there might be dormancy-associated germination in-hibiting allelochemicals in T. fargesii aril. This study provided theoretical basis for subsequent clarification of the mechanism of seed dormancy of T. fargesii.
文摘Objective:To evaluate the safety and efficacy of percutaneous microwave ablation(MWA)combined with simultaneous transarterial chemoembolization(TACE)in patients with hepatocellular carcinoma(HCC)patients with microvascular invasion(MVI)or extrahepatic metastases(EHM).Methods:Between August 2012 and April 2017,101 patients with MVI/EHM of HCC underwent percutaneous MWA combined with simultaneous TACE at our center.The clinical data were collected and analyzed for survival and prognostic factors.Results:The mean follow-up time was 23.6±14.7 months.One patient had grade 3 complications,and the median overall survival was 12.0 months(95%confidence interval 9.7-14.3).Multivariate analysis showed that ChildPugh class,serum alpha-fetoprotein level,and Eastern Cooperative Oncology Group performance status were independent factors of survival.Conclusion:Our results suggest that percutaneous MWA combined with simultaneous TACE is a safe and effective treatment for HCC with MVI/EHM.
基金supported by the International Cooperation Research Program of the National Natural Science Foundation of China(No.21061130551)the NWU Training Program of Innovation and Entrepreneurship for Undergraduates(No.201210697012)the National Natural Science Foundation of China(Nos.J1210057 and J1103311)
文摘A series of molybdenum modified Ni/MgO catalysts (Ni-Mo/MgO) with different loading ratios of Ni : Mo were prepared by impregnation method. Ethanol decomposition to co-produce multi-walled carbon nanotubes and hydrogen-rich gas at temperatures of 600-800 ℃ was inves- tigated over the synthesized Ni-Mo/MgO catalysts. The results showed that the catalytic activity depended strongly on the reaction temperature and loading ratio of Ni : Mo. According to the gaseous and solid products obtained, the reaction pathways for ethanol decomposition were suggested.
基金Supported by the National Natural Science Foundation of China(31470568,31400321)the Science and Technology Project of Fuling District,Chongqing,China(FLKJ,2017ABA)
文摘[Objective] To reveal the leaf functional traits and adaptive strategy of Torreya fargesii at different altitude gradients.[Method] Leaves of T. fargesii were selected from the altitudes of 1 570, 1 700, 1 900, 2 125 and 2 360 m in Jiajinshan forest area of Sichuan Baoxing County, and the altitudes of 1 000, 1 200, 1 450, and 1 700 m in Hua'eshan Mountain Nature Reserve of Sichuan Wanyuan County as the research materials. Leaf blade traits such as leaf length, leaf width, leaf girth, leaf area and leaf dry weight were determined, and the influence of altitude on each index and correlation between characters were analyzed. [Result] For the leaves from both Baoxing County and Wanyuan County, leaf length, leaf width, leaf girth, leaf aspect ratio and leaf area decreased with the increase of altitude. There was no significant difference in the changes of leaf width, leaf girth and leaf aspect ratio among different altitudes(P>0.05), while the difference was significant in leaf length between high altitude and low attitude(P<0.05), and the difference was also significant in leaf area for the leaves from Baoxing County between high altitude and low altitude. However, there was no obvious correlation between leaf width and altitude, which could be considered as a relatively stable parameter. Leaf thickness and leaf dry weight increased first and then decreased with altitude,while the specific leaf area decreased first and then increased. In leaf length, leaf girth, leaf width and leaf area parameters, except for leaf width and leaf area for the T. fargesii from Wanyuan County, any two parameters reached significant or very significant positive correlation level(P<0.01). Leaf dry weight and leaf thickness had significant or very significant positive correlation, leaf dry weight and leaf area had a certain positive correlation but not significant. There existed no significant positive correlation between specific leaf area and leaf area, while specific leaf area was in negative correlation with leaf dry weight, and the negative correlation of specific leaf area with leaf area of T. fargesii from Wanyuan County reached the significant level.[Conclusion] T. fargesii adapted to different altitudes by changing leaf dry weight, leaf area and leaf area ratio, and the most suitable altitudes for the growth of T. fargesii were 1 900 and 1 450 m in Baoxing and Wanyuan area respectively.
基金The work presented in this paper was fully supported by the following projects:National Natural Science Foundation of China(51775196)Guangdong Province Science and Technology Project(2017B090912003)+3 种基金High-level Personnel Special Support Plan of Guangdong Province(2016TQ03X289)The Fundamental Research Funds for the Central Universities(Project No.2018ZD30)Guangdong Province Science and Technology Project(2017B090911014)Guangzhou Science and Technology Project(201704030097)。
文摘In order to meet the clinical requirements of spine surgery,this paper proposed the exploratory research of computer-aided design and selective laser melting(SLM)fabrication of a bionic porous titanium spine implant.The structural design of the spinal implant is based on CT scanning data to ensure correct matching,and the mechanical properties of the implant are verified by simulation analysis and laser selective melting experiment.The surface roughness of the spinal implant manufactured by SLM without post-processing is Ra 15μm,and the implant is precisely jointed with the photosensitive resin model of the upper and lower spine.The surface micro-hardness of the implant is HV 373,tensile strengthσ_(b)=1238.7 MPa,yield strengthσ_(0.2)=1043.9 MPa,the elongation is 6.43%,and the compressive strength of porous structure under 84.60%porosity is 184.09 MPa,which can meet the requirements of the reconstruction of stable spines.Compared with the traditional implant and intervertebral fusion cage,the bionic porous spinal implant has the advantages of accurate fit,porous bionic structure and recovery of patients,and the ion release experiment proved that implants manufactured by SLM are more suitable for clinical application after certain treatments.The elastic modulus of the sample is improved after heat treatment,mainly because the microstructure of the sample changes fromα’phase toα+βdual-phase after heat treatment.In addition,the design of high-quality bionic porous spinal implants still needs to be optimized for the actual needs of doctors.
基金supported by the Technology Foundation for a Selected Overseas Chinese Scholar,Ministryof Human Resources and Social Security of China,No.2009-11-6the Natural Science Foundation of HebeiProvince of China,No.C2009001483
文摘Auditory evoked magnetic fields were recorded from 15 patients with acute cerebral infarction and 11 healthy volunteers using magnetoencephalography.The auditory stimuli of 2 kHz pure tone were binaurally presented with an interstimulus interval of 1 second.The intensity of stimuli was 90 dB and the stimulus duration was 8 ms.The results showed that the M100 was the prominent response, peaking approximately 100 ms after stimulus onset in all subjects.It originated from the area close to Heschl’s gyrus.In the patient group,the peak latency of M100 responses was significantly prolonged,and the mean strength of equivalent current dipole was significantly smaller in the affected hemisphere.The three-dimensional inter-hemispheric difference of the M100 positions was increased in the patient group.Our experimental findings suggested that impairment of cerebral function in patients with acute ischemic stroke can be detected using magnetoencephalography with the higher spatial resolution and temporal resolution.Magnetoencephalography could provide objective and sensitive indices to estimate auditory cortex function in patients with acute cerebral infarction.
文摘Cavitation is a complex flow phenomenon including unsteady characteristics, turbulence, gas-liquid two-phase flow. This paper provides a numerical investigation on comparing the simulation performance of three different models in OpenFOAM-Merkle model, Kunz model and Schnerr-Sauer model, which is helpful for understanding the cavitation flow. Considering the influence of vapor-liquid mixing density on turbulent viscous coefficient, the modified SST k-ω model is adopted in this paper to increase the computing reliability. The InterPhaseChangeFoam solver is utilized to simulate the two-dimensional cavitation flow of the Clark-Y hydrofoil with three cavitation models. The hydrodynamic performance including lift coefficient, drag coefficient and cavitation flow shape of the hydrofoil is analyzed. Through the comparison of the numerical results and experimental data, it is found that the Schnerr-Sauer model can get the most accurate results among the three models. And from the simulation point of water and water vapor mixing, the Merkle model has the best water and water vapor mixing simulation.
文摘Objective: To investigate the inhibitory effect and IC50, (rAdp53) in colorectal cancer cells in vitro and to guide (50% inhibiting concentration) of the recombinant adenoviral p53 gene clinical practice. Methods: We evaluated the efficiency (IC50)of the rAdp53 and six kinds of anti-cancer drugs(5-fluorouracil, tegafur, mitomycin c, cisplatin, oxaliplatin, paclitaxel) in human colorectal cancer cell line-174 through the cell culture and MTT chemosensitivity assay to make sure the anti-cancer capability of rAdp53. Expression of p53 protein in transfection cells of colorectal cancer line-174 with rAdp53 was evaluated by immunohistochemical staining. Results: The rAdp53 is a dose-and time-dependent anti-cancer drug, its IC50 is 5.73×10^11 VP/ml, but its effect was not obvious when compared with other anti-cancer drugs. In control group, the immunohistochemistry stain was negative. However, rAd-p53 of five different concentrations were all positive in infected colorectal cancer cells with rAd-p53 and the earliest positive result would present 24 hours after infection. Conclusion: The rAdp53 has good anti-cancer efficacy is colorectal cancer cell line-174 in vitro. But its anti-cancer efficacy was less than those of the classical chemical medicine mitomycin c, 5-fluorouracil and cisplatin etc., when it was used alone.
基金The funding support from the Natural Science Research Project of Jiangsu Higher Education Institutions(Grant No.21KJA530004)the 2021 Young Scientist Exchange Program between the Republic of Korea and the People’s Republic of Chinaa Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Rationally designed hierarchical structures and heteroatomic doping of carbon are effective strategies to enhance the stability and electrical conductivity of materials.Herein,SnSe_(2)flakes were generated in the double-walled hollow carbon spheres(DWHCSs),in which N and Se atoms were doped in the carbon walls,to construct SnSe_(2)@N,Se-DWHCSs by confined growth and in-situ derivatization.The N and Sedoped DWHCSs can effectively limit the size increase of SnSe_(2),promote ion diffusion kinetics,and buffer volume expansion,which can be proved by electron microscope observation and density functional theory calculation.Consequently,the SnSe_(2)@N,Se-DWHCSs as an anode material for sodium ion batteries(SIBs)demonstrated a distinguished reversible capacity of 322.8 mAh g^(-1)at 5 A g^(-1)after 1000 cycles and a superior rate ability of 235.3 m Ah g^(-1)at an ultrahigh rate of 15 A g^(-1).Furthermore,the structure evolution and electrochemical reaction processes of SnSe2@N,Se-DWHCSs in SIBs were analyzed by exsitu methods,which confirmed the consecutive hybrid mechanism and the phase transition process.
基金supported in part by the National Natural Science Foundation of China (51937009 and 51877166)the Key Research and Development Program of Shaanxi Province (2019ZDLGY18-04)
文摘Even though switching in vacuum is a technology with almost 100 years of history,its recent develop-ments are still changing the future of power transmission and distribution systems.First,current switch-ing in vacuum is an eco-friendly technology compared to switching in SF 6 gas,which is the strongest greenhouse gas according to the Kyoto Protocol.Vacuum,an eco-friendly natural medium,is promising for reducing the usage of SF 6 gas in current switching in transmission voltage.Second,switching in vacuum achieves faster current interruption than existing alternating current(AC)switching technolo-gies.A vacuum circuit breaker(VCB)that uses an electromagnetic repulsion actuator is able to achieve a theoretical limit of AC interruption,which can interrupt a short-circuit current in the first half-cycle of a fault current,compared to the more common three cycles for existing current switching technologies.This can thus greatly enhance the transient stability of power networks in the presence of short-circuit faults,especially for ultra-and extra-high-voltage power transmission lines.Third,based on fast vacuum switching technology,various brilliant applications emerge,which are benefiting the power systems.They include the applications in the fields of direct current(DC)circuit breakers(CBs),fault current lim-iting,power quality improvement,generator CBs,and so forth.Fast vacuum switching technology is promising for controlled switching technology in power systems because it has low variation in terms of opening and closing times.With this controlled switching,vacuum switching technology may change the“gene”of power systems,by which power switching transients will become smoother.