Highly ordered and uniformly porous structure of conductive foams is a vital issue for various functional purposes such as piezoresistive sensing and electromagnetic interference(EMI) shielding. With the aids of Kevla...Highly ordered and uniformly porous structure of conductive foams is a vital issue for various functional purposes such as piezoresistive sensing and electromagnetic interference(EMI) shielding. With the aids of Kevlar polyanionic chains, thermoplastic polyurethane(TPU) foams reinforced by aramid nanofibers(ANF) with adjustable pore-size distribution were successfully obtained via a nonsolvent-induced phase separation. In this regard, the most outstanding result is the in situ formation of ANF in TPU foams after protonation of Kevlar polyanion during the NIPS process. Furthermore, in situ growth of copper nanoparticles(Cu NPs) on TPU/ANF foams was performed according to the electroless deposition by using the tiny amount of pre-blended Ti_(3)C_(2)T_(x) MXene as reducing agents. Particularly, the existence of Cu NPs layers significantly promoted the storage modulus in 2,932% increments, and the well-designed TPU/ANF/Ti_(3)C_(2)T_(x) MXene(PAM-Cu) composite foams showed distinguished compressive cycle stability. Taking virtues of the highly ordered and elastic porous architectures, the PAM-Cu foams were utilized as piezoresistive sensor exhibiting board compressive interval of 0–344.5 kPa(50% strain) with good sensitivity at 0.46 kPa^(-1). Meanwhile,the PAM-Cu foams displayed remarkable EMI shielding effectiveness at 79.09 dB in X band. This work provides an ideal strategy to fabricate highly ordered TPU foams with outstanding elastic recovery and excellent EMI shielding performance, which can be used as a promising candidate in integration of satisfactory piezoresistive sensor and EMI shielding applications for human–machine interfaces.展开更多
Zn-air batteries(ZABs),especially the secondary batteries,have engrossed a great interest because of its high specific energy,economical and high safety.However,due to the insufficient activity and stability of bifunc...Zn-air batteries(ZABs),especially the secondary batteries,have engrossed a great interest because of its high specific energy,economical and high safety.However,due to the insufficient activity and stability of bifunctional electrocatalysts for air-cathode oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)processes,the practical application of rechargeable ZABs is seriously hindered.In the effort of developing high active,stable and cost-effective electrocatalysts,transition metal nitrides(TMNs)have been regarded as the candidates due to their high conductivity,strong corrosion-resistance,and bifunctional catalytic performance.In this paper,the research progress in TMNs-based material as ORR and OER electrocatalysts for ZABs is discussed with respect to their synthesis,chemical/physical characterization,and performance validation/optimization.The surface/interface nanoengineering strategies such as defect engineering,support binding,heteroatom introduction,crystal plane orientation,interface construction and small size effect,the physical and chemical properties of TMNs-based electrocatalysts are emphasized with respect to their structures/morphologies,composition,electrical conductivity,specific surface area,chemical stability and corrosion resistance.The challenges of TMNs-based materials as bifunctional air-cathode electrocatalysts in practical application are evaluated,and numerous research guidelines to solve these problems are put forward for facilitating further research and development.展开更多
Aerogels with regularly porous structure and uniformly distributed conductive networks have received extensive attention in wearable electronic sensors,electromagnetic shielding,and so on.However,the poor mechanical p...Aerogels with regularly porous structure and uniformly distributed conductive networks have received extensive attention in wearable electronic sensors,electromagnetic shielding,and so on.However,the poor mechanical properties of the emerging nanofibers-based aerogels are limited in practical applications.In this work,we developed a synchronous deprotonation–protonation method in the KOH/dimethyl sulfoxide(DMSO)system at room temperature for achieving chitin cross-linked aramid nanofibers(CANFs)rather than chitin nanofibers(ChNFs)and aramid nanofibers(ANFs)separately by using chitin and aramid pulp as raw materials.After freeze-drying process,the cross-linked chitin/aramid nanofibers(CA)aerogel exhibited the synergetic properties of ChNF and ANF by the dual-nanofiber compensation strategy.The mechanical stress of CA aerogel was 170 kPa at 80%compressive strain,increased by 750%compared with pure ChNF aerogel.Similarly,the compressibility of CA aerogel was somewhat improved compared to ANF aerogel.The enhancement verified that the crosslinking reaction between ANF and ChNF during the synchronous deprotonation process was formed.Afterwards,the conductive aerogels with uniform porous structure(CA-M)were successfully obtained by vacuum impregnating CA aerogels in Ti_(3)C_(2)T_(x) MXene solution,displaying low thermal conductivity(0.01 W/(m·K)),high electromagnetic interference(EMI)shielding effectiveness(SE)(75 dB),flame retardant,and heat insulation.Meanwhile,the as-obtained CA-M aerogels were also applied as a pressure sensor with excellent compression cycle stability and superior human motion monitoring capabilities.As a result,the dual-nanofiber based conductive aerogels have great potentials in flexible/wearable electronics,EMI shielding,flame retardant,and heat insulation.展开更多
Ti_(3)C_(2)T_(x)MXenes with excellent metallic conductivity and flexibility have shown a promising prospect as electromagnetic interference(EMI) shielding materials. Ultrathin, hierarchical hybrid films were fabricate...Ti_(3)C_(2)T_(x)MXenes with excellent metallic conductivity and flexibility have shown a promising prospect as electromagnetic interference(EMI) shielding materials. Ultrathin, hierarchical hybrid films were fabricated by using C60intercalating Ti_(3)C_(2)T_(x)MXenes with the assistance of water-soluble γ-cyclodextrin(CD). The C_(60)/CD complex was obtained by high-speed vibration milling using hydrophilic CD as dispersing agent. After thermal annealing treatment, the obtained hybrid film exhibited excellent EMI shielding(53.52±0.43 dB), hydrophobicity(water contact angle: 93.7°) and mechanical stability(over 0.9 million bending times). Taking advantage of the antioxidant of C_(60), the chemical durability of Ti_(3)C_(2)T_(x) MXenes based hybrid films was also improved as expected. These results indicate that the well-designed hierarchical hybrid films with the intercalation of C_(60) have promising potential for high-performance EMI shielding applications.展开更多
Flexible electromagnetic interference(EMI)shielding films with high stability have shown promising prospect in harsh working conditions such as military,communication,and special protection fields.Herein,flexible aram...Flexible electromagnetic interference(EMI)shielding films with high stability have shown promising prospect in harsh working conditions such as military,communication,and special protection fields.Herein,flexible aramid nanofibers@polypyrrole(ANF@PPy)films with high stability were easily achieved by the in-situ growth of PPy on the surface of ANF and the subsequent pressured-filtration film-forming process.When the amount of pyrrole(Py)monomer is 40μL,the ANF@PPy(AP40)film exhibited excellent EMI shielding performance with shielding effectiveness(SE)of 41.69 dB,tensile strength of 96.01 MPa,and fracture strain of 21.95%at the thickness of 75.76μm.Particularly,the anticipated EMI shielding performance can be maintained even after being heated at 200℃in air,soaked in 3.5%NaCl solution,repeated folding for one million times,or burned directly,indicating superior environmental durability in harsh conditions.Therefore,it is believed that the ANF@PPy films with high stability offer a facile solution for practical protection for high-performance EMI shielding applications.展开更多
Ceria nanoparticles with various shapes (rods, cubes, and plates) and sizes were controllably synthesized and then introduced into epoxy resin. Subsequently, we investigated correlations between the shape and size o...Ceria nanoparticles with various shapes (rods, cubes, and plates) and sizes were controllably synthesized and then introduced into epoxy resin. Subsequently, we investigated correlations between the shape and size of ceria nanostructures and the mechanical performance of composites. The samples were character- ized by transmission electron microscopy, scanning electron microscopy, and X-ray diffraction. Compared with commercial ceria filled composites, the composites made with morphology-controlled ceria nanos- tructures show a higher impact strength. It is found that epoxy resins made with high-aspect-ratio ceria nanorods show the highest impact strength, up to 17.27 kJ/m2, which is about four times that of the neat epoxy resin.展开更多
Recently,the development of new electrode materials for lithium-ion batteries(LIBs)has received intensive attention.As an important family of inorganic materials,mixed Mo-based transition metal oxides system is focuse...Recently,the development of new electrode materials for lithium-ion batteries(LIBs)has received intensive attention.As an important family of inorganic materials,mixed Mo-based transition metal oxides system is focused as anode materials.In the present work,a simple route has been adopted for the synthesis of layered-flake-likeβ-SnMo04 Nano-assemblies,which have been explored as potential anode materials for the first time in lithium-ion battery(LIB).Overall,the current reports on metal molybdate as anode materials are still rarely.As the anode material for LIBs,it was observed that the fabricated anode is capable of delivering a steady state capacity of almost 400 mAh/g up to 300 cycles under the influence of200 mA/g current density.Further,the anode material is suitable for use as a rated capacity anode because of its high current density tolerance.The present study can be further extended for the generation of a wide variety of other novel materials for multidisciplinary energy related applications.展开更多
基金financially sponsored by the Science and Technology Commission of Shanghai Municipality (20230742300 and 18595800700)Key Laboratory of Resource Chemistry, Ministry of Education (KLRC_ME2103)the project of “joint assignment” in Shanghai University led by Prof. Tongyue Gao from School of Mechatronic Engineering and Automation。
文摘Highly ordered and uniformly porous structure of conductive foams is a vital issue for various functional purposes such as piezoresistive sensing and electromagnetic interference(EMI) shielding. With the aids of Kevlar polyanionic chains, thermoplastic polyurethane(TPU) foams reinforced by aramid nanofibers(ANF) with adjustable pore-size distribution were successfully obtained via a nonsolvent-induced phase separation. In this regard, the most outstanding result is the in situ formation of ANF in TPU foams after protonation of Kevlar polyanion during the NIPS process. Furthermore, in situ growth of copper nanoparticles(Cu NPs) on TPU/ANF foams was performed according to the electroless deposition by using the tiny amount of pre-blended Ti_(3)C_(2)T_(x) MXene as reducing agents. Particularly, the existence of Cu NPs layers significantly promoted the storage modulus in 2,932% increments, and the well-designed TPU/ANF/Ti_(3)C_(2)T_(x) MXene(PAM-Cu) composite foams showed distinguished compressive cycle stability. Taking virtues of the highly ordered and elastic porous architectures, the PAM-Cu foams were utilized as piezoresistive sensor exhibiting board compressive interval of 0–344.5 kPa(50% strain) with good sensitivity at 0.46 kPa^(-1). Meanwhile,the PAM-Cu foams displayed remarkable EMI shielding effectiveness at 79.09 dB in X band. This work provides an ideal strategy to fabricate highly ordered TPU foams with outstanding elastic recovery and excellent EMI shielding performance, which can be used as a promising candidate in integration of satisfactory piezoresistive sensor and EMI shielding applications for human–machine interfaces.
基金financial support from the National Key Research and Development Program of China(2017YFB0102900)
文摘Zn-air batteries(ZABs),especially the secondary batteries,have engrossed a great interest because of its high specific energy,economical and high safety.However,due to the insufficient activity and stability of bifunctional electrocatalysts for air-cathode oxygen reduction reaction(ORR)and oxygen evolution reaction(OER)processes,the practical application of rechargeable ZABs is seriously hindered.In the effort of developing high active,stable and cost-effective electrocatalysts,transition metal nitrides(TMNs)have been regarded as the candidates due to their high conductivity,strong corrosion-resistance,and bifunctional catalytic performance.In this paper,the research progress in TMNs-based material as ORR and OER electrocatalysts for ZABs is discussed with respect to their synthesis,chemical/physical characterization,and performance validation/optimization.The surface/interface nanoengineering strategies such as defect engineering,support binding,heteroatom introduction,crystal plane orientation,interface construction and small size effect,the physical and chemical properties of TMNs-based electrocatalysts are emphasized with respect to their structures/morphologies,composition,electrical conductivity,specific surface area,chemical stability and corrosion resistance.The challenges of TMNs-based materials as bifunctional air-cathode electrocatalysts in practical application are evaluated,and numerous research guidelines to solve these problems are put forward for facilitating further research and development.
基金supported by the Science and Technology Commission of Shanghai Municipality(No.20230742300).
文摘Aerogels with regularly porous structure and uniformly distributed conductive networks have received extensive attention in wearable electronic sensors,electromagnetic shielding,and so on.However,the poor mechanical properties of the emerging nanofibers-based aerogels are limited in practical applications.In this work,we developed a synchronous deprotonation–protonation method in the KOH/dimethyl sulfoxide(DMSO)system at room temperature for achieving chitin cross-linked aramid nanofibers(CANFs)rather than chitin nanofibers(ChNFs)and aramid nanofibers(ANFs)separately by using chitin and aramid pulp as raw materials.After freeze-drying process,the cross-linked chitin/aramid nanofibers(CA)aerogel exhibited the synergetic properties of ChNF and ANF by the dual-nanofiber compensation strategy.The mechanical stress of CA aerogel was 170 kPa at 80%compressive strain,increased by 750%compared with pure ChNF aerogel.Similarly,the compressibility of CA aerogel was somewhat improved compared to ANF aerogel.The enhancement verified that the crosslinking reaction between ANF and ChNF during the synchronous deprotonation process was formed.Afterwards,the conductive aerogels with uniform porous structure(CA-M)were successfully obtained by vacuum impregnating CA aerogels in Ti_(3)C_(2)T_(x) MXene solution,displaying low thermal conductivity(0.01 W/(m·K)),high electromagnetic interference(EMI)shielding effectiveness(SE)(75 dB),flame retardant,and heat insulation.Meanwhile,the as-obtained CA-M aerogels were also applied as a pressure sensor with excellent compression cycle stability and superior human motion monitoring capabilities.As a result,the dual-nanofiber based conductive aerogels have great potentials in flexible/wearable electronics,EMI shielding,flame retardant,and heat insulation.
基金the Science and Technology Commission of Shanghai Municipality(Nos.20230742300,18595800700)the project of“joint assignment”in Shanghai University led by Prof.Tongyue Gao from School of Mechatronic Engineering and Automation。
文摘Ti_(3)C_(2)T_(x)MXenes with excellent metallic conductivity and flexibility have shown a promising prospect as electromagnetic interference(EMI) shielding materials. Ultrathin, hierarchical hybrid films were fabricated by using C60intercalating Ti_(3)C_(2)T_(x)MXenes with the assistance of water-soluble γ-cyclodextrin(CD). The C_(60)/CD complex was obtained by high-speed vibration milling using hydrophilic CD as dispersing agent. After thermal annealing treatment, the obtained hybrid film exhibited excellent EMI shielding(53.52±0.43 dB), hydrophobicity(water contact angle: 93.7°) and mechanical stability(over 0.9 million bending times). Taking advantage of the antioxidant of C_(60), the chemical durability of Ti_(3)C_(2)T_(x) MXenes based hybrid films was also improved as expected. These results indicate that the well-designed hierarchical hybrid films with the intercalation of C_(60) have promising potential for high-performance EMI shielding applications.
基金the Science and Technology Commission of Shanghai Municipality(Nos.20230742300 and 18595800700)the project of“joint assignment”in Shanghai University led by Prof.
文摘Flexible electromagnetic interference(EMI)shielding films with high stability have shown promising prospect in harsh working conditions such as military,communication,and special protection fields.Herein,flexible aramid nanofibers@polypyrrole(ANF@PPy)films with high stability were easily achieved by the in-situ growth of PPy on the surface of ANF and the subsequent pressured-filtration film-forming process.When the amount of pyrrole(Py)monomer is 40μL,the ANF@PPy(AP40)film exhibited excellent EMI shielding performance with shielding effectiveness(SE)of 41.69 dB,tensile strength of 96.01 MPa,and fracture strain of 21.95%at the thickness of 75.76μm.Particularly,the anticipated EMI shielding performance can be maintained even after being heated at 200℃in air,soaked in 3.5%NaCl solution,repeated folding for one million times,or burned directly,indicating superior environmental durability in harsh conditions.Therefore,it is believed that the ANF@PPy films with high stability offer a facile solution for practical protection for high-performance EMI shielding applications.
基金the support of the Natural Science Foundation of Shanghai (08ZR1407600)Shanghai Rising-Star Program (10QA1402400)+3 种基金Shanghai Educational Development Foundation (2008CG49)Innovation Program of Shanghai Municipal Education Commission (09YZ18)Leading Academic Discipline Project of Shanghai Municipal Education Commission(J50102)the support of ShanghaiUniversity Postgraduate Innovation Project (SHUCX092036)
文摘Ceria nanoparticles with various shapes (rods, cubes, and plates) and sizes were controllably synthesized and then introduced into epoxy resin. Subsequently, we investigated correlations between the shape and size of ceria nanostructures and the mechanical performance of composites. The samples were character- ized by transmission electron microscopy, scanning electron microscopy, and X-ray diffraction. Compared with commercial ceria filled composites, the composites made with morphology-controlled ceria nanos- tructures show a higher impact strength. It is found that epoxy resins made with high-aspect-ratio ceria nanorods show the highest impact strength, up to 17.27 kJ/m2, which is about four times that of the neat epoxy resin.
基金support of National Key ResearchDevelopment Program of China (No.2017YFB0102900)+2 种基金National Key Research and Development Plan (No.2017YFB0102200)the Shanghai Committee of Science and Technology,China (No. 17010500500)the Shanghai Municipal Education Commission (Peak Discipline Construction program)
文摘Recently,the development of new electrode materials for lithium-ion batteries(LIBs)has received intensive attention.As an important family of inorganic materials,mixed Mo-based transition metal oxides system is focused as anode materials.In the present work,a simple route has been adopted for the synthesis of layered-flake-likeβ-SnMo04 Nano-assemblies,which have been explored as potential anode materials for the first time in lithium-ion battery(LIB).Overall,the current reports on metal molybdate as anode materials are still rarely.As the anode material for LIBs,it was observed that the fabricated anode is capable of delivering a steady state capacity of almost 400 mAh/g up to 300 cycles under the influence of200 mA/g current density.Further,the anode material is suitable for use as a rated capacity anode because of its high current density tolerance.The present study can be further extended for the generation of a wide variety of other novel materials for multidisciplinary energy related applications.