As the scale of urban rail transit(URT)networks expands,the study of URT resilience is essential for safe and efficient operations.This paper presents a comprehensive review of URT resilience and highlights potential ...As the scale of urban rail transit(URT)networks expands,the study of URT resilience is essential for safe and efficient operations.This paper presents a comprehensive review of URT resilience and highlights potential trends and directions for future research.First,URT resilience is defined by three primary abilities:absorption,resistance,and recovery,and four properties:robustness,vulnerability,rapidity,and redundancy.Then,the metrics and assessment approaches for URT resilience were summarized.The metrics are divided into three categories:topology-based,characteristic-based,and performance-based,and the assessment methods are divided into four categories:topological,simulation,optimization,and datadriven.Comparisons of various metrics and assessment approaches revealed that the current research trend in URT resilience is increasingly favoring the integration of traditional methods,such as conventional complex network analysis and operations optimization theory,with new techniques like big data and intelligent computing technology,to accurately assess URT resilience.Finally,five potential trends and directions for future research were identified:analyzing resilience based on multisource data,optimizing train diagram in multiple scenarios,accurate response to passenger demand through new technologies,coupling and optimizing passenger and traffic flows,and optimal line design.展开更多
The drying processes are always applied prior to the transportation or utilization of lignite, and result in notable changes in the stabilities of lignite. In this paper, the study on the effects of nitrogen and MTE d...The drying processes are always applied prior to the transportation or utilization of lignite, and result in notable changes in the stabilities of lignite. In this paper, the study on the effects of nitrogen and MTE drying process on the physico-chemical properties and stabilities of Zhaotung lignite was carried out. The briquettes produced by MTE drying in this study were 150 mm in dimension, and so had a much larger particle size than nitrogen- dried samples. Nitrogen adsorption, mercury intrusion porosimetry and scanning electron microscopy all suggested that drying was accompanied by the transformation of larger pores into smaller ones. Compared to nitrogen drying, the pore structures could be stabilized by the MTE process. The soluble salts were removed during MTE drying which resulted in the decrease in ash and the concentrations of some of the major metals. The removal of water enhanced the hydrophilicity of nitrogen dried samples, but did not affect the hydrophilicity of MTE dried samples. The moisture holding capacity of MTE dried samples reduced faster than nitrogen dried samples with the decrease of residual moisture content. The moisture readsorption processes of MTE dried sam- ples were strongly inhibited due to the much larger particle size of sample produced by MTE drying than nitrogen drying. The susceptibility to spontaneous combustion, indicated by cross point temperature and self-heating tests, of nitrogen and MTE dried samples increased with the decrease of residual moisture content. The MTE dried samples are more liable to spontaneous combustion than nitrogen dried samples with the same residual moisture and particle size. However, the larger particle size of the MTE product made it more stable with respect to spontaneous combustion and also moisture readsorption.展开更多
In order to further improve the propulsion performance of pulsed plasma thrusters for space micro propulsion,a novel laser ablation pulsed plasma thruster is proposed,which separated the laser ablation and electromagn...In order to further improve the propulsion performance of pulsed plasma thrusters for space micro propulsion,a novel laser ablation pulsed plasma thruster is proposed,which separated the laser ablation and electromagnetic acceleration.Optical emission spectroscopy is utilized to investigate the plasma characteristics in the thruster.The spectral lines at different times,positions and discharge intensities are experimentally recorded,and the plasma characteristics in the discharge channel are concluded through analyzing the variation of spectral lines.With the discharge energy of 24 J,laser energy of 0.6 J and the use of aluminum propellant,the specific impulse and thrust efficiency reach 6808 s and 70.6%,respectively.展开更多
At present, methanol to propylene(MTP) technology developed by Lurgi Company is adopted for commercial plants and refined methanol with the purity ≥99.85 wt% is required as the feed of MTP unit in Lurgi's technol...At present, methanol to propylene(MTP) technology developed by Lurgi Company is adopted for commercial plants and refined methanol with the purity ≥99.85 wt% is required as the feed of MTP unit in Lurgi's technology.Therefore, high energy cost for refined methanol production is one of the bottlenecks to improve the economy of MTP technology. Reducing the grade of feed refined methanol may be an effective method to save energy and reduce operation costs in MTP process. In this work, experiments and process simulation were carried out to investigate the influence and feasibility of degrading the methanol feed. Experiments were conducted to investigate the influence of crude methanol feed on conversion and selectivity of MTP reaction as well as the performance of ZSM-5 catalyst. The experimental results showed that degrading the methanol feed had no obvious influence on the conversion and selectivity of MTP reactions and the catalyst deactivation was caused by the carbon accumulation and metals deposition on the active sites. The process simulation results showed that the influence on the conversion and selectivity as well as the stream load of MTP process was negligible if 98 mol% methanol was used as feed. Finally, industrial experiments were conducted by adjusting the operation parameters to degrade of feed methanol of the commercial 500 kt·a^(-1) MTP unit of Ningmei Group in China. The results of industrial application illustrated that annually 180 kt fuel coal and 150 kt desalted water as well as 1770 MW·h^(-1) electricity would be saved when the water content increased from 0.01% to 0.4%. This work has identified the feasibility to improve MTP technology by degrading the methanol feed.展开更多
Increasing the osteogenic differentiation ability and decreasing the adipogenic differentiation ability of bone marrow mesenchymal stem cells(BMSCs)is a potential strategy for the treatment of osteoporosis(OP).Natural...Increasing the osteogenic differentiation ability and decreasing the adipogenic differentiation ability of bone marrow mesenchymal stem cells(BMSCs)is a potential strategy for the treatment of osteoporosis(OP).Naturally derived oligosaccharides have shown significant anti-osteoporotic effects.Nystose(NST),an oligosaccharide,was isolated from the roots of Morinda officinalis How.(MO).The aim of the present study was to investigate the effects of NST on bone loss in ovariectomized mice,and explore the underlying mechanism of NST in promoting differentiation of BMSCs to osteoblasts.Administration of NST(40,80 and 160 mg/kg)and the positive control of estradiol valerate(0.2 mg/kg)for 8 weeks significantly prevented bone loss induced by ovariectomy(OVX),increased the bone mass density(BMD),improved the bone microarchitecture and reduced urine calcium and deoxypyridinoline(DPD)in ovariectomized mice,while inhibited the increase of body weight without significantly affecting the uterus weight.Furthermore,we found that NST increased osteogenic differentiation,inhibited adipogenic differentiation of BMSCs in vitro,and upregulated the expression of the key proteins of BMP and Wnt/β-catenin pathways.In addition,Noggin and Dickkopf-related protein-1(DKK-1)reversed the effect of NST on osteogenic differentiation and expression of the key proteins in BMP and Wnt/β-catenin pathway.The luciferase activities and the molecular docking analysis further supported the mechanism of NST.In conclusion,these results indicating that NST can be clinically used as a potential alternative medicine for the prevention and treatment of postmenopausal osteoporosis.展开更多
A novel laser-assisted pulsed plasma thruster(LA-PPT)is proposed as an electric propulsion thruster,which separates laser ablation and electromagnetic acceleration.It aims for a higher specific impulse than that achie...A novel laser-assisted pulsed plasma thruster(LA-PPT)is proposed as an electric propulsion thruster,which separates laser ablation and electromagnetic acceleration.It aims for a higher specific impulse than that achieved with conventional LA-PPTs.Owing to the short-time discharge and the novel configuration,the physical mechanism of the discharge is unclear.Time and spatial-resolved optical emission spectroscopy was applied to investigate the variation in the plasma properties in the thruster discharge channel.The plasma species,electron temperature,and electron density were obtained and discussed.Our investigation revealed that there were H_(α),H_(β),H_(γ),H_(ε) atoms,CⅠ,CⅡ,CⅢ,CⅣ,ClⅠ,ClⅡparticles,and a small amount of CH,C_(3),C_(2),H_(2) neutral molecular groups in the plasma.The electron temperature of the discharge channel of the thruster was within 0.6–4.9 e V,and the electron density was within(1.1–3.0)×10^(18)cm^(-3),which shows that the optical emission spectroscopy method is to measure the electron excitation temperature and electron density in heavy particles.But the Langmuir probe method is to measure the temperature and density of free electrons.The use of laser instead of spark plug as the ignition mode significantly changed the plasma distribution in the discharge channel.Unlike the conventional PPT,which has high electron density near the thruster surface,LAPPT showed relatively large electron density at the thruster outlet,which increased the thruster specific impulse.In addition,the change in the ignition mode enabled the electron density in the LA-PPT discharge channel to be higher than that in the conventional PPT.This proves that the ignition mode with laser replacing the spark plug effectively optimised the PPT performance.展开更多
In this study,a laser-assisted pulsed plasma thruster(LA-PPT)with a novel configuration is proposed as an electric propulsion thruster which separates laser ablation and electromagnetic acceleration.Owing to the uniqu...In this study,a laser-assisted pulsed plasma thruster(LA-PPT)with a novel configuration is proposed as an electric propulsion thruster which separates laser ablation and electromagnetic acceleration.Owing to the unique structure of the thruster,metals can also be used as propellants,and a higher specific impulse is expected.The ablation quality,morphology,and plume distribution of various metals(aluminium alloy,red copper,and carbon steel)with different laser energies were studied experimentally.The ablation morphology and plume distribution of red copper were more uniform,as compared to those of other metals,and the ablation quality was higher,indicating its greater suitability for LA-PPT.The plume generated by nanosecond laser ablation of aluminium alloy expanded faster,which indicated that the response time of the thruster with aluminium alloy as the propellant was shorter.In addition,when the background pressure was 0.005 Pa,an obvious plume splitting phenomenon was observed in the ablation plume of the pulsed laser irradiating aluminium alloy,which may significantly reduce the utilisation rate of the propellant.展开更多
Ablative pulsed plasma thrusters(APPTs)are considered as an attractive propulsion option for station-keeping and drag makeup purposes for mass-and power-limited satellites.In order to understand the physical mechanism...Ablative pulsed plasma thrusters(APPTs)are considered as an attractive propulsion option for station-keeping and drag makeup purposes for mass-and power-limited satellites.In order to understand the physical mechanism of APPTs,high-speed camera and optical emission spectroscopy are utilized to investigate the plasma characteristics including the spatial distribution and composition between the electrodes.The plume images and spectra at different times and positions are experimentally recorded,and the spatial distribution,composition,and trajectory of plasmas can be concluded through analyzing them.With the increase of the distance from the ablation surface,two clusters of plasmas near the anode and cathode meet downstream,and the species and density of plasmas tend to be uniform.展开更多
This paper focuses on reducing the complexity of K-best sphere decoding (SD) algorithm for the detection of uncoded multi-ple input multiple output (MIMO) systems. The proposed algorithm utilizes the threshold-pru...This paper focuses on reducing the complexity of K-best sphere decoding (SD) algorithm for the detection of uncoded multi-ple input multiple output (MIMO) systems. The proposed algorithm utilizes the threshold-pruning method to cut nodes with partial Euclidean distances (PEDs) larger than the threshold. Both the known noise value and the unknown noise value are considered to generate the threshold, which is the sum of the two values. The known noise value is the smal est PED of signals in the detected layers. The unknown noise value is generated by the noise power, the quality of service (QoS) and the signal-to-noise ratio (SNR) bound. Simulation results show that by considering both two noise values, the proposed algorithm makes an efficient reduction while the performance drops little.展开更多
Due to the influence of scatterers around the receiving antenna, the multipath signal in satellite mobile communication systems is correlated with each other which would influence the system performance. There is no s...Due to the influence of scatterers around the receiving antenna, the multipath signal in satellite mobile communication systems is correlated with each other which would influence the system performance. There is no systematic standard on the channel modelling of the wideband satellite channel at present, so the study of the modelling of the wideband satellite channel is of great importance. In this paper, firstly we created a multi-beam model which can figure out the antenna gain of the nth component beam. Secondly, we combined the characteristics of multi-beam satellite channel and the distribution of the scatterers, and set up a three-dimension random channel model. This model is more realistic for satellite communication system since it considers the height of scatterers. According to the channel models, we had the formula of spatial correlation coefficient. We used the formula to calculate the relationship between spatial correlation coefficient and the interval of antennas. The result shows that the spatial correlation exists and cannot be ignored while modeling for mobile satellite system.展开更多
We propose a pipeline structure for Schnorr-Euchner sphere decoding algorithm in this article. It divides the search tree of the original algorithm into blocks and executes the search from block to block. When one blo...We propose a pipeline structure for Schnorr-Euchner sphere decoding algorithm in this article. It divides the search tree of the original algorithm into blocks and executes the search from block to block. When one block search of a signal is over, the part in the pipeline structure that processes this block search can load another signal and search. Several signals can be processed at the same time in one pipeline. Blocks are arranged to lower the whole complexity in the way that the previously search blocks are the blocks those have more probability to generate the final solution. Simulation experiment results show the average process delay can drop to the range from 48.77% to 60.18% in a 4-by-4 antenna system with 16QAM modulation, or from 30.31% to 61.59% in a 4-by-4 antenna system with 64QAM modulation.展开更多
Multiple-Input Multiple-Output (MIMO) technology is widely applied in terrestrial wireless communication system, which greatly increases the system capacity. Satellite communication system has many advantages such as ...Multiple-Input Multiple-Output (MIMO) technology is widely applied in terrestrial wireless communication system, which greatly increases the system capacity. Satellite communication system has many advantages such as wide coverage and strong flexibility. Therefore, how to make a better use of MIMO technology in satellite communication system has become a research hotspot in recent years. The purpose of this paper is to analysis the relationship between satellite MIMO system capacity and parameters of terrestrial antenna such as angle and distance. The parameters of terrestrial antenna were derived and calculated to keep a higher capacity for satellite MIMO system. Numerical analysis of system capacity performance before and after optimization was obtained, which proved the correctness of the theory proposed in this paper.展开更多
Transportation is essential to human life and a significant component of a modern economy and societal development.Since its first emergence approximately 5,000 years ago,transportation has experienced evolutionary ch...Transportation is essential to human life and a significant component of a modern economy and societal development.Since its first emergence approximately 5,000 years ago,transportation has experienced evolutionary changes from ancient horse-pulled wagons and dog-pulled sleds to modern airplane and high-speed trains,to future supersonic jets and space shuttles.Since the late 20th century,intelligent transportation systems(ITS)have been developed for improving transportation efficiency,alleviating traffic congestion,increasing roadway,air and sea transportation capacity,reducing energy consumption,and mitigating environmental pollution.展开更多
Plasma discharge stability is an important problem in atmosphere-breathing electric propulsion system when maintaining long-term missions at ultra-low earth orbit.This paper designed an inductively coupled plasma sour...Plasma discharge stability is an important problem in atmosphere-breathing electric propulsion system when maintaining long-term missions at ultra-low earth orbit.This paper designed an inductively coupled plasma source to imitate the ionization section.The effect of inflow rate and Radio Frequency(RF)power on the plasma discharge mode transition is experimentally studied.A discharge mode detection method is proposed,which determines the discharge mode by identifying the morphology of the plasma core.By using the method,the discharge mode transition is quantified and a control model based on the parameter sensitivity is constructed.To verify the method,the spectra are measured and the electron temperature spatial distribution is calculated.And the method has been proven effective.The results show that the inductively coupled discharge contains capacitive components affected by the mass flow rate and the radio frequency power.The plasma characteristics can be maintained stably by controlling the radio frequency power when the mass flow rate randomly changes in a certain range.It is demonstrated that the application of detection method effectively identifies the discharge mode,which is a promising active control method for the plasma discharge mode.展开更多
The hypersonic shock-shock interaction flow field at double-wedge geometries controlled by plasma synthetic jet actuator is experimentally studied in a Ma = 8 high-enthalpy shock tunnel with the purpose of exploring a...The hypersonic shock-shock interaction flow field at double-wedge geometries controlled by plasma synthetic jet actuator is experimentally studied in a Ma = 8 high-enthalpy shock tunnel with the purpose of exploring a novel technique for reducing surface heat flux in a real flight environment. The results demonstrate that increasing the discharge energy is advantageous in eliminating the shock wave, shifting the shock wave interaction point, and shortening the control response time. The oblique shock wave can be completely removed when the actuator's discharge energy grows from 0.4 J to 11.5 J, and the displacement of the shock wave interaction point increases by 124.56%, while the controlled response time is shortened by 30 μs. Besides, the reduction in diameter of the jet exit is firstly proved to have a negative impact on energy deposition in a working environment with incoming flow, which reduces the discharge energy and hence decreases the control effect. The shock wave control response time lengthens when the jet exits away from the second wedge. Along with comparing the change in wall heat flux at the second wedge over time, the control effect of plasma synthetic jet actuator with and without inflation is also analyzed. When plasma synthetic jet works in inflatable mode, both the ability to eliminate shock waves and the shifting effect of the shock wave interaction point are increased significantly, and the wall heat flux is also reduced.展开更多
In the staged multi-cluster fracturing of shale gas horizontal wells, ball sealers are used to ensure uniform fluid distribution among clusters, a strategy that is both cost-effective and operationally beneficial. Des...In the staged multi-cluster fracturing of shale gas horizontal wells, ball sealers are used to ensure uniform fluid distribution among clusters, a strategy that is both cost-effective and operationally beneficial. Despite these advantages, comprehending the ball sealers' dynamics within the wellbore and their plugging behavior at perforations is still challenging. This complexity results in prediction difficulties regarding their diversion efficiency. To address this, our study utilized a semi-resolved CFD-DEM model based on kernel approximation to simulate the behavior of medium-sized ball sealers in single and multiple cluster scenarios. Our findings from a single cluster scenario reveal that the plugging probability is co-determined by velocity gradients in the fluid ingestion area near the perforation, backflow region, and inertial forces of the ball sealers. As the critical flow rate is achieved, the plugging probability negatively correlated with fluid viscosity and displacement, and positively correlated with the perforation flow ratio (PFR), the difference in particle-fluid density, ball sealer’s diameter, and the ball sealer’s offset from the pipeline center. Temporary plugging control efficiency was used to evaluate the flow balance effect among multiple clusters. The results indicate that an increased number of ball sealers enhances the fault tolerance during the temporary plugging process. Nevertheless, excessive ball sealers might undermine the temporary plugging control efficiency, as perforations with lower fluid inflow rates are unexpectedly plugging. Higher differences in fluid injection rates between clusters led to increased efficiency in temporary plugging control. Premature deployment of ball sealers cannot effectively plug perforations with marginally higher fluid inflow rates, but instead accidently plug intermediate clusters with lower fluid inflow rates. These findings offer a theoretical basis for optimizing the design of ball sealers.展开更多
The modern aircraft Thermal Management System(TMS)faces significant challenges due to increasing thermal loads and limited heat dissipation pathways.To optimize TMS during the conceptual design stage,the development o...The modern aircraft Thermal Management System(TMS)faces significant challenges due to increasing thermal loads and limited heat dissipation pathways.To optimize TMS during the conceptual design stage,the development of a modeling and simulation tool is crucial.In this study,a TMS simulation model library was created using MATLAB/SIMULINK.To simplify the complexity of the Vapor Cycle System(VCS)model,a Response Surface Model(RSM)was constructed using the Monte Carlo method and validated through simulation experiments.Taking the F-22 fighter TMS as an example,a thermal dynamic simulation model was constructed to analyze the variation of thermal response parameters in key subsystems and elucidate their coupling relationships.Furthermore,the impact of total fuel flow and ram air flow on the TMS was investigated.The findings demonstrate the existence of an optimal total fuel flow that achieves a balance between maximizing fuel heat sink utilization and minimizing bleed air demand.The adaptive distribution of fuel and ram air flow was found to enhance aircraft thermal management performance.This study contributes to improving modeling efficiency and enhancing the understanding of the thermal dynamic characteristics of TMS,thereby facilitating further optimization in aircraft TMS design.展开更多
Superplastic forming is a practical method to manufacture complex-shaped parts of titanium alloys with large deformation.Laminated parts of dissimilar titanium alloys fabricated by superplastic forming can achieve exc...Superplastic forming is a practical method to manufacture complex-shaped parts of titanium alloys with large deformation.Laminated parts of dissimilar titanium alloys fabricated by superplastic forming can achieve excellent performance by combining the advantages of components.This work displays the superplastic tension behavior and microstructural evolution of dissimilar TC4/SP700 laminate prepared by the diffusion bonding process.Two titanium alloys can achieve metallurgical bonding at parameters of 800℃/1 h/5 MPa.Except for dynamic recrystallization and grain growth behaviors upon superplastic tension,stress-induced phase transformation plays an important role inαtoβphase transformation apart from the elevated temperature.The superplastic deformation can be attributed to the grain boundary sliding accommodated multiplex motion of dislocations.In addition,the retained strengths of all dissimilar TC4/SP700 laminates after superplastic deformation with different strain rates and temperatures range from 807 to 890 MPa.展开更多
This work investigates the potential of combining hardness gradient with surface texture (an example of bionic coupling) to improve anti-wear properties. The bionic coupling of hardness gradient and Hexagonal Textu...This work investigates the potential of combining hardness gradient with surface texture (an example of bionic coupling) to improve anti-wear properties. The bionic coupling of hardness gradient and Hexagonal Texture (HT) was achieved by laser heat treatment on steel specimens with pre-engraved hexagonal surface texture. The successful establishment of decreasing hardness from surface to internal bulk was verified by hardness measurements along the depth of cross-sectioned specimens and corre- lated with the observations from metallurgical microscopy. The tribological performance of bionic coupling specimens (HT-L) was examined under dry contact condition, together with respective control specimens of individual bionic features, e.g. HT-H (of similar surface hardness generated by conventional heat treatment but without hardness gradient) and SS-L (of smooth surface treated by the same laser processing as for HT-L). It is found that HT-L not only exhibits lower friction coefficient and less friction fluctuation than HT-H and SS-L, but also demonstrates a 〉50% reduction of wear loss compared to HT-H and SS-L (0.0343 g for HT-L vs. 0.0723 g for HT-H, P〈0.001; 0.0343 g for HT-L vs. 0.0817 g for SS-L, P〈0.001). Corroboratively, observations with scanning electron microscopy revealed a relatively smooth surface for worn HT-L specimen, contrasting with the rugged and grooved surfaces of worn HT-H and SS-L specimens. These results indicate that the bionic coupling of hardness gradient to hexagonal texture can indeed improve anti-wear properties, affording a new strategy to wear and friction manage- ment.展开更多
Three dimensional(3D)tubes,which possess the characteristics of space saving,lightweight and high strength,are widely used in many high-end industries such as aviation,aerospace,automobile and shipbuilding.However,whe...Three dimensional(3D)tubes,which possess the characteristics of space saving,lightweight and high strength,are widely used in many high-end industries such as aviation,aerospace,automobile and shipbuilding.However,when manufacturing a 3D tube in flexible bending process,springback is a big obstacle for improving the forming quality.In this paper,a new comprehensive strategy for springback control of 3D tubes is proposed.The strategy can be described as follows:(1)define the desired shape and manufacture shape;(2)optimize the manufacture shape using two tooling design methods(e.g.DA(displacement adjustment)method and B&T(bending and twisting)method presented in this paper);(3)make a discretization of the manufacture shape to acquire the optimized forming parameters.Additionally,experiment is implemented to validate the effectiveness of the new strategy.Results show that forming parameters acquired by the new strategy are partially effective.The new strategy also demonstrates that,during 3D tubes forming,the deviation caused by over-bent elements can be counteracted by the deficient-bent elements.This principle is helpful to reduce the difficulty of parameter determination in future.展开更多
基金supported by the National Natural Science Foundation of China(72288101,72331001,and 72071015)the Research Grants Council of the Hong Kong Special Administrative Region(PolyU 15222221)+1 种基金the 111 Center(B20071)an XPLORER PRIZE.
文摘As the scale of urban rail transit(URT)networks expands,the study of URT resilience is essential for safe and efficient operations.This paper presents a comprehensive review of URT resilience and highlights potential trends and directions for future research.First,URT resilience is defined by three primary abilities:absorption,resistance,and recovery,and four properties:robustness,vulnerability,rapidity,and redundancy.Then,the metrics and assessment approaches for URT resilience were summarized.The metrics are divided into three categories:topology-based,characteristic-based,and performance-based,and the assessment methods are divided into four categories:topological,simulation,optimization,and datadriven.Comparisons of various metrics and assessment approaches revealed that the current research trend in URT resilience is increasingly favoring the integration of traditional methods,such as conventional complex network analysis and operations optimization theory,with new techniques like big data and intelligent computing technology,to accurately assess URT resilience.Finally,five potential trends and directions for future research were identified:analyzing resilience based on multisource data,optimizing train diagram in multiple scenarios,accurate response to passenger demand through new technologies,coupling and optimizing passenger and traffic flows,and optimal line design.
基金Supported by the National Natural Science Foundation of China(51704292,51774285)the China Postdoctoral Science Foundation(2016M601919)+1 种基金the National Key R&D Program of China(2016YFB0600401)the Fundamental Research Funds for the Central Universities(2017QNA25,CPEUKF1704)
文摘The drying processes are always applied prior to the transportation or utilization of lignite, and result in notable changes in the stabilities of lignite. In this paper, the study on the effects of nitrogen and MTE drying process on the physico-chemical properties and stabilities of Zhaotung lignite was carried out. The briquettes produced by MTE drying in this study were 150 mm in dimension, and so had a much larger particle size than nitrogen- dried samples. Nitrogen adsorption, mercury intrusion porosimetry and scanning electron microscopy all suggested that drying was accompanied by the transformation of larger pores into smaller ones. Compared to nitrogen drying, the pore structures could be stabilized by the MTE process. The soluble salts were removed during MTE drying which resulted in the decrease in ash and the concentrations of some of the major metals. The removal of water enhanced the hydrophilicity of nitrogen dried samples, but did not affect the hydrophilicity of MTE dried samples. The moisture holding capacity of MTE dried samples reduced faster than nitrogen dried samples with the decrease of residual moisture content. The moisture readsorption processes of MTE dried sam- ples were strongly inhibited due to the much larger particle size of sample produced by MTE drying than nitrogen drying. The susceptibility to spontaneous combustion, indicated by cross point temperature and self-heating tests, of nitrogen and MTE dried samples increased with the decrease of residual moisture content. The MTE dried samples are more liable to spontaneous combustion than nitrogen dried samples with the same residual moisture and particle size. However, the larger particle size of the MTE product made it more stable with respect to spontaneous combustion and also moisture readsorption.
基金National Natural Science Foundation of China for the financial assistance provided under the grant number 11772354.
文摘In order to further improve the propulsion performance of pulsed plasma thrusters for space micro propulsion,a novel laser ablation pulsed plasma thruster is proposed,which separated the laser ablation and electromagnetic acceleration.Optical emission spectroscopy is utilized to investigate the plasma characteristics in the thruster.The spectral lines at different times,positions and discharge intensities are experimentally recorded,and the plasma characteristics in the discharge channel are concluded through analyzing the variation of spectral lines.With the discharge energy of 24 J,laser energy of 0.6 J and the use of aluminum propellant,the specific impulse and thrust efficiency reach 6808 s and 70.6%,respectively.
基金Supported by the National Key R&D Program of China(2017YFB0601902)
文摘At present, methanol to propylene(MTP) technology developed by Lurgi Company is adopted for commercial plants and refined methanol with the purity ≥99.85 wt% is required as the feed of MTP unit in Lurgi's technology.Therefore, high energy cost for refined methanol production is one of the bottlenecks to improve the economy of MTP technology. Reducing the grade of feed refined methanol may be an effective method to save energy and reduce operation costs in MTP process. In this work, experiments and process simulation were carried out to investigate the influence and feasibility of degrading the methanol feed. Experiments were conducted to investigate the influence of crude methanol feed on conversion and selectivity of MTP reaction as well as the performance of ZSM-5 catalyst. The experimental results showed that degrading the methanol feed had no obvious influence on the conversion and selectivity of MTP reactions and the catalyst deactivation was caused by the carbon accumulation and metals deposition on the active sites. The process simulation results showed that the influence on the conversion and selectivity as well as the stream load of MTP process was negligible if 98 mol% methanol was used as feed. Finally, industrial experiments were conducted by adjusting the operation parameters to degrade of feed methanol of the commercial 500 kt·a^(-1) MTP unit of Ningmei Group in China. The results of industrial application illustrated that annually 180 kt fuel coal and 150 kt desalted water as well as 1770 MW·h^(-1) electricity would be saved when the water content increased from 0.01% to 0.4%. This work has identified the feasibility to improve MTP technology by degrading the methanol feed.
基金support from the Public Platform of Medical Research Center,Academy of Chinese Medical Science,Zhejiang Chinese Medical Universitysponsored by the National Natural Science Foundation of China(81973534,U1505226)。
文摘Increasing the osteogenic differentiation ability and decreasing the adipogenic differentiation ability of bone marrow mesenchymal stem cells(BMSCs)is a potential strategy for the treatment of osteoporosis(OP).Naturally derived oligosaccharides have shown significant anti-osteoporotic effects.Nystose(NST),an oligosaccharide,was isolated from the roots of Morinda officinalis How.(MO).The aim of the present study was to investigate the effects of NST on bone loss in ovariectomized mice,and explore the underlying mechanism of NST in promoting differentiation of BMSCs to osteoblasts.Administration of NST(40,80 and 160 mg/kg)and the positive control of estradiol valerate(0.2 mg/kg)for 8 weeks significantly prevented bone loss induced by ovariectomy(OVX),increased the bone mass density(BMD),improved the bone microarchitecture and reduced urine calcium and deoxypyridinoline(DPD)in ovariectomized mice,while inhibited the increase of body weight without significantly affecting the uterus weight.Furthermore,we found that NST increased osteogenic differentiation,inhibited adipogenic differentiation of BMSCs in vitro,and upregulated the expression of the key proteins of BMP and Wnt/β-catenin pathways.In addition,Noggin and Dickkopf-related protein-1(DKK-1)reversed the effect of NST on osteogenic differentiation and expression of the key proteins in BMP and Wnt/β-catenin pathway.The luciferase activities and the molecular docking analysis further supported the mechanism of NST.In conclusion,these results indicating that NST can be clinically used as a potential alternative medicine for the prevention and treatment of postmenopausal osteoporosis.
基金supported by National Natural Science Foundation of China(No.11772354)。
文摘A novel laser-assisted pulsed plasma thruster(LA-PPT)is proposed as an electric propulsion thruster,which separates laser ablation and electromagnetic acceleration.It aims for a higher specific impulse than that achieved with conventional LA-PPTs.Owing to the short-time discharge and the novel configuration,the physical mechanism of the discharge is unclear.Time and spatial-resolved optical emission spectroscopy was applied to investigate the variation in the plasma properties in the thruster discharge channel.The plasma species,electron temperature,and electron density were obtained and discussed.Our investigation revealed that there were H_(α),H_(β),H_(γ),H_(ε) atoms,CⅠ,CⅡ,CⅢ,CⅣ,ClⅠ,ClⅡparticles,and a small amount of CH,C_(3),C_(2),H_(2) neutral molecular groups in the plasma.The electron temperature of the discharge channel of the thruster was within 0.6–4.9 e V,and the electron density was within(1.1–3.0)×10^(18)cm^(-3),which shows that the optical emission spectroscopy method is to measure the electron excitation temperature and electron density in heavy particles.But the Langmuir probe method is to measure the temperature and density of free electrons.The use of laser instead of spark plug as the ignition mode significantly changed the plasma distribution in the discharge channel.Unlike the conventional PPT,which has high electron density near the thruster surface,LAPPT showed relatively large electron density at the thruster outlet,which increased the thruster specific impulse.In addition,the change in the ignition mode enabled the electron density in the LA-PPT discharge channel to be higher than that in the conventional PPT.This proves that the ignition mode with laser replacing the spark plug effectively optimised the PPT performance.
基金supported by National Natural Science Foundation of China(No.11772354)。
文摘In this study,a laser-assisted pulsed plasma thruster(LA-PPT)with a novel configuration is proposed as an electric propulsion thruster which separates laser ablation and electromagnetic acceleration.Owing to the unique structure of the thruster,metals can also be used as propellants,and a higher specific impulse is expected.The ablation quality,morphology,and plume distribution of various metals(aluminium alloy,red copper,and carbon steel)with different laser energies were studied experimentally.The ablation morphology and plume distribution of red copper were more uniform,as compared to those of other metals,and the ablation quality was higher,indicating its greater suitability for LA-PPT.The plume generated by nanosecond laser ablation of aluminium alloy expanded faster,which indicated that the response time of the thruster with aluminium alloy as the propellant was shorter.In addition,when the background pressure was 0.005 Pa,an obvious plume splitting phenomenon was observed in the ablation plume of the pulsed laser irradiating aluminium alloy,which may significantly reduce the utilisation rate of the propellant.
基金National Natural Science Foundation of China(No.11772354)for the financial assistance provided for this work。
文摘Ablative pulsed plasma thrusters(APPTs)are considered as an attractive propulsion option for station-keeping and drag makeup purposes for mass-and power-limited satellites.In order to understand the physical mechanism of APPTs,high-speed camera and optical emission spectroscopy are utilized to investigate the plasma characteristics including the spatial distribution and composition between the electrodes.The plume images and spectra at different times and positions are experimentally recorded,and the spatial distribution,composition,and trajectory of plasmas can be concluded through analyzing them.With the increase of the distance from the ablation surface,two clusters of plasmas near the anode and cathode meet downstream,and the species and density of plasmas tend to be uniform.
基金supported by the National Natural Science Foundation of China(61071083)
文摘This paper focuses on reducing the complexity of K-best sphere decoding (SD) algorithm for the detection of uncoded multi-ple input multiple output (MIMO) systems. The proposed algorithm utilizes the threshold-pruning method to cut nodes with partial Euclidean distances (PEDs) larger than the threshold. Both the known noise value and the unknown noise value are considered to generate the threshold, which is the sum of the two values. The known noise value is the smal est PED of signals in the detected layers. The unknown noise value is generated by the noise power, the quality of service (QoS) and the signal-to-noise ratio (SNR) bound. Simulation results show that by considering both two noise values, the proposed algorithm makes an efficient reduction while the performance drops little.
文摘Due to the influence of scatterers around the receiving antenna, the multipath signal in satellite mobile communication systems is correlated with each other which would influence the system performance. There is no systematic standard on the channel modelling of the wideband satellite channel at present, so the study of the modelling of the wideband satellite channel is of great importance. In this paper, firstly we created a multi-beam model which can figure out the antenna gain of the nth component beam. Secondly, we combined the characteristics of multi-beam satellite channel and the distribution of the scatterers, and set up a three-dimension random channel model. This model is more realistic for satellite communication system since it considers the height of scatterers. According to the channel models, we had the formula of spatial correlation coefficient. We used the formula to calculate the relationship between spatial correlation coefficient and the interval of antennas. The result shows that the spatial correlation exists and cannot be ignored while modeling for mobile satellite system.
文摘We propose a pipeline structure for Schnorr-Euchner sphere decoding algorithm in this article. It divides the search tree of the original algorithm into blocks and executes the search from block to block. When one block search of a signal is over, the part in the pipeline structure that processes this block search can load another signal and search. Several signals can be processed at the same time in one pipeline. Blocks are arranged to lower the whole complexity in the way that the previously search blocks are the blocks those have more probability to generate the final solution. Simulation experiment results show the average process delay can drop to the range from 48.77% to 60.18% in a 4-by-4 antenna system with 16QAM modulation, or from 30.31% to 61.59% in a 4-by-4 antenna system with 64QAM modulation.
文摘Multiple-Input Multiple-Output (MIMO) technology is widely applied in terrestrial wireless communication system, which greatly increases the system capacity. Satellite communication system has many advantages such as wide coverage and strong flexibility. Therefore, how to make a better use of MIMO technology in satellite communication system has become a research hotspot in recent years. The purpose of this paper is to analysis the relationship between satellite MIMO system capacity and parameters of terrestrial antenna such as angle and distance. The parameters of terrestrial antenna were derived and calculated to keep a higher capacity for satellite MIMO system. Numerical analysis of system capacity performance before and after optimization was obtained, which proved the correctness of the theory proposed in this paper.
文摘Transportation is essential to human life and a significant component of a modern economy and societal development.Since its first emergence approximately 5,000 years ago,transportation has experienced evolutionary changes from ancient horse-pulled wagons and dog-pulled sleds to modern airplane and high-speed trains,to future supersonic jets and space shuttles.Since the late 20th century,intelligent transportation systems(ITS)have been developed for improving transportation efficiency,alleviating traffic congestion,increasing roadway,air and sea transportation capacity,reducing energy consumption,and mitigating environmental pollution.
基金funded by the National Natural Science Foundation of China (No. T2221002)the Hunan Provincial Natural Science Foundation, China (No. 2024JJ5405)
文摘Plasma discharge stability is an important problem in atmosphere-breathing electric propulsion system when maintaining long-term missions at ultra-low earth orbit.This paper designed an inductively coupled plasma source to imitate the ionization section.The effect of inflow rate and Radio Frequency(RF)power on the plasma discharge mode transition is experimentally studied.A discharge mode detection method is proposed,which determines the discharge mode by identifying the morphology of the plasma core.By using the method,the discharge mode transition is quantified and a control model based on the parameter sensitivity is constructed.To verify the method,the spectra are measured and the electron temperature spatial distribution is calculated.And the method has been proven effective.The results show that the inductively coupled discharge contains capacitive components affected by the mass flow rate and the radio frequency power.The plasma characteristics can be maintained stably by controlling the radio frequency power when the mass flow rate randomly changes in a certain range.It is demonstrated that the application of detection method effectively identifies the discharge mode,which is a promising active control method for the plasma discharge mode.
基金supported by the National Natural Science Foundation of China (Nos. 92271110, 12202488, 12072352 and T2221002)the National Major Science and Technology Project of China (Nos. J2019-II-0016-0037 and J2019-Ⅲ-0010-0054)the Natural Science Program of National University of Defense Technology, China (No. ZK22-30)。
文摘The hypersonic shock-shock interaction flow field at double-wedge geometries controlled by plasma synthetic jet actuator is experimentally studied in a Ma = 8 high-enthalpy shock tunnel with the purpose of exploring a novel technique for reducing surface heat flux in a real flight environment. The results demonstrate that increasing the discharge energy is advantageous in eliminating the shock wave, shifting the shock wave interaction point, and shortening the control response time. The oblique shock wave can be completely removed when the actuator's discharge energy grows from 0.4 J to 11.5 J, and the displacement of the shock wave interaction point increases by 124.56%, while the controlled response time is shortened by 30 μs. Besides, the reduction in diameter of the jet exit is firstly proved to have a negative impact on energy deposition in a working environment with incoming flow, which reduces the discharge energy and hence decreases the control effect. The shock wave control response time lengthens when the jet exits away from the second wedge. Along with comparing the change in wall heat flux at the second wedge over time, the control effect of plasma synthetic jet actuator with and without inflation is also analyzed. When plasma synthetic jet works in inflatable mode, both the ability to eliminate shock waves and the shifting effect of the shock wave interaction point are increased significantly, and the wall heat flux is also reduced.
基金supported by National Natural Science Foundation of China(grant No.U21B2071)Youth Program of National Natural Science Foundation of China(grant No.52104039)Science and Technology Cooperation Project of the CNPC-SWPU Innovation Alliance(grant No.2020CX030201).
文摘In the staged multi-cluster fracturing of shale gas horizontal wells, ball sealers are used to ensure uniform fluid distribution among clusters, a strategy that is both cost-effective and operationally beneficial. Despite these advantages, comprehending the ball sealers' dynamics within the wellbore and their plugging behavior at perforations is still challenging. This complexity results in prediction difficulties regarding their diversion efficiency. To address this, our study utilized a semi-resolved CFD-DEM model based on kernel approximation to simulate the behavior of medium-sized ball sealers in single and multiple cluster scenarios. Our findings from a single cluster scenario reveal that the plugging probability is co-determined by velocity gradients in the fluid ingestion area near the perforation, backflow region, and inertial forces of the ball sealers. As the critical flow rate is achieved, the plugging probability negatively correlated with fluid viscosity and displacement, and positively correlated with the perforation flow ratio (PFR), the difference in particle-fluid density, ball sealer’s diameter, and the ball sealer’s offset from the pipeline center. Temporary plugging control efficiency was used to evaluate the flow balance effect among multiple clusters. The results indicate that an increased number of ball sealers enhances the fault tolerance during the temporary plugging process. Nevertheless, excessive ball sealers might undermine the temporary plugging control efficiency, as perforations with lower fluid inflow rates are unexpectedly plugging. Higher differences in fluid injection rates between clusters led to increased efficiency in temporary plugging control. Premature deployment of ball sealers cannot effectively plug perforations with marginally higher fluid inflow rates, but instead accidently plug intermediate clusters with lower fluid inflow rates. These findings offer a theoretical basis for optimizing the design of ball sealers.
文摘The modern aircraft Thermal Management System(TMS)faces significant challenges due to increasing thermal loads and limited heat dissipation pathways.To optimize TMS during the conceptual design stage,the development of a modeling and simulation tool is crucial.In this study,a TMS simulation model library was created using MATLAB/SIMULINK.To simplify the complexity of the Vapor Cycle System(VCS)model,a Response Surface Model(RSM)was constructed using the Monte Carlo method and validated through simulation experiments.Taking the F-22 fighter TMS as an example,a thermal dynamic simulation model was constructed to analyze the variation of thermal response parameters in key subsystems and elucidate their coupling relationships.Furthermore,the impact of total fuel flow and ram air flow on the TMS was investigated.The findings demonstrate the existence of an optimal total fuel flow that achieves a balance between maximizing fuel heat sink utilization and minimizing bleed air demand.The adaptive distribution of fuel and ram air flow was found to enhance aircraft thermal management performance.This study contributes to improving modeling efficiency and enhancing the understanding of the thermal dynamic characteristics of TMS,thereby facilitating further optimization in aircraft TMS design.
基金The authors gratefully appreciate financial support by the National Natural Science Foundation of China(No.51875350).
文摘Superplastic forming is a practical method to manufacture complex-shaped parts of titanium alloys with large deformation.Laminated parts of dissimilar titanium alloys fabricated by superplastic forming can achieve excellent performance by combining the advantages of components.This work displays the superplastic tension behavior and microstructural evolution of dissimilar TC4/SP700 laminate prepared by the diffusion bonding process.Two titanium alloys can achieve metallurgical bonding at parameters of 800℃/1 h/5 MPa.Except for dynamic recrystallization and grain growth behaviors upon superplastic tension,stress-induced phase transformation plays an important role inαtoβphase transformation apart from the elevated temperature.The superplastic deformation can be attributed to the grain boundary sliding accommodated multiplex motion of dislocations.In addition,the retained strengths of all dissimilar TC4/SP700 laminates after superplastic deformation with different strain rates and temperatures range from 807 to 890 MPa.
基金This work was supported by National Natural Science Foundation of China (51375204), Jilin Provin- cial Science & Technology Department (20140101056JC), and Project "985" on Engineering Bionics of Jilin University. We thank Prof. Yan Shi and Dr. Jia Liu from Changchun University of Science and Technology for their help on laser heat treatment.
文摘This work investigates the potential of combining hardness gradient with surface texture (an example of bionic coupling) to improve anti-wear properties. The bionic coupling of hardness gradient and Hexagonal Texture (HT) was achieved by laser heat treatment on steel specimens with pre-engraved hexagonal surface texture. The successful establishment of decreasing hardness from surface to internal bulk was verified by hardness measurements along the depth of cross-sectioned specimens and corre- lated with the observations from metallurgical microscopy. The tribological performance of bionic coupling specimens (HT-L) was examined under dry contact condition, together with respective control specimens of individual bionic features, e.g. HT-H (of similar surface hardness generated by conventional heat treatment but without hardness gradient) and SS-L (of smooth surface treated by the same laser processing as for HT-L). It is found that HT-L not only exhibits lower friction coefficient and less friction fluctuation than HT-H and SS-L, but also demonstrates a 〉50% reduction of wear loss compared to HT-H and SS-L (0.0343 g for HT-L vs. 0.0723 g for HT-H, P〈0.001; 0.0343 g for HT-L vs. 0.0817 g for SS-L, P〈0.001). Corroboratively, observations with scanning electron microscopy revealed a relatively smooth surface for worn HT-L specimen, contrasting with the rugged and grooved surfaces of worn HT-H and SS-L specimens. These results indicate that the bionic coupling of hardness gradient to hexagonal texture can indeed improve anti-wear properties, affording a new strategy to wear and friction manage- ment.
基金supported by Key Research and Development Program of Shaanxi of China(No.2020ZDLGY01-05)。
文摘Three dimensional(3D)tubes,which possess the characteristics of space saving,lightweight and high strength,are widely used in many high-end industries such as aviation,aerospace,automobile and shipbuilding.However,when manufacturing a 3D tube in flexible bending process,springback is a big obstacle for improving the forming quality.In this paper,a new comprehensive strategy for springback control of 3D tubes is proposed.The strategy can be described as follows:(1)define the desired shape and manufacture shape;(2)optimize the manufacture shape using two tooling design methods(e.g.DA(displacement adjustment)method and B&T(bending and twisting)method presented in this paper);(3)make a discretization of the manufacture shape to acquire the optimized forming parameters.Additionally,experiment is implemented to validate the effectiveness of the new strategy.Results show that forming parameters acquired by the new strategy are partially effective.The new strategy also demonstrates that,during 3D tubes forming,the deviation caused by over-bent elements can be counteracted by the deficient-bent elements.This principle is helpful to reduce the difficulty of parameter determination in future.