期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
GDMNet: A Unified Multi-Task Network for Panoptic Driving Perception
1
作者 Yunxiang Liu Haili Ma +1 位作者 jianlin zhu Qiangbo Zhang 《Computers, Materials & Continua》 SCIE EI 2024年第8期2963-2978,共16页
To enhance the efficiency and accuracy of environmental perception for autonomous vehicles,we propose GDMNet,a unified multi-task perception network for autonomous driving,capable of performing drivable area segmentat... To enhance the efficiency and accuracy of environmental perception for autonomous vehicles,we propose GDMNet,a unified multi-task perception network for autonomous driving,capable of performing drivable area segmentation,lane detection,and traffic object detection.Firstly,in the encoding stage,features are extracted,and Generalized Efficient Layer Aggregation Network(GELAN)is utilized to enhance feature extraction and gradient flow.Secondly,in the decoding stage,specialized detection heads are designed;the drivable area segmentation head employs DySample to expand feature maps,the lane detection head merges early-stage features and processes the output through the Focal Modulation Network(FMN).Lastly,the Minimum Point Distance IoU(MPDIoU)loss function is employed to compute the matching degree between traffic object detection boxes and predicted boxes,facilitating model training adjustments.Experimental results on the BDD100K dataset demonstrate that the proposed network achieves a drivable area segmentation mean intersection over union(mIoU)of 92.2%,lane detection accuracy and intersection over union(IoU)of 75.3%and 26.4%,respectively,and traffic object detection recall and mAP of 89.7%and 78.2%,respectively.The detection performance surpasses that of other single-task or multi-task algorithm models. 展开更多
关键词 Autonomous driving multitask learning drivable area segmentation lane detection vehicle detection
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部