In order to remove hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX),the main impurity,in process of polymorphic transformation of octrahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine(HMX),the solubility ofβ-HMX and RDX in a...In order to remove hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX),the main impurity,in process of polymorphic transformation of octrahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine(HMX),the solubility ofβ-HMX and RDX in acetonitrile(ACN)+water in the temperature range of 288.15-333.15 K and in nitric acid(HNO_(3))+water in the temperature range of 298.15-333.15 K were measured by laser dynamic method.The results showed that the solubility of bothβ-HMX and RDX in binary mixed solvents increased monotonously as the temperature increase at a given solvent composition or with increasing of mole fraction of solvent(ACN and nitric acid).Solubility data were well correlated by the modified Apelblat equation,Jouyban-Acree model,Yaws equation and van't Hoff equation,and the Yaws equation achieved the best fitting results according to the relative error and the mean square error root.Furthermore,the solubility ofβ-HMX and RDX in binary mixed solvent was compared,based on the solubility difference and the solvent's own properties,the best separation degree ofβ-HMX and RDX was found when the mole fraction of nitric acid was 0.22 at room temperature,which provided data support for HMX crystallization in mixed solvent.The solubility differences between RDX andβ-HMX in mixed solvents were explained from the formation of intermolecular and intramolecular hydrogen bonds.展开更多
The distal end of the spinal cord and neuromuscular junction may develop secondary degeneration and damage following spinal cord injury because of the loss of neural connections. In this study, a rat model of spinal c...The distal end of the spinal cord and neuromuscular junction may develop secondary degeneration and damage following spinal cord injury because of the loss of neural connections. In this study, a rat model of spinal cord injury, established using a modified Allen's method, was injected with basic fibroblast growth factor solution via subarachnoid catheter. After injection, rats with spinal cord injury displayed higher scores on the Basso, Beattie and Bresnahan locomotor scale. Motor function was also well recovered and hematoxylin-eosin staining showed that spinal glial scar hyperplasia was not apparent. Additionally, anterior tibial muscle fibers slowly, but progressively, atrophied. Immu- nohistochemical staining showed that the absorbance values of calcitonin gene related peptide and acetylcholinesterase in anterior tibial muscle and spinal cord were similar, and injection of basic fi- broblast growth factor increased this absorbance. Results showed that after spinal cord injury, the distal motor neurons and motor endplate degenerated. Changes in calcitonin gene related peptide and acetylcholinesterase in the spinal cord anterior horn motor neurons and motor endplate then occurred that were consistent with this regeneration. Our findings indicate that basic fibroblast growth factor can protect the endplate through gene related peptide and acetylcholinesterase cord. attenuating the decreased expression of calcitonin n anterior horn motor neurons of the injured spinal展开更多
During mining of lower protective coal seam, a surface borehole can efficiently extract not only the pressure-relieved gas from the protected layer, but also the gas from the mining layer gob. If the distance between ...During mining of lower protective coal seam, a surface borehole can efficiently extract not only the pressure-relieved gas from the protected layer, but also the gas from the mining layer gob. If the distance between the borehole and gob is too large, the quantity of gas drained from the protected layer decreases substantially. To solve this problem, a mathematical model for extracting pressure-relieved gas from a protected coal seam using a surface borehole was established, based on the radial gas flow theory and law of conservation of energy. The key factors influencing the quantity of gas and the drainage flow network using a surface borehole were presented. The results show that the quantity of pressure-relieved gas drained from the protected layer can be significantly increased by increasing the flow resistance of the borehole bottom. Application of this method in the Wulan Coal Mine of the Shenhua Group significantly increased the flow of pure gas and the gas concentration (by factors of 1.8 and 2.0, respectively), thus demonstrating the remarkable effects of this method.展开更多
The solubility and supersolubility of 3,4-bis(3-nitrofurazan-4-yl)furoxan(DNTF) in ethanol + water at different operation were determined by laser monitoring system under atmospheric pressure to study the metastable z...The solubility and supersolubility of 3,4-bis(3-nitrofurazan-4-yl)furoxan(DNTF) in ethanol + water at different operation were determined by laser monitoring system under atmospheric pressure to study the metastable zone width(MSZW). The modified Apelblat equation was adopted to correlate the experimental solubility data, and the correlation result showed perfect consistent with the experimental data. The standard dissolution enthalpy, standard dissolution entropy and Gibbs energy were calculated according to the experimental solubility data. The effect of the cooling rate, stirring rate, temperature and the concentration of ethanol + water on the MSZW was studied. It was found that the MSZW of DNTF increased with the increasing cooling rate, decreasing temperature, decreasing stirring rate and decreasing ratio of water. And the apparent nucleation order of DNTF in ethanol + water was calculated by the relationship between the cooling rate and the MSZW.展开更多
In this study, the solubility of m-phenylenediamine in four pure solvents(methanol, ethanol, acetonitrile and water) and three binary solvent(methanol + water),(ethanol + water) and(acetonitrile + water) systems were ...In this study, the solubility of m-phenylenediamine in four pure solvents(methanol, ethanol, acetonitrile and water) and three binary solvent(methanol + water),(ethanol + water) and(acetonitrile + water) systems were determined in the temperature ranging from 278.15 K to 313.15 K by using the gravimetric method under atmospheric pressure. In the temperature range of 278.15 K to 313.15 K, the mole fraction solubility values of m-phenylenediamine in water, methanol, ethanol, and acetonitrile are 0.0093–0.1533, 0.1668–0.5589,0.1072–0.5356, and 0.1717–0.6438, respectively. At constant temperature and solvent composition, the mole fraction solubility of o-phenylenediamine in four pure solvents was increased as the following order:water b ethanol b methanol b acetonitrile;and in the three binary solvent mixtures could be ranked as follows:(ethanol + water) b(methanol + water) b(acetonitrile + water). The relationship between the experimental temperature and the solubility of m-phenylenediamine was revealed as follows: the solubility of mphenylenediamine in pure and binary solvents could be increased with the increase of temperature. The experimental values were correlated with the Jouyban–Acree model, van’t Hoff–Jouyban–Acree model, modified Apelblat–Jouyban–Acree model, Sun model and Ma model. The standard dissolution enthalpy, standard dissolution entropy and the Gibbs energy were calculated based on the experimental solubility data. In the binary solvent mixtures, the dissolution of m-phenylenediamine could be an endothermic process. The solubility data,correlation equations and thermodynamic property obtained from this study would be invoked as basic data and models regarding the purification and crystallization process of m-phenylenediamine.展开更多
Surface chemical modification of polyolefin separators for lithium ion batteries is attempted to reduce the thermal shrinkage, which is im- portant for the battery energy density. In this study, we grafted organic/ino...Surface chemical modification of polyolefin separators for lithium ion batteries is attempted to reduce the thermal shrinkage, which is im- portant for the battery energy density. In this study, we grafted organic/inorganic hybrid crosslinked networks on the separators, simply by grafting polymerization and condensation reaction. The considerable silicon-oxygen crosslinked heat-resistance networks are responsible for the reduced thermal shrinkage. The strong chemical bonds between networks and separators promise enough mechanical support even at high temperature. The shrinkage at 150 ℃ for 30 min in the mechanical direction was 38.6% and 4.6% for the pristine and present graft-modified separators, respectively. Meanwhile, the grafting organic-inorganic hybrid crosslink networks mainly occupied part of void in the internal pores of the separators, so the thicknesses of the graft-modified separators were similar with the pristine one. The half cells prepared with the modified separators exhibited almost identical electrochemical properties to those with the commercial separators, thus proving that, in order to enhance the thermal stability of lithium ion battery, this kind of grafting-modified separators may be a better alternative to conventional silica nanoparticle layers-coated polyolefin separators.展开更多
Transition-metal phosphides(TMPs)with high catalytic activity are widely used in the design of electrodes for water splitting.However,a major challenge is how to achieve the trade-off between activity and stability of...Transition-metal phosphides(TMPs)with high catalytic activity are widely used in the design of electrodes for water splitting.However,a major challenge is how to achieve the trade-off between activity and stability of TMPs.Herein,a novel method for synthesizing CoP nanoparticles encapsu-lated in a rich-defect carbon shell(CoP/DCS)is developed through the self-assembly of modified polycyclic aromatic molecules.The graft and removal of high-activity C-N bonds of aromatic molecules render the controllable design of crystallite defects of carbon shell.The density functional theory calculation indicates that the carbon defects with unpaired electrons could effectively tailor the band structure of CoP.Benefiting from the improved activity and corrosion resistance,the CoP/DCS delivers outstanding difunctional hydrogen evolution reaction(88 mV)and oxygen evolution reaction(251 mV)performances at 10 mA cm^(−2)current density.Furthermore,the coupled water electrolyzer with CoP/DCS as both the cathode and anode presents ultralow cell voltages of 1.49 V to achieve 10 mA cm^(−2)with long-time stability.This strategy to improve TMPs electrocatalyst with rich-DCS and heterogeneous structure will inspire the design of other transition metal compound electrocatalysts for water splitting.展开更多
In this paper,the solubility of 4-nitroimidazole in twelve pure solvents(toluene,benzene,1,4-dioxane,acetonitrile,ethyl acetate,acetone,GBL,ethanol,methanol,n-butanol,DMF and NMP)were determined by using the laser mon...In this paper,the solubility of 4-nitroimidazole in twelve pure solvents(toluene,benzene,1,4-dioxane,acetonitrile,ethyl acetate,acetone,GBL,ethanol,methanol,n-butanol,DMF and NMP)were determined by using the laser monitoring system from 278.15 K to 323.15 K under 101.1 k Pa,which are 0.00018–0.00070,0.00021–0.00073,0.00034–0.00092,0.00038–0.00142,0.00047–0.00120,0.00126–0.00303,0.00225–0.00517,0.00310–0.00724,0.00467–0.00982,0.00453–0.01940,0.01947–0.04652,and 0.04670–0.07452,respectively.At constant temperature,the mole fraction solubility of 4-nitroimidazole were increased as the following order:toluene<benzene<1,4-dioxane<(ethyl acetate or acetonitrile)<acetone<GBL<ethanol<(methanol or nbutanol)<DMF<NMP,and the solubility of 4-nitroimidazole in(ethyl acetate,acetonitrile)and(methanol,n-butanol)had an intersection point at 297.55 K and 281.85 K,respectively.The solubility of 4-nitroimidazole could be increased with increasing temperature in twelve pure solvents.The ideal model,modified Apelblat equation,polynomial empirical equation,andλh equation were used to correlate the experimental values.The experimental solubility values were employed to calculate the standard dissolution enthalpy,standard dissolution entropy and Gibbs energy.The dissolution of 4-nitroimidazole could be an endothermic process in twelve pure solvents.The determination and fitting solubility of 4-nitroimidazole have important guiding significance for the purification and crystallization of its preparation process.展开更多
2,4(5)-Dinitroimidazole(2,4(5)-DNI)is an important organic intermediate,and itself can also be used for energetic material.In this work,the solubility of 2,4(5)-DNI in(methanol+water,acetonitrile+water,acetone+water)b...2,4(5)-Dinitroimidazole(2,4(5)-DNI)is an important organic intermediate,and itself can also be used for energetic material.In this work,the solubility of 2,4(5)-DNI in(methanol+water,acetonitrile+water,acetone+water)binary solvents were measured by using a dynamic test method from 278.15 K to 323.15 K under 101.1 k Pa.The Jouyban–Acree model,van't Hoff–Jouyban–Acree model,Apelblat–Jouyb an–Acree model,Ma model,and Sun model were used to correlate the experimental data.The values of relative average deviation(RAD)and root-mean-square deviation(RMSD)were very small,indicating that the error between the experimental value and the correlated value was very small.The thermodynamic parameters such as dissolution enthalpy,dissolution entropy and Gibbs energy were calculated based on solubility data.High-purity of 2,4(5)-DNI was efficiently obtained by using cooling and dilution crystallization method.展开更多
The lithium dendrite and parasitic reactions are two major challenges for lithium(Li)metal anode—the most promising anode materials for high-energy-density batteries.In this work,both the dendrite and parasitic react...The lithium dendrite and parasitic reactions are two major challenges for lithium(Li)metal anode—the most promising anode materials for high-energy-density batteries.In this work,both the dendrite and parasitic reactions that occurred between the liquid electrolyte and Li-metal anode could be largely inhibited by regulating the Li+-solvation structure.The saturated Li+-solvation species exist in commonly used LiPF 6 liquid electrolyte that needs extra energy to desolvation during Li-electrodeposition.Partial solvation induced high-energy state Li-ions would be more energy favorable during the electron-reduction process,dominating the competition with solvent reduction reactions.The Li-symmetric cells that are cycling at higher temperatures show better performance;the cycled lithium metal anode with metallic lustre and the dendrite-free surface is observed.Theoretical calculation and experimental measurements reveal the existence of high-energy state Li+-solvates species,and their concentration increases with temperature.This study provides insight into the Li+-solvation structure and its electrodeposition characteristics.展开更多
Urban sediments have rapidly increased in recent years around the world,and their effective management has become an important problem.To remove heavy metals from stormwater runoff and use sediments as a resource,a no...Urban sediments have rapidly increased in recent years around the world,and their effective management has become an important problem.To remove heavy metals from stormwater runoff and use sediments as a resource,a novel ceramsite was developed using sewer pipe sediments(SPS),river bed sediments(RBS),urban water supply treatment sludge(WSTS),and wastewater treatment plant excess sludge(WWTS).The optimal composition was determined based on the Brunauer–Emmett–Teller specific surface area and an orthogonal test design.The adsorption characteristics of the novel ceramsite for dissolved heavy metals(Cu^(2+)and Cd^(2+)) were investigated through adsorption isotherms and kinetic experiments at(25±1)℃.Both Cu^(2+) and Cd^(2+) were effectively removed by the novel ceramsite,and their equilibrium adsorption was 4.96 mg·g^(-1) and 3.84 mg·g^(-1),respectively.Langmuir isotherms and a pseudo-first-order kinetic equation described the adsorption process better than other techniques.Characterization analysis of the ceramsite composition before and after heavy metal adsorption showed that the Cu^(2+) and Cd^(2+) contents in the ceramsite increased after adsorption.The results revealed that adsorption is both a physical and chemical process,and that ceramsite can be used as a bioretention medium to remove heavy metals from stormwater runoff while simultaneously converting problematic urban sediments into a resource.展开更多
In order to theoretically study the growth morphology of dihydroxylammonium 5,5’-bistetrazole-1,1’-dio late(TKX-50)crystal in different solvent systems,crystal–solvent models were established,and then molecular dyn...In order to theoretically study the growth morphology of dihydroxylammonium 5,5’-bistetrazole-1,1’-dio late(TKX-50)crystal in different solvent systems,crystal–solvent models were established,and then molecular dynamics(MD)methods were adopted as a means to simulate particle motion.Modified attachment energy(MAE)model was employed to calculate the growth morphology of TKX-50.The simulation results demonstrate that COMPASS force field and RESP charge are suitable for molecular dynamics simulation of TKX-50.The morphologically dominant growth surfaces of TKX-50 in vacuum are(020),(011),(11–1),(100)and(120),respectively.In water(H_(2)O)and N,N-dimethylformamide(DMF)solvents,the(11–1)face is the largest in the habit face,the growth rate of(020)face becomes faster.With the increase of temperature,the aspect ratios of TKX-50 crystal in DMF solvent increase,and the areas of the(120)faces decrease.In ethylene glycol/H_(2)O mixed solvent system with volume ratio of 1/1,aspect ratio of TKX-50 is relatively small.In formic acid/H_(2)O mixed solvents with different volume ratios(1/4,1/3,1/2,1/1 and 2/1),aspect ratio of TKX-50 is relatively small when volume ratio is 1/2.展开更多
2,4(5)-Dinitroimidazole(2,4(5)-DNI) is an important energetic material, and it is also an important precursor for the preparation of drugs and energetic materials. In this study, the solubility of 2,4(5)-DNI in eleven...2,4(5)-Dinitroimidazole(2,4(5)-DNI) is an important energetic material, and it is also an important precursor for the preparation of drugs and energetic materials. In this study, the solubility of 2,4(5)-DNI in eleven pure solvents(chlorobenzene, benzene, 1,2-dichloroethane, toluene, water, isopropyl alcohol,ethyl acetate, acetonitrile, methanol, 1,4-dioxane and acetone) were measured by using a dynamic test method from 278.15 K to 323.15 K under 101.1 kPa. Four solubility models were used to fit the experimental data, which were ideal model, modified Apelblat equation, polynomial empirical equation, and λh equation. Meanwhile, the relative average deviation and root-mean-square deviation between the experimental data and the fitted data were also calculated. Furthermore, the three thermodynamic parameters,i.e., dissolution enthalpy, dissolution entropy and Gibbs energy were obtained based on solubility data.Finally, the crude product of 2,4(5)-DNI was crystallized with acetone as solvent, and the purity of the crystalline product was greater than 99.5%.展开更多
Boron-doped Ketjenblack is attempted as cathode catalyst for non-aqueous rechargeable Li–O2 batteries. The boron-doped Ketjenblack delivers an extremely high discharge capacity of 7193 m Ah/g at a current density of ...Boron-doped Ketjenblack is attempted as cathode catalyst for non-aqueous rechargeable Li–O2 batteries. The boron-doped Ketjenblack delivers an extremely high discharge capacity of 7193 m Ah/g at a current density of 0.1 m A/cm2, and the capacity is about 2.3 times as that of the pristine KB. When the batteries are cycled with different restricted capacity, the boron-doped Ketjenblack based cathodes exhibits higher discharge platform and longer cycle life than Ketjenblack based cathodes. Additionally, the boron-doped Ketjenblack also shows a superior electrocatalytic activity for oxygen reduction in 0.1 mol/L KOH aqueous solution. The improvement in catalytic activity results from the defects and activation sites introduced by boron doping.展开更多
Adsorbents with simple preparation and high surface area have become increasingly prevalent for the removal of organic contaminants.Herein,a carbon nanoplate codoped by Co and N elements with abundant ordered mesoporo...Adsorbents with simple preparation and high surface area have become increasingly prevalent for the removal of organic contaminants.Herein,a carbon nanoplate codoped by Co and N elements with abundant ordered mesoporous(Co/N-MCs)was applied as an adsorbent for tetracycline removal.Taking integrated advantages of ordered mesopores on carbon-based structures and N-doping inducing the strengthenedπ–πdispersion and generation of pyridinic N,as well as cobaltic nanoparticles embedded in carbon nanoplates,the Co/N-MCs was tailored for high efficiently absorbing tetracycline viaπ-πinteraction,Lewis acid-base interaction,metal complexation and electrostatic attraction.The Co/N-MCs had the advantages of high surface area,porous structure,plenty adsorption sites,and easy separation.As such,the as-prepared Co/N-MCs adsorbents significantly enhanced tetracycline removal performance with a maximum adsorption capacity of 344.83 mg·g^(-1) at pH 6 and good reusability,which was finally applied to removal tetracycline from tap water sample.Furthermore,the adsorption process towards tetracycline hydrochloride could be well attributed to the pseudo-second-order kinetic and Langmuir isotherm models.Compared with traditional carbon-based adsorbents,it owns a simpler synthesis method and a higher adsorption capacity,as well as it is a promising candidate for water purification.展开更多
The equilibrium solubility of 2,4-diaminobenzenesulfonic acid and super solubility as well as metastable zone width were measured in(H_(2)SO_(4)+H_(2)O) system by the laser dynamic method at elevate temperature range ...The equilibrium solubility of 2,4-diaminobenzenesulfonic acid and super solubility as well as metastable zone width were measured in(H_(2)SO_(4)+H_(2)O) system by the laser dynamic method at elevate temperature range from 298.15 K to 338.15 K.2,4-Diaminobenzenesulfonic acid solubility dependence on the temperature and solvent composition were correlated by the modified Apelblat equation,(CNIBS)/Redlich-Kister model and Jouyban-Acree model.The correlated results by three correlation models were in good accord with the experimental values according to relative average deviations(RD),root-mean-square deviations(RMSD),and correlation coefficients(R^(2)).The metastable zone width increased with temperature and sulfuric acid content.The dissolution enthalpy,dissolution entropy and the Gibbs energy were calculated from the experimental values,which indicated that dissolution process of the 2,4-diaminobenzenesulfonic acid was endothermic.The solubility and calculation models of 2,4-diaminobenzenesulfonic acid in(sulfuric acid+water)system could provide the basic data to the crystallization and purifying of the 2,4-diaminobenzenesulfonic acid.展开更多
To improve the adsorption and catalytic performance of heterogeneous Fenton-like catalysts for oil wastes,amino acids were used to modify nanoscale zero-valent iron(AA@Fe^(0)),which were applied in the Fenton-like deg...To improve the adsorption and catalytic performance of heterogeneous Fenton-like catalysts for oil wastes,amino acids were used to modify nanoscale zero-valent iron(AA@Fe^(0)),which were applied in the Fenton-like degradation of organic solvents(tributyl phosphate and n-dodecane,named TBP and DD).Twelve amino acids,i.e.,glycine(Gly),alanine(Ala),leucine(Leu),proline(Pro),phenylalanine(Phe),methionine(Met),cysteine(Cys),asparagine(Asn),serine(Ser),glutamic acid(Glu),lysine(Lys)and arginine(Arg),were selected and calculated by density functional theory(DFT).The optimized structure,charge distribution,the highest occupied molecular orbital(HOMO),the lowest unoccupied molecular orbital(LUMO),interaction region indicator(IRI)isosurface map and adsorption energy of AA@Fe^(0),AA@Fe^(0)-TBP and AA@Fe^(0)-DD were studied,which indicated that Fe is more likely to approach and charge transfer with-COO and-NH_(3) on theα-carbon of amino acids.There is strong attraction between Fe and–COO,and Van der Waals force between Fe and-NH_(3),respectively.In the interaction of AA@Fe^(0)with TBP and DD,Van der Waal force plays an important role.AA@Fe^(0)was synthesized in laboratory and characterized to investigate physicochemical properties.In Fenton-like degradation of organic solvents,the change of COD in water phase during the degradation process as well as the volume of the organic phase after the reaction were investigated.The results of calculations combined with experiments showed that Ser-modified Fe^(0)performed the best in these amino acids,with 98%removal of organic solvents.A possible catalytic mechanism was proposed in which amino acids acted a linking role between Fe and organic solvents,activating H_(2)O_(2)to generate hydroxyl radicals for the degradation of organic solvents.展开更多
Background:Lymph node staging of prostate cancer(PCa)is important for planning and monitoring of treatment.^(18)F-prostate specific membrane antigen positron emission tomography/computerized tomography(^(18)F-PSMA PET...Background:Lymph node staging of prostate cancer(PCa)is important for planning and monitoring of treatment.^(18)F-prostate specific membrane antigen positron emission tomography/computerized tomography(^(18)F-PSMA PET/CT)has several advantages over^(68)Ga-PSMA PET/CT,but its diagnostic value requires further investigation.This meta-analysis focused on establishing the diagnostic utility of^(18)F-PSMA PET/CT for lymph node staging in medium/high-risk PCa.Methods:We searched the EMBASE,PubMed,Cochrane library,and Web of Science databases from inception to October 1,2022.Prostate cancer,^(18)F,lymph node,PSMA,and PET/CT were used as search terms and the language was limited to English.We additionally performed a manual search using the reference lists of key articles.Patients and study characteristics were extracted and the QUADAS-2 tool was employed to evaluate the quality of included studies.Sensitivity,specificity,the positive and negative likelihood ratio(PLR and NLR),diagnostic odds ratio(DOR),area under the curve(AUC),and 95%confidence interval(CI)were used to evaluate the diagnostic value of^(18)F-PSMA PET/CT.Stata 17 software was employed for calculation and statistical analyses.Results:A total of eight diagnostic tests including 734 individual samples and 6346 lymph nodes were included in this meta-analysis.At the patient level,the results of each consolidated summary were as follows:sensitivity of 0.57(95%CI 0.39-0.73),specificity of 0.95(95%CI 0.92-0.97),PLR of 11.2(95%CI 6.6-19.0),NLR of 0.46(95%CI 0.31-0.68),DOR of 25(95%CI 11-54),and AUC of 0.94(95%CI 0.92-0.96).At the lesion level,the results of each consolidated summary were as follows:sensitivity of 0.40(95%CI 0.21-0.62),specificity of 0.99(95%CI 0.95-1.00),PLR of 40.0(95%CI 9.1-176.3),NLR of 0.61(95%CI 0.42-0.87),DOR of 66(95%CI 14-311),and AUC of 0.86(95%CI 0.83-0.89).Conclusions:^(18)F-PSMA PET/CT showed moderate sensitivity but high specificity in lymph node staging of medium/high-risk PCa.The diagnostic efficacy was almost equivalent to that reported for^(68)Ga-PSMA PET/CT.Registration:International Prospective Register of Systematic Reviews(PROSPERO),No.CRD42023391101.展开更多
Ocean wave energy is a significant and promising source of renewable energy.However,the energy harvesting is challenging due to the multi-directional nature of waves.This paper proposes a magnetic-field-assisted tribo...Ocean wave energy is a significant and promising source of renewable energy.However,the energy harvesting is challenging due to the multi-directional nature of waves.This paper proposes a magnetic-field-assisted triboelectric nanogenerator(MFATENG)for harvesting multi-directional wave energy.By incorporating a magnetic field,the planar motion of the pendulum is converted into spatial motion,increasing the triggering of multilayered TENG(M-TENG)and enhancing the output energy of the MFA-TENG.Experimental results demonstrate that the output energy of the MFA-TENG is increased by 73%by utilizing the magnetic field.Moreover,a spring model based on the origami-structured M-TENG is established to analyze the effect of different equivalent stiffnesses on the performance of the M-TENG,aiming to obtain optimal output performance.The results showcase the impressive output performance of the M-TENG,generating outputs of 250 V,18μA,and 255 nC.Furthermore,the proposed MFA-TENG effectively harvests multi-directional wave energy under water-wave driven conditions.This study significantly enhances the ability of the MFA-TENG to harvest multi-directional wave energy and presents a promising approach for self-powered marine monitoring in the future.展开更多
文摘In order to remove hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX),the main impurity,in process of polymorphic transformation of octrahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine(HMX),the solubility ofβ-HMX and RDX in acetonitrile(ACN)+water in the temperature range of 288.15-333.15 K and in nitric acid(HNO_(3))+water in the temperature range of 298.15-333.15 K were measured by laser dynamic method.The results showed that the solubility of bothβ-HMX and RDX in binary mixed solvents increased monotonously as the temperature increase at a given solvent composition or with increasing of mole fraction of solvent(ACN and nitric acid).Solubility data were well correlated by the modified Apelblat equation,Jouyban-Acree model,Yaws equation and van't Hoff equation,and the Yaws equation achieved the best fitting results according to the relative error and the mean square error root.Furthermore,the solubility ofβ-HMX and RDX in binary mixed solvent was compared,based on the solubility difference and the solvent's own properties,the best separation degree ofβ-HMX and RDX was found when the mole fraction of nitric acid was 0.22 at room temperature,which provided data support for HMX crystallization in mixed solvent.The solubility differences between RDX andβ-HMX in mixed solvents were explained from the formation of intermolecular and intramolecular hydrogen bonds.
基金supported by a grant from the Hunan Provincial Science and Technology Ministry in China, No. 2012SK3222Funding for New Teachers by the Ministry of Education in China, No. 200805331166
文摘The distal end of the spinal cord and neuromuscular junction may develop secondary degeneration and damage following spinal cord injury because of the loss of neural connections. In this study, a rat model of spinal cord injury, established using a modified Allen's method, was injected with basic fibroblast growth factor solution via subarachnoid catheter. After injection, rats with spinal cord injury displayed higher scores on the Basso, Beattie and Bresnahan locomotor scale. Motor function was also well recovered and hematoxylin-eosin staining showed that spinal glial scar hyperplasia was not apparent. Additionally, anterior tibial muscle fibers slowly, but progressively, atrophied. Immu- nohistochemical staining showed that the absorbance values of calcitonin gene related peptide and acetylcholinesterase in anterior tibial muscle and spinal cord were similar, and injection of basic fi- broblast growth factor increased this absorbance. Results showed that after spinal cord injury, the distal motor neurons and motor endplate degenerated. Changes in calcitonin gene related peptide and acetylcholinesterase in the spinal cord anterior horn motor neurons and motor endplate then occurred that were consistent with this regeneration. Our findings indicate that basic fibroblast growth factor can protect the endplate through gene related peptide and acetylcholinesterase cord. attenuating the decreased expression of calcitonin n anterior horn motor neurons of the injured spinal
文摘During mining of lower protective coal seam, a surface borehole can efficiently extract not only the pressure-relieved gas from the protected layer, but also the gas from the mining layer gob. If the distance between the borehole and gob is too large, the quantity of gas drained from the protected layer decreases substantially. To solve this problem, a mathematical model for extracting pressure-relieved gas from a protected coal seam using a surface borehole was established, based on the radial gas flow theory and law of conservation of energy. The key factors influencing the quantity of gas and the drainage flow network using a surface borehole were presented. The results show that the quantity of pressure-relieved gas drained from the protected layer can be significantly increased by increasing the flow resistance of the borehole bottom. Application of this method in the Wulan Coal Mine of the Shenhua Group significantly increased the flow of pure gas and the gas concentration (by factors of 1.8 and 2.0, respectively), thus demonstrating the remarkable effects of this method.
文摘The solubility and supersolubility of 3,4-bis(3-nitrofurazan-4-yl)furoxan(DNTF) in ethanol + water at different operation were determined by laser monitoring system under atmospheric pressure to study the metastable zone width(MSZW). The modified Apelblat equation was adopted to correlate the experimental solubility data, and the correlation result showed perfect consistent with the experimental data. The standard dissolution enthalpy, standard dissolution entropy and Gibbs energy were calculated according to the experimental solubility data. The effect of the cooling rate, stirring rate, temperature and the concentration of ethanol + water on the MSZW was studied. It was found that the MSZW of DNTF increased with the increasing cooling rate, decreasing temperature, decreasing stirring rate and decreasing ratio of water. And the apparent nucleation order of DNTF in ethanol + water was calculated by the relationship between the cooling rate and the MSZW.
基金financially supported by the North Chemical Group Youth Science and Technology Innovation Foundation of China(QKCZ201627)
文摘In this study, the solubility of m-phenylenediamine in four pure solvents(methanol, ethanol, acetonitrile and water) and three binary solvent(methanol + water),(ethanol + water) and(acetonitrile + water) systems were determined in the temperature ranging from 278.15 K to 313.15 K by using the gravimetric method under atmospheric pressure. In the temperature range of 278.15 K to 313.15 K, the mole fraction solubility values of m-phenylenediamine in water, methanol, ethanol, and acetonitrile are 0.0093–0.1533, 0.1668–0.5589,0.1072–0.5356, and 0.1717–0.6438, respectively. At constant temperature and solvent composition, the mole fraction solubility of o-phenylenediamine in four pure solvents was increased as the following order:water b ethanol b methanol b acetonitrile;and in the three binary solvent mixtures could be ranked as follows:(ethanol + water) b(methanol + water) b(acetonitrile + water). The relationship between the experimental temperature and the solubility of m-phenylenediamine was revealed as follows: the solubility of mphenylenediamine in pure and binary solvents could be increased with the increase of temperature. The experimental values were correlated with the Jouyban–Acree model, van’t Hoff–Jouyban–Acree model, modified Apelblat–Jouyban–Acree model, Sun model and Ma model. The standard dissolution enthalpy, standard dissolution entropy and the Gibbs energy were calculated based on the experimental solubility data. In the binary solvent mixtures, the dissolution of m-phenylenediamine could be an endothermic process. The solubility data,correlation equations and thermodynamic property obtained from this study would be invoked as basic data and models regarding the purification and crystallization process of m-phenylenediamine.
基金supported by the MOST(Grant No.2013CB934000,2014DFG71590,2011CB935902,2010DFA72760,2011CB711202,2013AA050903,2011AA11A257 and 2011AA11A254)China Postdoctoral Science Foundation(Grant No.2013M530599 and 2013M540929)+2 种基金Tsinghua University Initiative Scientific Research Program(Grant No.2010THZ08116,2011THZ08139,2011THZ01004 and 2012THZ08129)the State Key Laboratory of Automotive Safety and Energy(No.ZZ2012-011)Suzhou(Wujiang)Automotive Research Institute,Tsinghua University,Project No.2012WJ-A-01
文摘Surface chemical modification of polyolefin separators for lithium ion batteries is attempted to reduce the thermal shrinkage, which is im- portant for the battery energy density. In this study, we grafted organic/inorganic hybrid crosslinked networks on the separators, simply by grafting polymerization and condensation reaction. The considerable silicon-oxygen crosslinked heat-resistance networks are responsible for the reduced thermal shrinkage. The strong chemical bonds between networks and separators promise enough mechanical support even at high temperature. The shrinkage at 150 ℃ for 30 min in the mechanical direction was 38.6% and 4.6% for the pristine and present graft-modified separators, respectively. Meanwhile, the grafting organic-inorganic hybrid crosslink networks mainly occupied part of void in the internal pores of the separators, so the thicknesses of the graft-modified separators were similar with the pristine one. The half cells prepared with the modified separators exhibited almost identical electrochemical properties to those with the commercial separators, thus proving that, in order to enhance the thermal stability of lithium ion battery, this kind of grafting-modified separators may be a better alternative to conventional silica nanoparticle layers-coated polyolefin separators.
基金Youth Innovation Promotion Association of the Chinese Academy of Sciences,Grant/Award Number:2021174National Natural Science Foundation of China,Grant/Award Number:51902326Natural Science Foundation of Shanxi Province,Grant/Award Numbers:201901D211588,20210302124421。
文摘Transition-metal phosphides(TMPs)with high catalytic activity are widely used in the design of electrodes for water splitting.However,a major challenge is how to achieve the trade-off between activity and stability of TMPs.Herein,a novel method for synthesizing CoP nanoparticles encapsu-lated in a rich-defect carbon shell(CoP/DCS)is developed through the self-assembly of modified polycyclic aromatic molecules.The graft and removal of high-activity C-N bonds of aromatic molecules render the controllable design of crystallite defects of carbon shell.The density functional theory calculation indicates that the carbon defects with unpaired electrons could effectively tailor the band structure of CoP.Benefiting from the improved activity and corrosion resistance,the CoP/DCS delivers outstanding difunctional hydrogen evolution reaction(88 mV)and oxygen evolution reaction(251 mV)performances at 10 mA cm^(−2)current density.Furthermore,the coupled water electrolyzer with CoP/DCS as both the cathode and anode presents ultralow cell voltages of 1.49 V to achieve 10 mA cm^(−2)with long-time stability.This strategy to improve TMPs electrocatalyst with rich-DCS and heterogeneous structure will inspire the design of other transition metal compound electrocatalysts for water splitting.
基金supported by the Military Chemistry and Pyrotechnics National Defense Specialty Fund for North University of China。
文摘In this paper,the solubility of 4-nitroimidazole in twelve pure solvents(toluene,benzene,1,4-dioxane,acetonitrile,ethyl acetate,acetone,GBL,ethanol,methanol,n-butanol,DMF and NMP)were determined by using the laser monitoring system from 278.15 K to 323.15 K under 101.1 k Pa,which are 0.00018–0.00070,0.00021–0.00073,0.00034–0.00092,0.00038–0.00142,0.00047–0.00120,0.00126–0.00303,0.00225–0.00517,0.00310–0.00724,0.00467–0.00982,0.00453–0.01940,0.01947–0.04652,and 0.04670–0.07452,respectively.At constant temperature,the mole fraction solubility of 4-nitroimidazole were increased as the following order:toluene<benzene<1,4-dioxane<(ethyl acetate or acetonitrile)<acetone<GBL<ethanol<(methanol or nbutanol)<DMF<NMP,and the solubility of 4-nitroimidazole in(ethyl acetate,acetonitrile)and(methanol,n-butanol)had an intersection point at 297.55 K and 281.85 K,respectively.The solubility of 4-nitroimidazole could be increased with increasing temperature in twelve pure solvents.The ideal model,modified Apelblat equation,polynomial empirical equation,andλh equation were used to correlate the experimental values.The experimental solubility values were employed to calculate the standard dissolution enthalpy,standard dissolution entropy and Gibbs energy.The dissolution of 4-nitroimidazole could be an endothermic process in twelve pure solvents.The determination and fitting solubility of 4-nitroimidazole have important guiding significance for the purification and crystallization of its preparation process.
文摘2,4(5)-Dinitroimidazole(2,4(5)-DNI)is an important organic intermediate,and itself can also be used for energetic material.In this work,the solubility of 2,4(5)-DNI in(methanol+water,acetonitrile+water,acetone+water)binary solvents were measured by using a dynamic test method from 278.15 K to 323.15 K under 101.1 k Pa.The Jouyban–Acree model,van't Hoff–Jouyban–Acree model,Apelblat–Jouyb an–Acree model,Ma model,and Sun model were used to correlate the experimental data.The values of relative average deviation(RAD)and root-mean-square deviation(RMSD)were very small,indicating that the error between the experimental value and the correlated value was very small.The thermodynamic parameters such as dissolution enthalpy,dissolution entropy and Gibbs energy were calculated based on solubility data.High-purity of 2,4(5)-DNI was efficiently obtained by using cooling and dilution crystallization method.
基金This work was funded by the National Natural Science Foundation of China (52073161 and U1564205)the Ministry of Science and Technology of China (No.2019YFE0100200 and 2019YFA0705703)+1 种基金The authors also thank Joint Work Plan for Research Projects under the Clean Vehicles Consortium at U.S.and China-Clean Energy Research Center (CERC-CVC2.0,2016-2020)thank Tsinghua University-Zhangjiagang Joint Institute for Hydrogen Energy and Lithium Ion Battery Technology.
文摘The lithium dendrite and parasitic reactions are two major challenges for lithium(Li)metal anode—the most promising anode materials for high-energy-density batteries.In this work,both the dendrite and parasitic reactions that occurred between the liquid electrolyte and Li-metal anode could be largely inhibited by regulating the Li+-solvation structure.The saturated Li+-solvation species exist in commonly used LiPF 6 liquid electrolyte that needs extra energy to desolvation during Li-electrodeposition.Partial solvation induced high-energy state Li-ions would be more energy favorable during the electron-reduction process,dominating the competition with solvent reduction reactions.The Li-symmetric cells that are cycling at higher temperatures show better performance;the cycled lithium metal anode with metallic lustre and the dendrite-free surface is observed.Theoretical calculation and experimental measurements reveal the existence of high-energy state Li+-solvates species,and their concentration increases with temperature.This study provides insight into the Li+-solvation structure and its electrodeposition characteristics.
基金Supported by the Training Project of Beijing Young Talents(2114751406)the Beijing Social Science Fund(15JGB052)+1 种基金the Beijing Municipal Science and Technology Project(D161100005916004)Beijing outstanding talent project for excellent youth team(2015000026833T0000)
文摘Urban sediments have rapidly increased in recent years around the world,and their effective management has become an important problem.To remove heavy metals from stormwater runoff and use sediments as a resource,a novel ceramsite was developed using sewer pipe sediments(SPS),river bed sediments(RBS),urban water supply treatment sludge(WSTS),and wastewater treatment plant excess sludge(WWTS).The optimal composition was determined based on the Brunauer–Emmett–Teller specific surface area and an orthogonal test design.The adsorption characteristics of the novel ceramsite for dissolved heavy metals(Cu^(2+)and Cd^(2+)) were investigated through adsorption isotherms and kinetic experiments at(25±1)℃.Both Cu^(2+) and Cd^(2+) were effectively removed by the novel ceramsite,and their equilibrium adsorption was 4.96 mg·g^(-1) and 3.84 mg·g^(-1),respectively.Langmuir isotherms and a pseudo-first-order kinetic equation described the adsorption process better than other techniques.Characterization analysis of the ceramsite composition before and after heavy metal adsorption showed that the Cu^(2+) and Cd^(2+) contents in the ceramsite increased after adsorption.The results revealed that adsorption is both a physical and chemical process,and that ceramsite can be used as a bioretention medium to remove heavy metals from stormwater runoff while simultaneously converting problematic urban sediments into a resource.
基金supported by Fundamental Research Program of Shanxi Province(20210302123055)and(201801D221035).
文摘In order to theoretically study the growth morphology of dihydroxylammonium 5,5’-bistetrazole-1,1’-dio late(TKX-50)crystal in different solvent systems,crystal–solvent models were established,and then molecular dynamics(MD)methods were adopted as a means to simulate particle motion.Modified attachment energy(MAE)model was employed to calculate the growth morphology of TKX-50.The simulation results demonstrate that COMPASS force field and RESP charge are suitable for molecular dynamics simulation of TKX-50.The morphologically dominant growth surfaces of TKX-50 in vacuum are(020),(011),(11–1),(100)and(120),respectively.In water(H_(2)O)and N,N-dimethylformamide(DMF)solvents,the(11–1)face is the largest in the habit face,the growth rate of(020)face becomes faster.With the increase of temperature,the aspect ratios of TKX-50 crystal in DMF solvent increase,and the areas of the(120)faces decrease.In ethylene glycol/H_(2)O mixed solvent system with volume ratio of 1/1,aspect ratio of TKX-50 is relatively small.In formic acid/H_(2)O mixed solvents with different volume ratios(1/4,1/3,1/2,1/1 and 2/1),aspect ratio of TKX-50 is relatively small when volume ratio is 1/2.
文摘2,4(5)-Dinitroimidazole(2,4(5)-DNI) is an important energetic material, and it is also an important precursor for the preparation of drugs and energetic materials. In this study, the solubility of 2,4(5)-DNI in eleven pure solvents(chlorobenzene, benzene, 1,2-dichloroethane, toluene, water, isopropyl alcohol,ethyl acetate, acetonitrile, methanol, 1,4-dioxane and acetone) were measured by using a dynamic test method from 278.15 K to 323.15 K under 101.1 kPa. Four solubility models were used to fit the experimental data, which were ideal model, modified Apelblat equation, polynomial empirical equation, and λh equation. Meanwhile, the relative average deviation and root-mean-square deviation between the experimental data and the fitted data were also calculated. Furthermore, the three thermodynamic parameters,i.e., dissolution enthalpy, dissolution entropy and Gibbs energy were obtained based on solubility data.Finally, the crude product of 2,4(5)-DNI was crystallized with acetone as solvent, and the purity of the crystalline product was greater than 99.5%.
基金supported by the MOST(Grant nos.2013CB934000and 2014DFG71590)Beijing Municipal Program(Grant no.YETP0157)
文摘Boron-doped Ketjenblack is attempted as cathode catalyst for non-aqueous rechargeable Li–O2 batteries. The boron-doped Ketjenblack delivers an extremely high discharge capacity of 7193 m Ah/g at a current density of 0.1 m A/cm2, and the capacity is about 2.3 times as that of the pristine KB. When the batteries are cycled with different restricted capacity, the boron-doped Ketjenblack based cathodes exhibits higher discharge platform and longer cycle life than Ketjenblack based cathodes. Additionally, the boron-doped Ketjenblack also shows a superior electrocatalytic activity for oxygen reduction in 0.1 mol/L KOH aqueous solution. The improvement in catalytic activity results from the defects and activation sites introduced by boron doping.
基金financed by Grants from National Science Foundation of China(21675127,31901794)Chinese Universities Scientific Fund(2452018083)+3 种基金the National Postdoctoral Program for Innovative Talents(BX20180263)the Tang Scholar by Cyrus Tang Foundation,the Young Talent Fund of University Association for Science and Technology in Shaanxi,China(2019-02-03)the Development Project of Qinghai Provincial Key Laboratory(2017-ZJY10)the Key Research and Development Program of Shaanxi Province(2019NY-111)。
文摘Adsorbents with simple preparation and high surface area have become increasingly prevalent for the removal of organic contaminants.Herein,a carbon nanoplate codoped by Co and N elements with abundant ordered mesoporous(Co/N-MCs)was applied as an adsorbent for tetracycline removal.Taking integrated advantages of ordered mesopores on carbon-based structures and N-doping inducing the strengthenedπ–πdispersion and generation of pyridinic N,as well as cobaltic nanoparticles embedded in carbon nanoplates,the Co/N-MCs was tailored for high efficiently absorbing tetracycline viaπ-πinteraction,Lewis acid-base interaction,metal complexation and electrostatic attraction.The Co/N-MCs had the advantages of high surface area,porous structure,plenty adsorption sites,and easy separation.As such,the as-prepared Co/N-MCs adsorbents significantly enhanced tetracycline removal performance with a maximum adsorption capacity of 344.83 mg·g^(-1) at pH 6 and good reusability,which was finally applied to removal tetracycline from tap water sample.Furthermore,the adsorption process towards tetracycline hydrochloride could be well attributed to the pseudo-second-order kinetic and Langmuir isotherm models.Compared with traditional carbon-based adsorbents,it owns a simpler synthesis method and a higher adsorption capacity,as well as it is a promising candidate for water purification.
基金supported by Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi。
文摘The equilibrium solubility of 2,4-diaminobenzenesulfonic acid and super solubility as well as metastable zone width were measured in(H_(2)SO_(4)+H_(2)O) system by the laser dynamic method at elevate temperature range from 298.15 K to 338.15 K.2,4-Diaminobenzenesulfonic acid solubility dependence on the temperature and solvent composition were correlated by the modified Apelblat equation,(CNIBS)/Redlich-Kister model and Jouyban-Acree model.The correlated results by three correlation models were in good accord with the experimental values according to relative average deviations(RD),root-mean-square deviations(RMSD),and correlation coefficients(R^(2)).The metastable zone width increased with temperature and sulfuric acid content.The dissolution enthalpy,dissolution entropy and the Gibbs energy were calculated from the experimental values,which indicated that dissolution process of the 2,4-diaminobenzenesulfonic acid was endothermic.The solubility and calculation models of 2,4-diaminobenzenesulfonic acid in(sulfuric acid+water)system could provide the basic data to the crystallization and purifying of the 2,4-diaminobenzenesulfonic acid.
基金supported by the National Natural Science Foundation of China (No.22176067)。
文摘To improve the adsorption and catalytic performance of heterogeneous Fenton-like catalysts for oil wastes,amino acids were used to modify nanoscale zero-valent iron(AA@Fe^(0)),which were applied in the Fenton-like degradation of organic solvents(tributyl phosphate and n-dodecane,named TBP and DD).Twelve amino acids,i.e.,glycine(Gly),alanine(Ala),leucine(Leu),proline(Pro),phenylalanine(Phe),methionine(Met),cysteine(Cys),asparagine(Asn),serine(Ser),glutamic acid(Glu),lysine(Lys)and arginine(Arg),were selected and calculated by density functional theory(DFT).The optimized structure,charge distribution,the highest occupied molecular orbital(HOMO),the lowest unoccupied molecular orbital(LUMO),interaction region indicator(IRI)isosurface map and adsorption energy of AA@Fe^(0),AA@Fe^(0)-TBP and AA@Fe^(0)-DD were studied,which indicated that Fe is more likely to approach and charge transfer with-COO and-NH_(3) on theα-carbon of amino acids.There is strong attraction between Fe and–COO,and Van der Waals force between Fe and-NH_(3),respectively.In the interaction of AA@Fe^(0)with TBP and DD,Van der Waal force plays an important role.AA@Fe^(0)was synthesized in laboratory and characterized to investigate physicochemical properties.In Fenton-like degradation of organic solvents,the change of COD in water phase during the degradation process as well as the volume of the organic phase after the reaction were investigated.The results of calculations combined with experiments showed that Ser-modified Fe^(0)performed the best in these amino acids,with 98%removal of organic solvents.A possible catalytic mechanism was proposed in which amino acids acted a linking role between Fe and organic solvents,activating H_(2)O_(2)to generate hydroxyl radicals for the degradation of organic solvents.
基金National High Level Hospital Clinical Research Funding(Nos.BJ-2022-115,BJ-2022-098,BJ-2020-171,BJ-2022-158,and BJ-2022-143)
文摘Background:Lymph node staging of prostate cancer(PCa)is important for planning and monitoring of treatment.^(18)F-prostate specific membrane antigen positron emission tomography/computerized tomography(^(18)F-PSMA PET/CT)has several advantages over^(68)Ga-PSMA PET/CT,but its diagnostic value requires further investigation.This meta-analysis focused on establishing the diagnostic utility of^(18)F-PSMA PET/CT for lymph node staging in medium/high-risk PCa.Methods:We searched the EMBASE,PubMed,Cochrane library,and Web of Science databases from inception to October 1,2022.Prostate cancer,^(18)F,lymph node,PSMA,and PET/CT were used as search terms and the language was limited to English.We additionally performed a manual search using the reference lists of key articles.Patients and study characteristics were extracted and the QUADAS-2 tool was employed to evaluate the quality of included studies.Sensitivity,specificity,the positive and negative likelihood ratio(PLR and NLR),diagnostic odds ratio(DOR),area under the curve(AUC),and 95%confidence interval(CI)were used to evaluate the diagnostic value of^(18)F-PSMA PET/CT.Stata 17 software was employed for calculation and statistical analyses.Results:A total of eight diagnostic tests including 734 individual samples and 6346 lymph nodes were included in this meta-analysis.At the patient level,the results of each consolidated summary were as follows:sensitivity of 0.57(95%CI 0.39-0.73),specificity of 0.95(95%CI 0.92-0.97),PLR of 11.2(95%CI 6.6-19.0),NLR of 0.46(95%CI 0.31-0.68),DOR of 25(95%CI 11-54),and AUC of 0.94(95%CI 0.92-0.96).At the lesion level,the results of each consolidated summary were as follows:sensitivity of 0.40(95%CI 0.21-0.62),specificity of 0.99(95%CI 0.95-1.00),PLR of 40.0(95%CI 9.1-176.3),NLR of 0.61(95%CI 0.42-0.87),DOR of 66(95%CI 14-311),and AUC of 0.86(95%CI 0.83-0.89).Conclusions:^(18)F-PSMA PET/CT showed moderate sensitivity but high specificity in lymph node staging of medium/high-risk PCa.The diagnostic efficacy was almost equivalent to that reported for^(68)Ga-PSMA PET/CT.Registration:International Prospective Register of Systematic Reviews(PROSPERO),No.CRD42023391101.
基金supported by the National Key Research and Development Project from Minister of Science and Technology of China(Nos.2021YFA1201604 and 2021YFA1201601).
文摘Ocean wave energy is a significant and promising source of renewable energy.However,the energy harvesting is challenging due to the multi-directional nature of waves.This paper proposes a magnetic-field-assisted triboelectric nanogenerator(MFATENG)for harvesting multi-directional wave energy.By incorporating a magnetic field,the planar motion of the pendulum is converted into spatial motion,increasing the triggering of multilayered TENG(M-TENG)and enhancing the output energy of the MFA-TENG.Experimental results demonstrate that the output energy of the MFA-TENG is increased by 73%by utilizing the magnetic field.Moreover,a spring model based on the origami-structured M-TENG is established to analyze the effect of different equivalent stiffnesses on the performance of the M-TENG,aiming to obtain optimal output performance.The results showcase the impressive output performance of the M-TENG,generating outputs of 250 V,18μA,and 255 nC.Furthermore,the proposed MFA-TENG effectively harvests multi-directional wave energy under water-wave driven conditions.This study significantly enhances the ability of the MFA-TENG to harvest multi-directional wave energy and presents a promising approach for self-powered marine monitoring in the future.