Deciphering the neuronal response to injury in the spinal cord is essential for exploring treatment strategies for spinal cord injury(SCI).However,this subject has been neglected in part because appropriate tools are ...Deciphering the neuronal response to injury in the spinal cord is essential for exploring treatment strategies for spinal cord injury(SCI).However,this subject has been neglected in part because appropriate tools are lacking.Emerging in vivo imaging and labeling methods offer great potential for observing dynamic neural processes in the central nervous system in conditions of health and disease.This review first discusses in vivo imaging of the mouse spinal cord with a focus on the latest imaging techniques,and then analyzes the dynamic biological response of spinal cord sensory and motor neurons to SCI.We then summarize and compare the techniques behind these studies and clarify the advantages of in vivo imaging compared with traditional neuroscience examinations.Finally,we identify the challenges and possible solutions for spinal cord neuron imaging.展开更多
Multiaxial neutron/x-ray imaging and three-dimensional (3D) reconstruction techniques play a crucial role in gaining valuable insights intothe generation and evolution mechanisms of pulsed radiation sources. Owing to ...Multiaxial neutron/x-ray imaging and three-dimensional (3D) reconstruction techniques play a crucial role in gaining valuable insights intothe generation and evolution mechanisms of pulsed radiation sources. Owing to the short emission time (∼200 ns) and drastic changes of thepulsed radiation source, it is necessary to acquire projection data within a few nanoseconds in order to achieve clear computed tomography3D imaging. As a consequence, projection data that can be used for computed tomography image reconstruction at a certain moment are oftenavailable for only a few angles. Traditional algorithms employed in the process of reconstructing 3D images with extremely incomplete datamay introduce significant distortions and artifacts into the final image. In this paper, we propose an iterative image reconstruction methodusing cylindrical harmonic decomposition and a self-supervised denoising network algorithm based on the deep image prior method. Weaugment the prior information with a 2D total variation prior and a 3D deep image prior. Single-wire Z-pinch imaging experiments have beencarried out at Qin-1 facility in five views and four frames, with a time resolution of 3 ns for each frame and a time interval of 40 ns betweenadjacent frames. Both numerical simulations and experiments verify that our proposed algorithm can achieve high-quality reconstructionresults and obtain the 3D intensity distribution and evolution of extreme ultraviolet and soft x-ray emission from plasma.展开更多
Bone tissue engineering(BTE)has been proven to be an effective method for the treatment of bone defects caused by different musculoskeletal disorders.Photocrosslinkable hydrogels(PCHs)with good biocompatibility and bi...Bone tissue engineering(BTE)has been proven to be an effective method for the treatment of bone defects caused by different musculoskeletal disorders.Photocrosslinkable hydrogels(PCHs)with good biocompatibility and biodegradability can significantly promote the migration,proliferation and differentiation of cells and have been widely used in BTE.Moreover,photolithography 3D bioprinting technology can notably help PCHs-based scaffolds possess a biomimetic structure of natural bone,meeting the structural requirements of bone regeneration.Nanomaterials,cells,drugs and cytokines added into bioinks can enable different functionalization strategies for scaffolds to achieve the desired properties required for BTE.In this review,we demonstrate a brief introduction of the advantages of PCHs and photolithography-based 3D bioprinting technology and summarize their applications in BTE.Finally,the challenges and potential future approaches for bone defects are outlined.展开更多
基金supported by the National Natural Science Foundation of China,No.82272478(to PT)。
文摘Deciphering the neuronal response to injury in the spinal cord is essential for exploring treatment strategies for spinal cord injury(SCI).However,this subject has been neglected in part because appropriate tools are lacking.Emerging in vivo imaging and labeling methods offer great potential for observing dynamic neural processes in the central nervous system in conditions of health and disease.This review first discusses in vivo imaging of the mouse spinal cord with a focus on the latest imaging techniques,and then analyzes the dynamic biological response of spinal cord sensory and motor neurons to SCI.We then summarize and compare the techniques behind these studies and clarify the advantages of in vivo imaging compared with traditional neuroscience examinations.Finally,we identify the challenges and possible solutions for spinal cord neuron imaging.
基金supported partially by a grant from NNSFC No.12027811.
文摘Multiaxial neutron/x-ray imaging and three-dimensional (3D) reconstruction techniques play a crucial role in gaining valuable insights intothe generation and evolution mechanisms of pulsed radiation sources. Owing to the short emission time (∼200 ns) and drastic changes of thepulsed radiation source, it is necessary to acquire projection data within a few nanoseconds in order to achieve clear computed tomography3D imaging. As a consequence, projection data that can be used for computed tomography image reconstruction at a certain moment are oftenavailable for only a few angles. Traditional algorithms employed in the process of reconstructing 3D images with extremely incomplete datamay introduce significant distortions and artifacts into the final image. In this paper, we propose an iterative image reconstruction methodusing cylindrical harmonic decomposition and a self-supervised denoising network algorithm based on the deep image prior method. Weaugment the prior information with a 2D total variation prior and a 3D deep image prior. Single-wire Z-pinch imaging experiments have beencarried out at Qin-1 facility in five views and four frames, with a time resolution of 3 ns for each frame and a time interval of 40 ns betweenadjacent frames. Both numerical simulations and experiments verify that our proposed algorithm can achieve high-quality reconstructionresults and obtain the 3D intensity distribution and evolution of extreme ultraviolet and soft x-ray emission from plasma.
基金supported by Beijing Natural Science Foundation(Grant No.L202033)the Key Program of National Natural Science Foundation of China(Grant No.21935011)+2 种基金the Military Medical Science and Technology Youth Training Program(Grant No.19QNP052)the Basic Strengthening Research Program(2020-JCJQ-ZD-264-3-2)the Military training injury prevention and treatment research(21XLS29).
文摘Bone tissue engineering(BTE)has been proven to be an effective method for the treatment of bone defects caused by different musculoskeletal disorders.Photocrosslinkable hydrogels(PCHs)with good biocompatibility and biodegradability can significantly promote the migration,proliferation and differentiation of cells and have been widely used in BTE.Moreover,photolithography 3D bioprinting technology can notably help PCHs-based scaffolds possess a biomimetic structure of natural bone,meeting the structural requirements of bone regeneration.Nanomaterials,cells,drugs and cytokines added into bioinks can enable different functionalization strategies for scaffolds to achieve the desired properties required for BTE.In this review,we demonstrate a brief introduction of the advantages of PCHs and photolithography-based 3D bioprinting technology and summarize their applications in BTE.Finally,the challenges and potential future approaches for bone defects are outlined.