In this paper,an NMOS output-capacitorless low-dropout regulator(OCL-LDO)featuring dual-loop regulation has been proposed,achieving fast transient response with low power consumption.An event-driven charge pump(CP)loo...In this paper,an NMOS output-capacitorless low-dropout regulator(OCL-LDO)featuring dual-loop regulation has been proposed,achieving fast transient response with low power consumption.An event-driven charge pump(CP)loop with the dynamic strength control(DSC),is proposed in this paper,which overcomes trade-offs inherent in conventional structures.The presented design addresses and resolves the large signal stability issue,which has been previously overlooked in the event-driven charge pump structure.This breakthrough allows for the full exploitation of the charge-pump structure's poten-tial,particularly in enhancing transient recovery.Moreover,a dynamic error amplifier is utilized to attain precise regulation of the steady-state output voltage,leading to favorable static characteristics.A prototype chip has been fabricated in 65 nm CMOS technology.The measurement results show that the proposed OCL-LDO achieves a 410 nA low quiescent current(IQ)and can recover within 30 ns under 200 mA/10 ns loading change.展开更多
Hydride ion(H-)conductors have drawn much attention due to their potential applications in hydrideion-based devices.Rare earth metal hydrides(REH_(x))have fast H-conduction which,unfortunately,is accompanied by detrim...Hydride ion(H-)conductors have drawn much attention due to their potential applications in hydrideion-based devices.Rare earth metal hydrides(REH_(x))have fast H-conduction which,unfortunately,is accompanied by detrimental electron conduction preventing their application as ion conductors.Here,REH_(x)(RE=Nd,Ce,and Pr)with varied grain sizes,rich grain boundaries,and defects have been prepared by ball milling and subsequent sintering.The electronic conductivity of the ball-milled REH_(x)samples can be reduced by 2-4 orders of magnitude compared with the non-ball-milled samples.The relationship of electron conduction and miscrostructures in REH_(x)is studied and discussed based on experimental data and previously-proposed classical and quantum theories.The H-conductivity of all REH_(x)is about 10^(-4)to 10^(-3)S cm^(-1)at room temperature,showing promise for the development of H-conductors and their applications in clean energy storage and conversion.展开更多
Cloud base height(CBH) is a crucial parameter for cloud radiative effect estimates, climate change simulations, and aviation guidance. However, due to the limited information on cloud vertical structures included in p...Cloud base height(CBH) is a crucial parameter for cloud radiative effect estimates, climate change simulations, and aviation guidance. However, due to the limited information on cloud vertical structures included in passive satellite radiometer observations, few operational satellite CBH products are currently available. This study presents a new method for retrieving CBH from satellite radiometers. The method first uses the combined measurements of satellite radiometers and ground-based cloud radars to develop a lookup table(LUT) of effective cloud water content(ECWC), representing the vertically varying cloud water content. This LUT allows for the conversion of cloud water path to cloud geometric thickness(CGT), enabling the estimation of CBH as the difference between cloud top height and CGT. Detailed comparative analysis of CBH estimates from the state-of-the-art ECWC LUT are conducted against four ground-based millimeter-wave cloud radar(MMCR) measurements, and results show that the mean bias(correlation coefficient) is0.18±1.79 km(0.73), which is lower(higher) than 0.23±2.11 km(0.67) as derived from the combined measurements of satellite radiometers and satellite radar-lidar(i.e., Cloud Sat and CALIPSO). Furthermore, the percentages of the CBH biases within 250 m increase by 5% to 10%, which varies by location. This indicates that the CBH estimates from our algorithm are more consistent with ground-based MMCR measurements. Therefore, this algorithm shows great potential for further improvement of the CBH retrievals as ground-based MMCR are being increasingly included in global surface meteorological observing networks, and the improved CBH retrievals will contribute to better cloud radiative effect estimates.展开更多
Ammonia is essential for food and energy.Industrial ammonia synthesis via Haber–Bosch process is energy-intensive and releases large amount of CO2.Increasing research efforts are devoted to "green"ammonia s...Ammonia is essential for food and energy.Industrial ammonia synthesis via Haber–Bosch process is energy-intensive and releases large amount of CO2.Increasing research efforts are devoted to "green"ammonia synthesis.The present article reviews the recent progress in the fields of thermocatalytic, electrocatalytic, photocatalytic and chemical looping processes for dinitrogen reduction towards ammonia formation and discusses the challenges borne for mild-condition synthesis.展开更多
Clouds are critical to the global radiation budget and hydrological cycle, but knowledge is still poor concerning the observed climatology of cloud-base height (CBH) in China. Based on fine-resolution sounding obser...Clouds are critical to the global radiation budget and hydrological cycle, but knowledge is still poor concerning the observed climatology of cloud-base height (CBH) in China. Based on fine-resolution sounding observations from the China Radiosonde Network (CRN), the method used to estimate CBH was modified, and uncertainty analyses indicated that the CBH is good enough. The accuracy of CBH estimation is verified by the comparison between the sounding-derived CBHs and those estimated from the micro-pulse lidar and millimeter-wave cloud radar. As such, the CBH climatology was compiled for the period 2006-16. Overall, the CBH exhibits large geographic variability across China, at both 0800 Local Standard Time (LST) and 2000 LST, irrespective of season. In addition, the summertime cloud base tends to be elevated to higher altitudes in dry regions [i.e., Inner Mongolia and the North China Plain (NCP)]. By comparison, the Tibetan Plateau (TP), Pearl River Delta (PRD) and Sichuan Basin (SCB) have relatively low CBHs (〈 2.4 km above ground level). In terms of seasonality, the CBH reaches its maximum in summer and minimum in winter. A low cloud base tends to occur frequently (〉 70%) over the TP, PRD and SCB. In contrast, at most sites over the Yangtze River Delta (YRD) and the NCP, about half the cloud belongs to the high-cloud category. The CBH does not exhibit marked diurnal variation in summer, throughout all CRN sites, probably due to the persistent cloud coverage caused by the East Asia Summer Monsson. To the best of our knowledge, this is the first CBH climatology produced from sounding measurements in China, and provides a useful reference for obtaining observational cloud base information.展开更多
Development of active and non-noble metal-based catalyst for H2 production via NH3 decomposition is crucial for the implementation of NH3 as a H2 carrier.Co-based catalysts have received increasing attention because o...Development of active and non-noble metal-based catalyst for H2 production via NH3 decomposition is crucial for the implementation of NH3 as a H2 carrier.Co-based catalysts have received increasing attention because of its high intrinsic activity and moderate cost.In this work,we examined the effect of BaNH,CaNH and Mg3 N2 on the catalytic activity of Co in the NH3 decomposition reaction.The H2 formation rate ranks the order as Co-BaNH>Co-CaNH>Co-Mg3 N2≈Co/CNTs within a reaction temperature range of 300-550℃.It is worth pointing out that the H2 formation rate of Co-BaNH at 500℃reaches20 mmolH2 gcat-1 min-1,which is comparable to those of the active Ru/Al2 O3(ca.17 mmolH2 gcat-1 min1)and Ru/AC(21 mmolH2 gcat-1 min-1)catalysts under the similar reaction conditions.In-depth research shows that Co-BaNH exhibits an obviously higher intrinsic activity and much lower Ea(46.2 kJ mol-1)than other Co-based catalysts,suggesting that BaNH may play a different role from CaNH,Mg3 N2 and CNTs during the catalytic process.Combined results of XRD,Ar-TPD and XAS show that a[Co-N-Ba]-like intermediate species is likely formed at the interface of Co metal and BaNH,which may lead to a more energy-efficient reaction pathway than that of neat Co metal for NH3 decomposition.展开更多
The satellite-based quantification of cloud radiative forcing remains poorly understood,due largely to the limitation or uncertainties in characterizing cloud-base height(CBH).Here,we use the CBH data from radiosonde ...The satellite-based quantification of cloud radiative forcing remains poorly understood,due largely to the limitation or uncertainties in characterizing cloud-base height(CBH).Here,we use the CBH data from radiosonde measurements over China in combination with the collocated cloud-top height(CTH) and cloud properties from MODIS/Aqua to quantify the impact of CBH on shortwave cloud radiative forcing(SWCRF).The climatological mean SWCRF at the surface(SWCRFSUR),at the top of the atmosphere(SWCRFTOA),and in the atmosphere(SWCRFATM) are estimated to be-97.14,-84.35,and 12.79 W m^(-2),respectively for the summers spanning 2010 to 2018 over China.To illustrate the role of the cloud base,we assume four scenarios according to vertical profile patterns of cloud optical depth(COD).Using the CTH and cloud properties from MODIS alone results in large uncertainties for the estimation of SWCRFATM,compared with those under scenarios that consider the CBH.Furthermore,the biases of the CERES estimation of SWCRFATM tend to increase in the presence of thick clouds with low CBH.Additionally,the discrepancy of SWCRFATM relative to that calculated without consideration of CBH varies according to the vertical profile of COD.When a uniform COD vertical profile is assumed,the largest SWCRF discrepancies occur during the early morning or late afternoon.By comparison,the two-point COD vertical distribution assumption has the largest uncertainties occurring at noon when the solar irradiation peaks.These findings justify the urgent need to consider the cloud vertical structures when calculating the SWCRF which is otherwise neglected.展开更多
Predicting the possible impacts of future climate change on cropping systems can provide important theoretical support for reforming cropping system and adjusting the distribution of agricultural production in the fut...Predicting the possible impacts of future climate change on cropping systems can provide important theoretical support for reforming cropping system and adjusting the distribution of agricultural production in the future. The study was based on the daily data of future B2 climate scenario (2011-2050) and baseline climate condition (1961-1990) from high resolution regional climate model PRECIS (~50 km grid interval). According to climatic divisions of cropping systems in China, the active accumulated temperature stably passing the daily average temperature of 0°C, the extreme minimum temperature and the termination date passing the daily average temperature of 20°C which were justified by dominance as a limitation of different cropping systems in zero-grade zone were investigated. In addition, the possible trajectories of different cropping systems in China from 2011 to 2050 were also analyzed and assessed. Under the projected future B2 climate scenario, from 2011 to 2050, the northern boundaries of double cropping area and triple cropping area would move northward markedly. The most of the present double cropping area would be replaced by the different triple cropping patterns, while current double cropping area would shift towards areas presently dominated by single cropping systems. Thus the shift of multiple cropping areas would lead to a significant decrease of single cropping area. Compared with China’s land area, the percentage cover of single cropping area and double cropping area would decrease slowly, while percentage cover of triple cropping area would gradually increase.展开更多
A better knowledge of aerosol properties is of great significance for elucidating the complex mechanisms behind frequently occurring haze pollution events.In this study,we examine the temporal and spatial variations i...A better knowledge of aerosol properties is of great significance for elucidating the complex mechanisms behind frequently occurring haze pollution events.In this study,we examine the temporal and spatial variations in both PM_(1)and its major chemical constituents using three-year field measurements that were collected in six representative regions in China between 2012 and 2014.Our results show that both PM_(1)and its chemical compositions varied significantly in space and time,with high PM_(1)loadings mainly observed in the winter.By comparing chemical constituents between clean and polluted episodes,we find that the elevated PM_(1)mass concentration during pollution events should be largely attributable to significant increases in organic matter(OM)and inorganic aerosols like sulfate,nitrate,and ammonium(SNA),indicative of the critical role of primary emissions and secondary aerosols in elevating PM_(1)pollution levels.The ratios of PM_(1)/PM2.5 are found to be generally high in Shanghai and Guangzhou,while relatively low ratios are seen in Xi’an and Chengdu,indicating anthropogenic emissions were more likely to accumulate in forms of finer particles.With respect to the relative importance of chemical components and meteorological factors quantified via statistical modeling practices,we find that primary emissions and secondary aerosols were the two leading factors contributing to PM_(1)variations,though meteorological factors also played important roles in regulating the dispersion of atmospheric PM.展开更多
To quantitatively assess the landslide hazard in Khelvachauri, Georgia, the statistic method of hazard index was applied. A spatial database was constructed in Geographic Information System (GIS) including topographic...To quantitatively assess the landslide hazard in Khelvachauri, Georgia, the statistic method of hazard index was applied. A spatial database was constructed in Geographic Information System (GIS) including topographic data, geologic maps, land-use, and active landslide events (extracted from the landslide inventory). After that, causal factors of landslides (such as slope, aspect, lithology, geomorphology, land-use and soil depth) were produced to calculate the corresponding weights, and thereby we defined a relevant set of spatial criteria for the latter landslide hazard assessment. On top of that, susceptibility assessment was performed in order to classify the area to low, moderate and high susceptible regions. Results showed that NW aspect, mountain geomorphology, private land-use, laterite loam and clay, slope between 19 to 24 degrees, and soil depth between 10 - 20 cm were found to have the largest contribution to high landslide susceptibility. The high success rate (72.35%) was obtained using area under the curve from the landslide susceptibility map. Meanwhile, effect analysis was carried out to assess the accuracy of the landslide susceptibility, indicating that the factor of slope played the most important role in determining the occurring probability of landslide although it did not deviate as much as other factors. Finally, the vulnerability analyses were carried out by means of the Spatial Multi-Criteria Estimation model, which in turn, led to the risk assessment. It turned out that not so much of the number of buildings (~ 34.13%) was associated with high-risk zone and that governmental and private land-use almost accounted for the same risk (39.9% and 40.9%, respectively).展开更多
Dinitrogen fixation is one of the key reactions in chemistry, which is closely associated with food, environment, and energy. It has been recently recognized that the hydride materials containing negatively charged hy...Dinitrogen fixation is one of the key reactions in chemistry, which is closely associated with food, environment, and energy. It has been recently recognized that the hydride materials containing negatively charged hydrogen(H~-) show promises for Nfixation and hydrogenation to ammonia. Herein, we report that rare earth metal hydrides such as lanthanum hydride can also fix Neither by heating to 200 °C or ball milling under ambient Npressure and temperature. The Nfixation by lanthanum hydride may proceed via an intermediate lanthanum hydride-nitride(La-H-N) structure to form the final lanthanum nitride product. The hydride ion functions as an electron donor, which provides electrons for Nactivation possibly mediated by the lanthanum atoms. It is observed that N–H bond is not formed during the Nfixation process, which is distinctly different from the alkali or alkaline earth metal hydrides. The hydrolysis of La-H-N to ammonia is feasible using water as the hydrogen source. These results provide new insights into the nitrogen fixation by hydride materials and more efforts are needed for the development of rare earth metal-based catalysts and/or nitrogen carriers for ammonia synthesis processes.展开更多
Long-term,ground-based daily global solar radiation (DGSR) at Zhongshan Station in Antarctica can quantitatively reveal the basic characteristics of Earth’s surface radiation balance and validate satellite data for t...Long-term,ground-based daily global solar radiation (DGSR) at Zhongshan Station in Antarctica can quantitatively reveal the basic characteristics of Earth’s surface radiation balance and validate satellite data for the Antarctic region.The fixed station was established in 1989,and conventional radiation observations started much later in 2008.In this study,a random forest (RF) model for estimating DGSR is developed using ground meteorological observation data,and a highprecision,long-term DGSR dataset is constructed.Then,the trend of DGSR from 1990 to 2019 at Zhongshan Station,Antarctica is analyzed.The RF model,which performs better than other models,shows a desirable performance of DGSR hindcast estimation with an R^2 of 0.984,root-mean-square error of 1.377 MJ m^(-2),and mean absolute error of 0.828 MJ m^(-2).The trend of DGSR annual anomalies increases during 1990–2004 and then begins to decrease after 2004.Note that the maximum value of annual anomalies occurs during approximately 2004/05 and is mainly related to the days with precipitation (especially those related to good weather during the polar day period) at this station.In addition to clouds and water vapor,bad weather conditions (such as snowfall,which can result in low visibility and then decreased sunshine duration and solar radiation) are the other major factors affecting solar radiation at this station.The high-precision,longterm estimated DGSR dataset enables further study and understanding of the role of Antarctica in global climate change and the interactions between snow,ice,and atmosphere.展开更多
Load frequency is an important issue in power system operation and control. In this paper, load frequency control for suppression frequency deviation in an interconnected power system with nonlinearities using SMC (s...Load frequency is an important issue in power system operation and control. In this paper, load frequency control for suppression frequency deviation in an interconnected power system with nonlinearities using SMC (sliding mode control) is studied. The governor dead band and GRC (generation rate constraint) is considered in this article. Digit simulations for both two areas and three areas power system with non-reheat turbines are provided to validate the effectiveness of the proposed scheme. The results show that, the robustness of the control method under parameters variation and different load disturbances with the SMC technique.展开更多
This paper described general situation of surfactant production and waster water treatment in China, and introduced Chinese standards on chemical biodegradation. Furthermore, it summarized at three level of Chinese re...This paper described general situation of surfactant production and waster water treatment in China, and introduced Chinese standards on chemical biodegradation. Furthermore, it summarized at three level of Chinese relevant standards. Finally, it explored in detail the particular differences between Chinese standards and OECD methods.展开更多
Using high-quality hourly observations from national-level ground-based stations, the satellite-based rainfall products from both the Global Precipitation Measurement(GPM) Integrated Multisatellit E Retrievals for ...Using high-quality hourly observations from national-level ground-based stations, the satellite-based rainfall products from both the Global Precipitation Measurement(GPM) Integrated Multisatellit E Retrievals for GPM(IMERG) and its predecessor, the Tropical Rainfall Measuring Mission(TRMM) Multi-satellite Precipitation Analysis(TMPA), are statistically evaluated over the Tibetan Plateau(TP), with an emphasis on the diurnal variation.The results indicate that:(1) the half-hourly IMERG rainfall product can explicitly describe the diurnal variation over the TP, but with discrepancies in the timing of the greatest precipitation intensity and an overestimation of the maximum rainfall intensity over the whole TP. In addition, the performance of IMERG on the hourly timescale, in terms of the correlation coefficient and relative bias, is different for regions with sea level height below or above 3500 m;(2) the IMERG products, having higher correlation and lower root-mean-square error, perform better than the TMPA products on the daily and monthly timescales; and(3) the detection ability of IMERG is superior to that of TMPA, as corroborated by a higher Hanssen and Kuipers score, a higher probability of detection, a lower false alarm ratio, and a lower bias. Compared to TMPA, the IMERG products ameliorate the overestimation across the TP. In conclusion,GPM IMERG is superior to TRMM TMPA over the TP on multiple timescales.展开更多
基金supported by the National Natural Science Foundation of China under Grant 62274189the Natural Science Foundation of Guangdong Province,China,under Grant 2022A1515011054the Key Area R&D Program of Guangdong Province under Grant 2022B0701180001.
文摘In this paper,an NMOS output-capacitorless low-dropout regulator(OCL-LDO)featuring dual-loop regulation has been proposed,achieving fast transient response with low power consumption.An event-driven charge pump(CP)loop with the dynamic strength control(DSC),is proposed in this paper,which overcomes trade-offs inherent in conventional structures.The presented design addresses and resolves the large signal stability issue,which has been previously overlooked in the event-driven charge pump structure.This breakthrough allows for the full exploitation of the charge-pump structure's poten-tial,particularly in enhancing transient recovery.Moreover,a dynamic error amplifier is utilized to attain precise regulation of the steady-state output voltage,leading to favorable static characteristics.A prototype chip has been fabricated in 65 nm CMOS technology.The measurement results show that the proposed OCL-LDO achieves a 410 nA low quiescent current(IQ)and can recover within 30 ns under 200 mA/10 ns loading change.
基金supported by the National Key Research and Development Program of China(2021YFB4000602)the National Natural Science Foundation of China(21988101,22279130,21633011)+1 种基金the Dalian Science and Technology Innovation Fund(2023RJ016)the Liaoning Revitalization Talents Program(x LYC2002076)。
文摘Hydride ion(H-)conductors have drawn much attention due to their potential applications in hydrideion-based devices.Rare earth metal hydrides(REH_(x))have fast H-conduction which,unfortunately,is accompanied by detrimental electron conduction preventing their application as ion conductors.Here,REH_(x)(RE=Nd,Ce,and Pr)with varied grain sizes,rich grain boundaries,and defects have been prepared by ball milling and subsequent sintering.The electronic conductivity of the ball-milled REH_(x)samples can be reduced by 2-4 orders of magnitude compared with the non-ball-milled samples.The relationship of electron conduction and miscrostructures in REH_(x)is studied and discussed based on experimental data and previously-proposed classical and quantum theories.The H-conductivity of all REH_(x)is about 10^(-4)to 10^(-3)S cm^(-1)at room temperature,showing promise for the development of H-conductors and their applications in clean energy storage and conversion.
基金funded by the National Natural Science Foundation of China (Grant Nos. 42305150 and 42325501)the China Postdoctoral Science Foundation (Grant No. 2023M741774)。
文摘Cloud base height(CBH) is a crucial parameter for cloud radiative effect estimates, climate change simulations, and aviation guidance. However, due to the limited information on cloud vertical structures included in passive satellite radiometer observations, few operational satellite CBH products are currently available. This study presents a new method for retrieving CBH from satellite radiometers. The method first uses the combined measurements of satellite radiometers and ground-based cloud radars to develop a lookup table(LUT) of effective cloud water content(ECWC), representing the vertically varying cloud water content. This LUT allows for the conversion of cloud water path to cloud geometric thickness(CGT), enabling the estimation of CBH as the difference between cloud top height and CGT. Detailed comparative analysis of CBH estimates from the state-of-the-art ECWC LUT are conducted against four ground-based millimeter-wave cloud radar(MMCR) measurements, and results show that the mean bias(correlation coefficient) is0.18±1.79 km(0.73), which is lower(higher) than 0.23±2.11 km(0.67) as derived from the combined measurements of satellite radiometers and satellite radar-lidar(i.e., Cloud Sat and CALIPSO). Furthermore, the percentages of the CBH biases within 250 m increase by 5% to 10%, which varies by location. This indicates that the CBH estimates from our algorithm are more consistent with ground-based MMCR measurements. Therefore, this algorithm shows great potential for further improvement of the CBH retrievals as ground-based MMCR are being increasingly included in global surface meteorological observing networks, and the improved CBH retrievals will contribute to better cloud radiative effect estimates.
基金the financial supports from the National Natural Science Foundation of China (Grant nos.21633011, 21603220 and 21872137)Sino-Japanese Research Cooperative Program of Ministry of Science and Technology (2016YFE0118300)Youth Innovation Promotion Association CAS (No.2018213)
文摘Ammonia is essential for food and energy.Industrial ammonia synthesis via Haber–Bosch process is energy-intensive and releases large amount of CO2.Increasing research efforts are devoted to "green"ammonia synthesis.The present article reviews the recent progress in the fields of thermocatalytic, electrocatalytic, photocatalytic and chemical looping processes for dinitrogen reduction towards ammonia formation and discusses the challenges borne for mild-condition synthesis.
基金the Ministry of Science and Technology of China (Grant Nos. 2017YFC1501701, 2017YFC1501401, 2017YFA0603501 and 2016YFA0600403)the National Natural Science Foundation of China (Grant Nos. 91544217, 41771399 and 41471301)+1 种基金the Chinese Academy of Meteorological Sciences (Grant Nos. 2017Z005 and 2017R001)the Fundamental Research Funds for the Central Universities (Grant No. 2017STUD17)
文摘Clouds are critical to the global radiation budget and hydrological cycle, but knowledge is still poor concerning the observed climatology of cloud-base height (CBH) in China. Based on fine-resolution sounding observations from the China Radiosonde Network (CRN), the method used to estimate CBH was modified, and uncertainty analyses indicated that the CBH is good enough. The accuracy of CBH estimation is verified by the comparison between the sounding-derived CBHs and those estimated from the micro-pulse lidar and millimeter-wave cloud radar. As such, the CBH climatology was compiled for the period 2006-16. Overall, the CBH exhibits large geographic variability across China, at both 0800 Local Standard Time (LST) and 2000 LST, irrespective of season. In addition, the summertime cloud base tends to be elevated to higher altitudes in dry regions [i.e., Inner Mongolia and the North China Plain (NCP)]. By comparison, the Tibetan Plateau (TP), Pearl River Delta (PRD) and Sichuan Basin (SCB) have relatively low CBHs (〈 2.4 km above ground level). In terms of seasonality, the CBH reaches its maximum in summer and minimum in winter. A low cloud base tends to occur frequently (〉 70%) over the TP, PRD and SCB. In contrast, at most sites over the Yangtze River Delta (YRD) and the NCP, about half the cloud belongs to the high-cloud category. The CBH does not exhibit marked diurnal variation in summer, throughout all CRN sites, probably due to the persistent cloud coverage caused by the East Asia Summer Monsson. To the best of our knowledge, this is the first CBH climatology produced from sounding measurements in China, and provides a useful reference for obtaining observational cloud base information.
基金financial supports from the Project of the National Natural Science Foundation of China(Grant Nos.21633011and 21872137)“Transformational Technologies for Clean Energy and Demonstration”+2 种基金Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA21000000)Youth Innovation Promotion Association CAS(No.2018213)the Shanghai Synchrotron Radiation Facility(SSRF)for providing the beam time。
文摘Development of active and non-noble metal-based catalyst for H2 production via NH3 decomposition is crucial for the implementation of NH3 as a H2 carrier.Co-based catalysts have received increasing attention because of its high intrinsic activity and moderate cost.In this work,we examined the effect of BaNH,CaNH and Mg3 N2 on the catalytic activity of Co in the NH3 decomposition reaction.The H2 formation rate ranks the order as Co-BaNH>Co-CaNH>Co-Mg3 N2≈Co/CNTs within a reaction temperature range of 300-550℃.It is worth pointing out that the H2 formation rate of Co-BaNH at 500℃reaches20 mmolH2 gcat-1 min-1,which is comparable to those of the active Ru/Al2 O3(ca.17 mmolH2 gcat-1 min1)and Ru/AC(21 mmolH2 gcat-1 min-1)catalysts under the similar reaction conditions.In-depth research shows that Co-BaNH exhibits an obviously higher intrinsic activity and much lower Ea(46.2 kJ mol-1)than other Co-based catalysts,suggesting that BaNH may play a different role from CaNH,Mg3 N2 and CNTs during the catalytic process.Combined results of XRD,Ar-TPD and XAS show that a[Co-N-Ba]-like intermediate species is likely formed at the interface of Co metal and BaNH,which may lead to a more energy-efficient reaction pathway than that of neat Co metal for NH3 decomposition.
基金support from the National Key R&D Program of China under Grants Nos.2017YFC1501401 and 2017YFC0212803the National Natural Science Foundation under Grant No.41771399the Chinese Academy of Meteorological Sciences under Grant No.2018Y014。
文摘The satellite-based quantification of cloud radiative forcing remains poorly understood,due largely to the limitation or uncertainties in characterizing cloud-base height(CBH).Here,we use the CBH data from radiosonde measurements over China in combination with the collocated cloud-top height(CTH) and cloud properties from MODIS/Aqua to quantify the impact of CBH on shortwave cloud radiative forcing(SWCRF).The climatological mean SWCRF at the surface(SWCRFSUR),at the top of the atmosphere(SWCRFTOA),and in the atmosphere(SWCRFATM) are estimated to be-97.14,-84.35,and 12.79 W m^(-2),respectively for the summers spanning 2010 to 2018 over China.To illustrate the role of the cloud base,we assume four scenarios according to vertical profile patterns of cloud optical depth(COD).Using the CTH and cloud properties from MODIS alone results in large uncertainties for the estimation of SWCRFATM,compared with those under scenarios that consider the CBH.Furthermore,the biases of the CERES estimation of SWCRFATM tend to increase in the presence of thick clouds with low CBH.Additionally,the discrepancy of SWCRFATM relative to that calculated without consideration of CBH varies according to the vertical profile of COD.When a uniform COD vertical profile is assumed,the largest SWCRF discrepancies occur during the early morning or late afternoon.By comparison,the two-point COD vertical distribution assumption has the largest uncertainties occurring at noon when the solar irradiation peaks.These findings justify the urgent need to consider the cloud vertical structures when calculating the SWCRF which is otherwise neglected.
文摘Predicting the possible impacts of future climate change on cropping systems can provide important theoretical support for reforming cropping system and adjusting the distribution of agricultural production in the future. The study was based on the daily data of future B2 climate scenario (2011-2050) and baseline climate condition (1961-1990) from high resolution regional climate model PRECIS (~50 km grid interval). According to climatic divisions of cropping systems in China, the active accumulated temperature stably passing the daily average temperature of 0°C, the extreme minimum temperature and the termination date passing the daily average temperature of 20°C which were justified by dominance as a limitation of different cropping systems in zero-grade zone were investigated. In addition, the possible trajectories of different cropping systems in China from 2011 to 2050 were also analyzed and assessed. Under the projected future B2 climate scenario, from 2011 to 2050, the northern boundaries of double cropping area and triple cropping area would move northward markedly. The most of the present double cropping area would be replaced by the different triple cropping patterns, while current double cropping area would shift towards areas presently dominated by single cropping systems. Thus the shift of multiple cropping areas would lead to a significant decrease of single cropping area. Compared with China’s land area, the percentage cover of single cropping area and double cropping area would decrease slowly, while percentage cover of triple cropping area would gradually increase.
基金This work was financially supported by National Key R&D Plan(Grant No.2017YFC0210000)National Natural Science Foundation of China(Grant No.41701413)+1 种基金National Key R&D Plan(Grant No.2017YFC0212703)Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB05020401).Meteorological data were acquired from the Meteorological Information Comprehensive Analysis and Process System(air temperature,relative humidity,and wind speed),and ERA-Interim reanalysis(boundary layer height)that was provided by the European Centre for Medium-Range Weather Forecasts.
文摘A better knowledge of aerosol properties is of great significance for elucidating the complex mechanisms behind frequently occurring haze pollution events.In this study,we examine the temporal and spatial variations in both PM_(1)and its major chemical constituents using three-year field measurements that were collected in six representative regions in China between 2012 and 2014.Our results show that both PM_(1)and its chemical compositions varied significantly in space and time,with high PM_(1)loadings mainly observed in the winter.By comparing chemical constituents between clean and polluted episodes,we find that the elevated PM_(1)mass concentration during pollution events should be largely attributable to significant increases in organic matter(OM)and inorganic aerosols like sulfate,nitrate,and ammonium(SNA),indicative of the critical role of primary emissions and secondary aerosols in elevating PM_(1)pollution levels.The ratios of PM_(1)/PM2.5 are found to be generally high in Shanghai and Guangzhou,while relatively low ratios are seen in Xi’an and Chengdu,indicating anthropogenic emissions were more likely to accumulate in forms of finer particles.With respect to the relative importance of chemical components and meteorological factors quantified via statistical modeling practices,we find that primary emissions and secondary aerosols were the two leading factors contributing to PM_(1)variations,though meteorological factors also played important roles in regulating the dispersion of atmospheric PM.
文摘To quantitatively assess the landslide hazard in Khelvachauri, Georgia, the statistic method of hazard index was applied. A spatial database was constructed in Geographic Information System (GIS) including topographic data, geologic maps, land-use, and active landslide events (extracted from the landslide inventory). After that, causal factors of landslides (such as slope, aspect, lithology, geomorphology, land-use and soil depth) were produced to calculate the corresponding weights, and thereby we defined a relevant set of spatial criteria for the latter landslide hazard assessment. On top of that, susceptibility assessment was performed in order to classify the area to low, moderate and high susceptible regions. Results showed that NW aspect, mountain geomorphology, private land-use, laterite loam and clay, slope between 19 to 24 degrees, and soil depth between 10 - 20 cm were found to have the largest contribution to high landslide susceptibility. The high success rate (72.35%) was obtained using area under the curve from the landslide susceptibility map. Meanwhile, effect analysis was carried out to assess the accuracy of the landslide susceptibility, indicating that the factor of slope played the most important role in determining the occurring probability of landslide although it did not deviate as much as other factors. Finally, the vulnerability analyses were carried out by means of the Spatial Multi-Criteria Estimation model, which in turn, led to the risk assessment. It turned out that not so much of the number of buildings (~ 34.13%) was associated with high-risk zone and that governmental and private land-use almost accounted for the same risk (39.9% and 40.9%, respectively).
基金the financial support from the National Key R&D Program of China(2021YFB4000401)the National Natural Science Foundation of China(Grant Nos.21922205,21872137,22109158,and 51801197)+2 种基金the Youth Innovation Promotion Association CAS(Grant Nos.2018213,2019189,2022180)the Liaoning Revitalization Talents Program(Grant Nos.XLYC2007173,XLYC2002076)the K.C.Wong Education Foundation(Grant No.GJTD-2018-06)。
文摘Dinitrogen fixation is one of the key reactions in chemistry, which is closely associated with food, environment, and energy. It has been recently recognized that the hydride materials containing negatively charged hydrogen(H~-) show promises for Nfixation and hydrogenation to ammonia. Herein, we report that rare earth metal hydrides such as lanthanum hydride can also fix Neither by heating to 200 °C or ball milling under ambient Npressure and temperature. The Nfixation by lanthanum hydride may proceed via an intermediate lanthanum hydride-nitride(La-H-N) structure to form the final lanthanum nitride product. The hydride ion functions as an electron donor, which provides electrons for Nactivation possibly mediated by the lanthanum atoms. It is observed that N–H bond is not formed during the Nfixation process, which is distinctly different from the alkali or alkaline earth metal hydrides. The hydrolysis of La-H-N to ammonia is feasible using water as the hydrogen source. These results provide new insights into the nitrogen fixation by hydride materials and more efforts are needed for the development of rare earth metal-based catalysts and/or nitrogen carriers for ammonia synthesis processes.
基金supported by the National Natural Science Foundation of China (Grant Nos.41941010,41771064 and 41776195)the National Basic Research Program of China (Grant No.2016YFC1400303)the Basic Fund of the Chinese Academy of Meteorological Sciences (Grant No.2018Z001)。
文摘Long-term,ground-based daily global solar radiation (DGSR) at Zhongshan Station in Antarctica can quantitatively reveal the basic characteristics of Earth’s surface radiation balance and validate satellite data for the Antarctic region.The fixed station was established in 1989,and conventional radiation observations started much later in 2008.In this study,a random forest (RF) model for estimating DGSR is developed using ground meteorological observation data,and a highprecision,long-term DGSR dataset is constructed.Then,the trend of DGSR from 1990 to 2019 at Zhongshan Station,Antarctica is analyzed.The RF model,which performs better than other models,shows a desirable performance of DGSR hindcast estimation with an R^2 of 0.984,root-mean-square error of 1.377 MJ m^(-2),and mean absolute error of 0.828 MJ m^(-2).The trend of DGSR annual anomalies increases during 1990–2004 and then begins to decrease after 2004.Note that the maximum value of annual anomalies occurs during approximately 2004/05 and is mainly related to the days with precipitation (especially those related to good weather during the polar day period) at this station.In addition to clouds and water vapor,bad weather conditions (such as snowfall,which can result in low visibility and then decreased sunshine duration and solar radiation) are the other major factors affecting solar radiation at this station.The high-precision,longterm estimated DGSR dataset enables further study and understanding of the role of Antarctica in global climate change and the interactions between snow,ice,and atmosphere.
文摘Load frequency is an important issue in power system operation and control. In this paper, load frequency control for suppression frequency deviation in an interconnected power system with nonlinearities using SMC (sliding mode control) is studied. The governor dead band and GRC (generation rate constraint) is considered in this article. Digit simulations for both two areas and three areas power system with non-reheat turbines are provided to validate the effectiveness of the proposed scheme. The results show that, the robustness of the control method under parameters variation and different load disturbances with the SMC technique.
文摘This paper described general situation of surfactant production and waster water treatment in China, and introduced Chinese standards on chemical biodegradation. Furthermore, it summarized at three level of Chinese relevant standards. Finally, it explored in detail the particular differences between Chinese standards and OECD methods.
基金Supported by the National Natural Science Foundation of China(91437221 and 41775097)Science and Technology Planning Project of Guangdong Province(2017B020218003)Natural Science Foundation of Guangdong Province(2016A030313140)
文摘Using high-quality hourly observations from national-level ground-based stations, the satellite-based rainfall products from both the Global Precipitation Measurement(GPM) Integrated Multisatellit E Retrievals for GPM(IMERG) and its predecessor, the Tropical Rainfall Measuring Mission(TRMM) Multi-satellite Precipitation Analysis(TMPA), are statistically evaluated over the Tibetan Plateau(TP), with an emphasis on the diurnal variation.The results indicate that:(1) the half-hourly IMERG rainfall product can explicitly describe the diurnal variation over the TP, but with discrepancies in the timing of the greatest precipitation intensity and an overestimation of the maximum rainfall intensity over the whole TP. In addition, the performance of IMERG on the hourly timescale, in terms of the correlation coefficient and relative bias, is different for regions with sea level height below or above 3500 m;(2) the IMERG products, having higher correlation and lower root-mean-square error, perform better than the TMPA products on the daily and monthly timescales; and(3) the detection ability of IMERG is superior to that of TMPA, as corroborated by a higher Hanssen and Kuipers score, a higher probability of detection, a lower false alarm ratio, and a lower bias. Compared to TMPA, the IMERG products ameliorate the overestimation across the TP. In conclusion,GPM IMERG is superior to TRMM TMPA over the TP on multiple timescales.