In recent years, antibiotic pollution has become a serious threat to human health. In this study, a gas-liquid discharge plasma is developed to degrade ciprofloxacin hydrochloride in a multiphase mixed system containi...In recent years, antibiotic pollution has become a serious threat to human health. In this study, a gas-liquid discharge plasma is developed to degrade ciprofloxacin hydrochloride in a multiphase mixed system containing inorganic and organic impurities. The discharge characteristics are analyzed by diagnosing the applied voltage and discharge current waveforms, as well as the optical emission spectra. The work investigates how degradation efficiency is affected by applied voltage, gas flow rate, treatment time, initial concentration as well as the addition of γ-Al_(2)O_(3) pellets and peanut straw. After 70 min, the degradation efficiency of ciprofloxacin hydrochloride in the multiphase mixed system reached 99.6%. Its removal efficiency increases as the initial concentration decreases and the applied voltage increases. Besides, there is still a good degradation efficiency of ciprofloxacin hydrochloride with the addition of peanut straw.The degradation mechanism of ciprofloxacin hydrochloride is investigated through the analysis of degraded intermediates and reactive species.展开更多
In this work,a floating electrode is employed to generate a stable large-area diffuse discharge plasma under an open oxygen-rich environment.The discharge image and the optical emission spectra of the N2(C-B),N2+(B-X)...In this work,a floating electrode is employed to generate a stable large-area diffuse discharge plasma under an open oxygen-rich environment.The discharge image and the optical emission spectra of the N2(C-B),N2+(B-X),N2(B-A),and O(3p–3s,777 nm)are measured to analyze the morphological and optical characteristics of the discharge.The effects of applied voltage,gas flow rate,and electrode gap on the reactive species,vibrational temperature and rotational temperature are investigated,and the discharge mode is discussed by simulating the electrostatic field before the breakdown.It is found that the changes of applied voltage and electrode gap causes the transition of the discharge modes among corona mode,diffuse discharge mode and spark mode.It is shown that the floating electrode can inhibit the transition from discharge to spark mode to a certain extent,which is conducive to maintaining the stability of discharge.As is vividly illustrated in this study,the increase of applied voltage or the decrease of electrode gap contributes to the generation of more active particles,such as N2(C)andN+2(B).Furthermore,the Joule heating effect becomes more evident with the increased applied voltage when the electrode gap is 15 and 20 mm.Moreover,as the applied voltage increases,the vibrational temperature increases at the electrode gap of 25 mm.展开更多
Postsynaptic density protein-95 and synaptophysin participate in synaptic reorganization in the forebrain of epilepsy models. However, the time-effect relationship between dynamic synapsin expression in hippocampus an...Postsynaptic density protein-95 and synaptophysin participate in synaptic reorganization in the forebrain of epilepsy models. However, the time-effect relationship between dynamic synapsin expression in hippocampus and synaptic reorganization in the post-traumatic epilepsy model remains unclear. FeCI2 was injected into the hippocampal CA3 region of the right forebrain in rats to induce post-traumatic epilepsy. Postsynaptic density protein-95 and synaptophysin expression was detected using immunohistochemistry. Epileptiform discharge induced by FeCI2 injection was determined in rat forebrain neurons, revealing decreased postsynaptic density protein-95 expression at 24 hours and lowest levels at 7 days. Synaptophysin expression was markedly reduced at 24 hours, but increased at 7 days. Postsynaptic density protein-95 and synaptophysin expression was consistent with abnormal mossy fiber sprouting and synaptic reorganization following neuronal injury in the hippocampal CA3 region of FeCI2-induced epilepsy models.展开更多
In this paper,unipolar pulse(including positive pulse and negative pulse)and bipolar pulse voltage are employed to generate diffuse gas–liquid discharge in atmospheric N2with a rumpetshaped quartz tube.The current–v...In this paper,unipolar pulse(including positive pulse and negative pulse)and bipolar pulse voltage are employed to generate diffuse gas–liquid discharge in atmospheric N2with a rumpetshaped quartz tube.The current–voltage waveforms,optical emission spectra of excited state active species,FTIR spectra of exhaust gas components,plasma gas temperature,and aqueous H2O2,NO2-,andNO3-production are compared in three pulse modes,meanwhile,the effects of pulse peak voltage and gas flow rate on the production of reactive species are studied.The results show that two obvious discharges occur in each voltage pulse in unipolar pulse driven discharge,differently,in bipolar pulse driven discharge,only one main discharge appears in a single voltage pulse time.The intensities of active species(OH(A),and O(3p))in all three pulsed discharge increase with the rise of pulse peak voltage and have the highest value at 200 ml min-1of gas flow rate.The absorbance intensities of NO2and N2O increase with the increase of pulse peak voltage and decrease with the increase of gas flow rate.Under the same discharge conditions,the bipolar pulse driven discharge shows lower breakdown voltage,and higher intensities of excited species(N2(C),OH(A),and O(3p)),nitrogen oxides(NO2,NO,and N2O),and higher production of aqueous H2O2,NO2-,andNO3-compared with both unipolar positive and negative discharges.展开更多
With the increasing global threat of various diseases and infections,it is essential to develop a fast,low-cost,and easy-to-use point-of-care testing(POCT)system for inspections at all levels of medical institutions a...With the increasing global threat of various diseases and infections,it is essential to develop a fast,low-cost,and easy-to-use point-of-care testing(POCT)system for inspections at all levels of medical institutions and self-examination at home.In this work,gold magnetic nanoparticles(GMNPs)are used as the key material,and a rapid visual detection method is designed through integrating loop-mediated isothermal amplification(LAMP)and lateral flow assay(LFA)biosensor for detecting a variety of analytes which includes whole blood,buccal swabs,and DNA.It is worth to note that the proposed method does not need DNA extraction.Furthermore,uracil DNA glycosylase(UDG)is employed to eliminate carrier contamination for preventing false positive results.The whole detection process can be finished within 25 min.The accuracy of detection is measured by assessing the polymorphisms of the methylenetetrahydrofolate reductase(MTHFR)C677T.The detection limit of the newly developed extraction-free detection system for MTHFR C677T is 0.16 ng/μL.A preliminary clinical study of the proposed method is carried out by analyzing 600 clinical samples(including 200 whole blood samples,100 buccal swabs,and 300 genomic DNA samples).The results indicate that the proposed method is 100%consistent with the sequencing results which provides a new choice for POCT and shows a broad application prospect in all levels of medical clinics and at home.展开更多
基金supported by National Natural Science Foundations of China (Nos. 52307163 and 12305279)the China Postdoctoral Science Foundation (Nos. 2023M740498 and 2022M710590)Postdoctoral Fellowship Program of CPSF (No. GZC20230348)。
文摘In recent years, antibiotic pollution has become a serious threat to human health. In this study, a gas-liquid discharge plasma is developed to degrade ciprofloxacin hydrochloride in a multiphase mixed system containing inorganic and organic impurities. The discharge characteristics are analyzed by diagnosing the applied voltage and discharge current waveforms, as well as the optical emission spectra. The work investigates how degradation efficiency is affected by applied voltage, gas flow rate, treatment time, initial concentration as well as the addition of γ-Al_(2)O_(3) pellets and peanut straw. After 70 min, the degradation efficiency of ciprofloxacin hydrochloride in the multiphase mixed system reached 99.6%. Its removal efficiency increases as the initial concentration decreases and the applied voltage increases. Besides, there is still a good degradation efficiency of ciprofloxacin hydrochloride with the addition of peanut straw.The degradation mechanism of ciprofloxacin hydrochloride is investigated through the analysis of degraded intermediates and reactive species.
基金supported by National Natural Science Foundations of China(Nos.11965018,51977023 and 52077026)the Science and Technology Development Fund of Xinjiang Production and Construction of China(No.2019BC009)+2 种基金the Fundamental Research Funds for the Central Universities of China(No.DUT21LK31)the Key Laboratory Fund of National Defense Science and Technology of China(No.6142605200303)Science and Technology Plan Project of the Ninth Division of the Crops of China(No.2021JS003)。
文摘In this work,a floating electrode is employed to generate a stable large-area diffuse discharge plasma under an open oxygen-rich environment.The discharge image and the optical emission spectra of the N2(C-B),N2+(B-X),N2(B-A),and O(3p–3s,777 nm)are measured to analyze the morphological and optical characteristics of the discharge.The effects of applied voltage,gas flow rate,and electrode gap on the reactive species,vibrational temperature and rotational temperature are investigated,and the discharge mode is discussed by simulating the electrostatic field before the breakdown.It is found that the changes of applied voltage and electrode gap causes the transition of the discharge modes among corona mode,diffuse discharge mode and spark mode.It is shown that the floating electrode can inhibit the transition from discharge to spark mode to a certain extent,which is conducive to maintaining the stability of discharge.As is vividly illustrated in this study,the increase of applied voltage or the decrease of electrode gap contributes to the generation of more active particles,such as N2(C)andN+2(B).Furthermore,the Joule heating effect becomes more evident with the increased applied voltage when the electrode gap is 15 and 20 mm.Moreover,as the applied voltage increases,the vibrational temperature increases at the electrode gap of 25 mm.
基金the General Program of Department of Education of Guangxi Zhuang Autonomous Region,No.Guijiaokeyan[2007]34
文摘Postsynaptic density protein-95 and synaptophysin participate in synaptic reorganization in the forebrain of epilepsy models. However, the time-effect relationship between dynamic synapsin expression in hippocampus and synaptic reorganization in the post-traumatic epilepsy model remains unclear. FeCI2 was injected into the hippocampal CA3 region of the right forebrain in rats to induce post-traumatic epilepsy. Postsynaptic density protein-95 and synaptophysin expression was detected using immunohistochemistry. Epileptiform discharge induced by FeCI2 injection was determined in rat forebrain neurons, revealing decreased postsynaptic density protein-95 expression at 24 hours and lowest levels at 7 days. Synaptophysin expression was markedly reduced at 24 hours, but increased at 7 days. Postsynaptic density protein-95 and synaptophysin expression was consistent with abnormal mossy fiber sprouting and synaptic reorganization following neuronal injury in the hippocampal CA3 region of FeCI2-induced epilepsy models.
基金supported by National Natural Science Foundation of China(Nos.51977023,51677019,and 11965018)Fundamental Research Funds for the Central Universities in China(No.DUT18LK42)。
文摘In this paper,unipolar pulse(including positive pulse and negative pulse)and bipolar pulse voltage are employed to generate diffuse gas–liquid discharge in atmospheric N2with a rumpetshaped quartz tube.The current–voltage waveforms,optical emission spectra of excited state active species,FTIR spectra of exhaust gas components,plasma gas temperature,and aqueous H2O2,NO2-,andNO3-production are compared in three pulse modes,meanwhile,the effects of pulse peak voltage and gas flow rate on the production of reactive species are studied.The results show that two obvious discharges occur in each voltage pulse in unipolar pulse driven discharge,differently,in bipolar pulse driven discharge,only one main discharge appears in a single voltage pulse time.The intensities of active species(OH(A),and O(3p))in all three pulsed discharge increase with the rise of pulse peak voltage and have the highest value at 200 ml min-1of gas flow rate.The absorbance intensities of NO2and N2O increase with the increase of pulse peak voltage and decrease with the increase of gas flow rate.Under the same discharge conditions,the bipolar pulse driven discharge shows lower breakdown voltage,and higher intensities of excited species(N2(C),OH(A),and O(3p)),nitrogen oxides(NO2,NO,and N2O),and higher production of aqueous H2O2,NO2-,andNO3-compared with both unipolar positive and negative discharges.
基金This work was supported by the National Natural Science Foundation of China(Nos.31771083 and 81772289).
文摘With the increasing global threat of various diseases and infections,it is essential to develop a fast,low-cost,and easy-to-use point-of-care testing(POCT)system for inspections at all levels of medical institutions and self-examination at home.In this work,gold magnetic nanoparticles(GMNPs)are used as the key material,and a rapid visual detection method is designed through integrating loop-mediated isothermal amplification(LAMP)and lateral flow assay(LFA)biosensor for detecting a variety of analytes which includes whole blood,buccal swabs,and DNA.It is worth to note that the proposed method does not need DNA extraction.Furthermore,uracil DNA glycosylase(UDG)is employed to eliminate carrier contamination for preventing false positive results.The whole detection process can be finished within 25 min.The accuracy of detection is measured by assessing the polymorphisms of the methylenetetrahydrofolate reductase(MTHFR)C677T.The detection limit of the newly developed extraction-free detection system for MTHFR C677T is 0.16 ng/μL.A preliminary clinical study of the proposed method is carried out by analyzing 600 clinical samples(including 200 whole blood samples,100 buccal swabs,and 300 genomic DNA samples).The results indicate that the proposed method is 100%consistent with the sequencing results which provides a new choice for POCT and shows a broad application prospect in all levels of medical clinics and at home.