To improve the processing efficiency and extend the tuning range of 3D isotropic fabrication,we apply the simultaneous spatiotemporal focusing(SSTF)technique to a high-repetition-rate femtosecond(fs)fiber laser system...To improve the processing efficiency and extend the tuning range of 3D isotropic fabrication,we apply the simultaneous spatiotemporal focusing(SSTF)technique to a high-repetition-rate femtosecond(fs)fiber laser system.In the SSTF scheme,we propose a pulse compensation scheme for the fiber laser with a narrow spectral bandwidth by building an extra-cavity pulse stretcher.We further demonstrate truly 3D isotropic microfabrication in photosensitive glass with a tunable resolution ranging from 8μm to 22μm using the SSTF of fs laser pulses.Moreover,we systematically investigate the influences of pulse energy,writing speed,processing depth,and spherical aberration on the fabrication resolution.As a proof-of-concept demonstration,the SSTF scheme was further employed for the fs laser-assisted etching of complicated glass microfluidic structures with 3D uniform sizes.The developed technique can be extended to many applications such as advanced photonics,3D biomimetic printing,micro-electromechanical systems,and lab-on-a-chips.展开更多
Changes of environmental conditions can shape organs size evolution in animal kingdoms. In particular, environmental changes lead to difference in food resources between different habitats, thereby affecting individua...Changes of environmental conditions can shape organs size evolution in animal kingdoms. In particular, environmental changes lead to difference in food resources between different habitats, thereby affecting individual’s energy intake and allocation. The digestive theory states that animals consuming food with low contents of digestible materials should result in increasing gut length. In this study, to test the hypothesis of digestive theory, we studied ecological and geographical reasons for variation in digestive tract length among 35 species of anurans distributing in different altitude and latitude. The results showed that ecological type significantly affected digestive tract length among species, with aquatic and terrestrial species having longer digestive tract than arboreal ones. Latitude was positively correlated with digestive tract length. However, altitude, as well as monthly mean temperature and precipitation, did not correlate with digestive tract length among species. Our findings suggest that aquatic and terrestrial species might forage less digestible materials than arboreal species, thereby displaying relatively longer digestive tract than arboreal species.展开更多
In anurans, body size and age of individuals generally affect male mating success. To test whether body size and age have effects on male mating success in the foam-nesting treefrog Polypedates megacephalus, a species...In anurans, body size and age of individuals generally affect male mating success. To test whether body size and age have effects on male mating success in the foam-nesting treefrog Polypedates megacephalus, a species widely distributed in China, we analyzed differences in body size and age between mated and unmated males for three populations using a Generalized Linear Mixed Model(GLMM). The results showed that mated males did not exhibit larger body size and older age than unmated males, suggesting that large and/or old male individuals did not have greater mating success than small and/or young males. Moreover, we also found a non-significant size-assortative mating pattern for all populations. Our findings suggest that body size and age of the foam-nesting treefrog do not affect male mating success.展开更多
Difference in environmental condition shapes variation in digestive tract length in evolutionary process.In particular,environmental difference results in variation in food resource among different habitats,and thereb...Difference in environmental condition shapes variation in digestive tract length in evolutionary process.In particular,environmental difference results in variation in food resource among different habitats,and thereby affecting energy intake and energy allocation.The digestive theory predicts that animals foraging high indigestible materials of stomach contents can promote the increased gut dimensions.Here,we studied variation in digestive tract and gut length across six Hylarana guentheri populations at different altitudes and latitudes to test the prediction of the digestive theory.We found that altitude and latitude did not affect variation in relative size of digestive tract and gut among populations.We also found that relative size of digestive tract and gut did not be correlated with diversity of prey items,but negatively correlated with proportion of digestible materials.Our findings suggest that individuals foraging less digestible materials display relatively longer digestive tract than individuals foraging more digestible materials.展开更多
Rice is one of the most important cereal crops in the world, and a substantial increase in grain yield is necessary for food security. However, high yields of semidwarf modern rice varieties are heavily dependent on t...Rice is one of the most important cereal crops in the world, and a substantial increase in grain yield is necessary for food security. However, high yields of semidwarf modern rice varieties are heavily dependent on the application of mineral nitrogenous fertilizer (Tilman et al., 2002;Sun et al., 2014). Nitrogen (N)-insensitive sponses associated with reduced N-use efficiency (NUE) is a major characteristic of the green revolution varieties (GRVs), in which the growth-inhibiting protein SLENDER RICE1 (SLR1) accumulates (Li et al., 2018). Unfortunately, increasing the level of N fertilizer use to reach the full yield potential of GRVs is subject to diminishing returns, quite apart from its deleterious effect on the environments (Rahn et al., 2009;Liu et al., 2015). Therefore, there is an urgent need to develop new rice GRVs that increase NUE while maintaining their high yields. Recently, several genes (e.g., DEP1, OsNRTl.lB, OsNRT2.3b, ARE1 and GRF4) responsible for improved NUE have been identified in rice (Sun et al.. 2014;Hu et al., 2015;Fan et al., 2016;Wang et al., 2018;Li et al., 2018). More importantly, boosting the activity of the transcription factor GRF4 overcomes the ability of SLR1 to prevent the GRF4-GIF1 interaction, which in turn promotes the coordinated expression of the genes involved in N assimilation and carbon fixation and consequently enhances the NUE of rice GRVs, thereby improving our ability to grow crops sustainably (Li et al., 2018). However, current understanding of the genetic basis for improving NUE remains at the level of identification of a number of quantitative trait loci (QTLs), without any understanding of the nature of the gene products.展开更多
Rice is one of the most important staple food for over half of the world's population,and a substantial increase in productivity and quality of rice grain will be required to feed a growing human population.Grain siz...Rice is one of the most important staple food for over half of the world's population,and a substantial increase in productivity and quality of rice grain will be required to feed a growing human population.Grain size and shape are the two important components contributing to grain yield and quality,because they impact both yield potential and end-use quality.展开更多
Grain shape is a key breeding target that influences both grain yield and appearance quality in rice. Breeding for long-slender grains is an effective strategy to improve grain quality (Jain et al., 2004;Wang et al., ...Grain shape is a key breeding target that influences both grain yield and appearance quality in rice. Breeding for long-slender grains is an effective strategy to improve grain quality (Jain et al., 2004;Wang et al., 2012, 2015a). In the past two decades, several quantitative trait loci (QTLs) responsible for grain size and shape have been identified, including GS3 (Fan et al., 2006), GS5 (Li et al., 2011).展开更多
In mammalian cells,long noncoding RNAs(lncRNAs)form complexes with proteins to execute various biological functions such as gene transcription,RNA processing and other signaling activities.However,methods to track end...In mammalian cells,long noncoding RNAs(lncRNAs)form complexes with proteins to execute various biological functions such as gene transcription,RNA processing and other signaling activities.However,methods to track endogenous lncRNA dynamics in live cells and screen for lncRNA interacting proteins are limited.Here,we report the development of CERTIS(CRISPR-mediated Endogenous lncRNA Tracking and Immunoprecipitation System)to visualize and isolate endogenous lncRNA,by precisely inserting a 24-repeat MS2 tag into the distal end of lncRNA locus through the CRISPR7Cas9 technology.In this study,we show that CERTIS effectively labeled the paraspeckle lncRNA NEAT1 without disturbing its physiological properties and could monitor the endogenous expression variation of NEAT1.In addition,CERTIS displayed superior performance on both short-and long-term tracking of NEAT1 dynamics in live cells.We found that NEAT1 and paraspeckles were sensitive to topoisomerase I specific inhibitors.Moreover,RNA Immunoprecipitation(RIP)of the MS2-tagged NEAT1 lncRNA successfully revealed several new protein components of paraspeckle.Our results support CERTIS as a tool suitable to track both spatial and temporal lncRNA regulation in live cells as well as study the lncRNA-protein interactomes.展开更多
基金supported by the National Key Research and Development Program of China(2019YFA0705000,2022YFA1404800)National Natural Science Foundation of China(12004221,12174107,12192254,11734009,12192251,92250304,11974218)+4 种基金Postdoctoral Innovation Talents Support Program of Shandong Province(No.SDBX2019005)Science and Technology Commission of Shanghai Municipality(21DZ1101500)Local science and technology development project of the central government(YDZX20203700001766)Shanghai Municipal Science and Technology Major ProjectNatural Science Foundation of Shandong Province(ZR2021ZD02).
文摘To improve the processing efficiency and extend the tuning range of 3D isotropic fabrication,we apply the simultaneous spatiotemporal focusing(SSTF)technique to a high-repetition-rate femtosecond(fs)fiber laser system.In the SSTF scheme,we propose a pulse compensation scheme for the fiber laser with a narrow spectral bandwidth by building an extra-cavity pulse stretcher.We further demonstrate truly 3D isotropic microfabrication in photosensitive glass with a tunable resolution ranging from 8μm to 22μm using the SSTF of fs laser pulses.Moreover,we systematically investigate the influences of pulse energy,writing speed,processing depth,and spherical aberration on the fabrication resolution.As a proof-of-concept demonstration,the SSTF scheme was further employed for the fs laser-assisted etching of complicated glass microfluidic structures with 3D uniform sizes.The developed technique can be extended to many applications such as advanced photonics,3D biomimetic printing,micro-electromechanical systems,and lab-on-a-chips.
基金funded by the National Natural Sciences Foundation of China (31772451 31970393)+2 种基金the Science and Technology Youth Innovation Team of Sichuan Province (19CXTD0022)the Key Cultivation Foundation of China West Normal University (17A006)Talent Project of China West Normal University (17YC335)
文摘Changes of environmental conditions can shape organs size evolution in animal kingdoms. In particular, environmental changes lead to difference in food resources between different habitats, thereby affecting individual’s energy intake and allocation. The digestive theory states that animals consuming food with low contents of digestible materials should result in increasing gut length. In this study, to test the hypothesis of digestive theory, we studied ecological and geographical reasons for variation in digestive tract length among 35 species of anurans distributing in different altitude and latitude. The results showed that ecological type significantly affected digestive tract length among species, with aquatic and terrestrial species having longer digestive tract than arboreal ones. Latitude was positively correlated with digestive tract length. However, altitude, as well as monthly mean temperature and precipitation, did not correlate with digestive tract length among species. Our findings suggest that aquatic and terrestrial species might forage less digestible materials than arboreal species, thereby displaying relatively longer digestive tract than arboreal species.
基金the Sichuan Province Outstanding Youth Academic Technology Leaders Program(2013JQ0016)the Students Science and Technology Innovation Fund of China(201510638016)+1 种基金Sichuan Province Department of Education Innovation Team Project(14TD001515TD0019) for providing for financial support
文摘In anurans, body size and age of individuals generally affect male mating success. To test whether body size and age have effects on male mating success in the foam-nesting treefrog Polypedates megacephalus, a species widely distributed in China, we analyzed differences in body size and age between mated and unmated males for three populations using a Generalized Linear Mixed Model(GLMM). The results showed that mated males did not exhibit larger body size and older age than unmated males, suggesting that large and/or old male individuals did not have greater mating success than small and/or young males. Moreover, we also found a non-significant size-assortative mating pattern for all populations. Our findings suggest that body size and age of the foam-nesting treefrog do not affect male mating success.
基金Financial support was provided by the National Natural Sciences Foundation of China(31772451,31970393)the Science and Technology Youth Innovation Team of Sichuan Province(19CXTD0022)+1 种基金the Key Cultivation Foundation of China West Normal University(17A006)Talent Project of China West Normal University(17YC335)。
文摘Difference in environmental condition shapes variation in digestive tract length in evolutionary process.In particular,environmental difference results in variation in food resource among different habitats,and thereby affecting energy intake and energy allocation.The digestive theory predicts that animals foraging high indigestible materials of stomach contents can promote the increased gut dimensions.Here,we studied variation in digestive tract and gut length across six Hylarana guentheri populations at different altitudes and latitudes to test the prediction of the digestive theory.We found that altitude and latitude did not affect variation in relative size of digestive tract and gut among populations.We also found that relative size of digestive tract and gut did not be correlated with diversity of prey items,but negatively correlated with proportion of digestible materials.Our findings suggest that individuals foraging less digestible materials display relatively longer digestive tract than individuals foraging more digestible materials.
基金supported by grants from the National Natural Science Foundation of China (31830082)the National Key Research and Development Program of China (2016YFD0100401)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB27010000)
文摘Rice is one of the most important cereal crops in the world, and a substantial increase in grain yield is necessary for food security. However, high yields of semidwarf modern rice varieties are heavily dependent on the application of mineral nitrogenous fertilizer (Tilman et al., 2002;Sun et al., 2014). Nitrogen (N)-insensitive sponses associated with reduced N-use efficiency (NUE) is a major characteristic of the green revolution varieties (GRVs), in which the growth-inhibiting protein SLENDER RICE1 (SLR1) accumulates (Li et al., 2018). Unfortunately, increasing the level of N fertilizer use to reach the full yield potential of GRVs is subject to diminishing returns, quite apart from its deleterious effect on the environments (Rahn et al., 2009;Liu et al., 2015). Therefore, there is an urgent need to develop new rice GRVs that increase NUE while maintaining their high yields. Recently, several genes (e.g., DEP1, OsNRTl.lB, OsNRT2.3b, ARE1 and GRF4) responsible for improved NUE have been identified in rice (Sun et al.. 2014;Hu et al., 2015;Fan et al., 2016;Wang et al., 2018;Li et al., 2018). More importantly, boosting the activity of the transcription factor GRF4 overcomes the ability of SLR1 to prevent the GRF4-GIF1 interaction, which in turn promotes the coordinated expression of the genes involved in N assimilation and carbon fixation and consequently enhances the NUE of rice GRVs, thereby improving our ability to grow crops sustainably (Li et al., 2018). However, current understanding of the genetic basis for improving NUE remains at the level of identification of a number of quantitative trait loci (QTLs), without any understanding of the nature of the gene products.
基金supported by grants from the National Natural Science Foundation of China (No.91635302)the National Key Research and Development Program of China (2016YFD0100401)+1 种基金the Chinese Academy of Sciences (XDA08010101)the State Key Laboratory of Plant Cell and Chromosome Engineering (PCCEKF-2017-04)
文摘Rice is one of the most important staple food for over half of the world's population,and a substantial increase in productivity and quality of rice grain will be required to feed a growing human population.Grain size and shape are the two important components contributing to grain yield and quality,because they impact both yield potential and end-use quality.
基金supported by grants from the National Natural Science Foundation of China,China(31970304,31971916)Youth Innovation Promotion Association,Chinese Academy of Sciences (2019-100),ChinaOpen Fund of the Guangdong Key Laboratory of Plant Molecular Breeding(GPKLPMB201904)
文摘Grain shape is a key breeding target that influences both grain yield and appearance quality in rice. Breeding for long-slender grains is an effective strategy to improve grain quality (Jain et al., 2004;Wang et al., 2012, 2015a). In the past two decades, several quantitative trait loci (QTLs) responsible for grain size and shape have been identified, including GS3 (Fan et al., 2006), GS5 (Li et al., 2011).
基金This work was supported by the National Key Research and Development Program of China(2017YFA0102801,2018YFA0107003)National Natural Science Foundation of China(91640119,91749113,31570827,31871479 and 31930058)+1 种基金Natural Science Foundation of Guangdong Province(2017A030313116)the China Postdoctoral Science Foundation(2018M631021).
文摘In mammalian cells,long noncoding RNAs(lncRNAs)form complexes with proteins to execute various biological functions such as gene transcription,RNA processing and other signaling activities.However,methods to track endogenous lncRNA dynamics in live cells and screen for lncRNA interacting proteins are limited.Here,we report the development of CERTIS(CRISPR-mediated Endogenous lncRNA Tracking and Immunoprecipitation System)to visualize and isolate endogenous lncRNA,by precisely inserting a 24-repeat MS2 tag into the distal end of lncRNA locus through the CRISPR7Cas9 technology.In this study,we show that CERTIS effectively labeled the paraspeckle lncRNA NEAT1 without disturbing its physiological properties and could monitor the endogenous expression variation of NEAT1.In addition,CERTIS displayed superior performance on both short-and long-term tracking of NEAT1 dynamics in live cells.We found that NEAT1 and paraspeckles were sensitive to topoisomerase I specific inhibitors.Moreover,RNA Immunoprecipitation(RIP)of the MS2-tagged NEAT1 lncRNA successfully revealed several new protein components of paraspeckle.Our results support CERTIS as a tool suitable to track both spatial and temporal lncRNA regulation in live cells as well as study the lncRNA-protein interactomes.