For expedited transportation,vehicular tunnels are often designed as two adjacent tunnels,which frequently experience dynamic stress waves from various orientations during blasting excavation.To analyze the impact of ...For expedited transportation,vehicular tunnels are often designed as two adjacent tunnels,which frequently experience dynamic stress waves from various orientations during blasting excavation.To analyze the impact of dynamic loading orientation on the stability of the twin-tunnel,a split Hopkinson pressure bar(SHPB)apparatus was used to conduct a dynamic test on the twin-tunnel specimens.The two tunnels were rotated around the specimen’s center to consider the effect of dynamic loading orientation.LS-DYNA software was used for numerical simulation to reveal the failure properties and stress wave propagation law of the twin-tunnel specimens.The findings indicate that,for a twin-tunnel exposed to a dynamic load from different orientations,the crack initiation position appears most often at the tunnel corner,tunnel spandrel,and tunnel floor.As the impact direction is created by a certain angle(30°,45°,60°,120°,135°,and 150°),the fractures are produced in the middle of the line between the left tunnel corner and the right tunnel spandrel.As the impact loading angle(a)is 90°,the tunnel sustains minimal damage,and only tensile fractures form in the surrounding rocks.The orientation of the impact load could change the stress distribution in the twin-tunnel,and major fractures are more likely to form in areas where the tensile stress is concentrated.展开更多
Diet is one of the main pathways for heavy metals to enter the human body,so studying the content of heavy metals in agricultural products and evaluating them is of great significance.When farmland soil is contaminate...Diet is one of the main pathways for heavy metals to enter the human body,so studying the content of heavy metals in agricultural products and evaluating them is of great significance.When farmland soil is contaminated with heavy metals,the heavy metals accumulated in the soil will be absorbed by the roots of rice plants growing on it,and will migrate and transform between different tissues and organs of rice plants.There is a significant correlation between heavy metal pollution in soil and the content of heavy metals in rice.The migration and enrichment of heavy metals in the agricultural soil rice system is a complex process that is influenced by many factors,such as the physical and chemical properties of the soil,the content and occurrence forms of heavy metals in the soil,and the physiological characteristics of rice plants.In actual field environments,these influencing factors have significant spatial differences and are relatively complex.Therefore,it is necessary to conduct practical analysis of the various influencing factors in actual field environments.Based on actual data analysis,studying the heavy metal content in rice and the characteristics of heavy metal accumulation and migration in rice plants is of great significance for improving the food safety of rice.展开更多
Landslide is one of the multitudinous serious geological hazards. The key to its control and reduction lies on dynamic monitoring and early warning. The article points out the insufficiency of traditional measuring me...Landslide is one of the multitudinous serious geological hazards. The key to its control and reduction lies on dynamic monitoring and early warning. The article points out the insufficiency of traditional measuring means applied for large-scale landslide monitoring and proposes the method for extensive landslide displacement field monitoring using high- resolution remote images. Matching of cognominal points is realized by using the invariant features of SIFT algorithm in image translation, rotation, zooming, and affine transformation, and through recognition and comparison of characteristics of high-resolution images in different landsliding periods. Following that, landslide displacement vector field can be made known by measuring the distances and directions between cognominal points. As evidenced by field application of the method for landslide monitoring at West Open Mine in Fushun city of China, the method has the attraction of being able to make areal measurement through satellite observation and capable of obtaining at the same time the information of large- area intensive displacement field, for facilitating automatic delimitation of extent of landslide displacement vector field and sliding mass. This can serve as a basis for making analysis of laws governing occurrence of landslide and adoption of countermeasures.展开更多
The current assembled maize genomes cannot represent the broad genetic diversity of maize germplasms.Acquiring more genome sequences is critical for constructing a pan-genome and elucidating the linkage between genoty...The current assembled maize genomes cannot represent the broad genetic diversity of maize germplasms.Acquiring more genome sequences is critical for constructing a pan-genome and elucidating the linkage between genotype and phenotype in maize.Here we describe the genome sequence and annotation of A188,a maize inbred line with high phenotypic variation relative to other lines,acquired by single-molecule sequencing and optical genome mapping.We assembled a 2210-Mb genome with a scaffold N50 size of 11.61 million bases(Mb),compared to 9.73 Mb for B73 and 10.2 Mb for Mo17.Based on the B73_Ref Gen_V4 genome,295 scaffolds(2084.35 Mb,94.30%of the final genome assembly)were anchored and oriented on ten chromosomes.Comparative analysis revealed that~30%of the predicted A188 genes showed large structural divergence from B73,Mo17,and W22 genomes,which causes high protein divergence and may lead to phenotypic variation among the four inbred lines.As a line with high embryonic callus(EC)induction capacity,A188 provides a convenient tool for elucidating the molecular mechanism underlying the formation of EC in maize.Combining our new A188 genome with previously reported QTL and RNA sequencing data revealed eight genes with large structural variation and two differentially expressed genes playing potential roles in maize EC induction.展开更多
High temperature superconductivity in cuprates is realized by doping the Mott insulator with charge carriers.A central issue is how such an insulating state can evolve into a conducting or superconducting state when c...High temperature superconductivity in cuprates is realized by doping the Mott insulator with charge carriers.A central issue is how such an insulating state can evolve into a conducting or superconducting state when charge carriers are introduced.Here,by in situ vacuum annealing and Rb deposition on the Bi2Sr2Ca0.6Dy0.4Cu2O8+δ(Bi2212)sample surface to push its doping level continuously from deeply underdoped(Tc=25K,doping level p^0.066)to the near-zero doping parent Mott insulator,angle-resolved photoemission spectroscopy measurements are carried out to observe the detailed electronic structure evolution in the lightly hole-doped region for the first time.Our results indicate that the chemical potential lies at about l eV above the charge transfer band for the parent state at zero doping,which is quite close to the upper Hubbard band.With increasing hole doping,the chemical potential moves continuously towards the charge transfer band and the band structure evolution exhibits a rigid band shift-like behavior.When the chemical potential approaches the charge transfer band at a doping level of^0.05,the nodal spectral weight near the Fermi level increases,followed by the emergence of the coherent quasiparticle peak and the insulator-superconductor transition.Our observations provide key insights in understanding the insulator-superconductor transition in doping the parent cuprate compound and for establishing related theories.展开更多
High resolution laser-based angle-resolved photoemission measurements are carried out on an overdoped superconductor Bi_2Sr_2CaCu_2O_(8+)with a_(c )of 75 K.Two Fermi surface sheets caused by bilayer splitting are clea...High resolution laser-based angle-resolved photoemission measurements are carried out on an overdoped superconductor Bi_2Sr_2CaCu_2O_(8+)with a_(c )of 75 K.Two Fermi surface sheets caused by bilayer splitting are clearly identified with rather different doping levels:the bonding sheet corresponds to a doping level of 0.14,which is slightly underdoped while the antibonding sheet has a doping of 0.27 that is heavily overdoped,giving an overall doping level of 0.20 for the sample.Different superconducting gap sizes on the two Fermi surface sheets are revealed.The superconducting gap on the antibonding Fermi surface sheet follows a standard d-wave form while it deviates from the standard d-wave form for the bonding Fermi surface sheet.The maximum gap difference between the two Fermi surface sheets near the antinodal region is~2 meV.These observations provide important information for studying the relationship between the Fermi surface topology and superconductivity,and the layer-dependent superconductivity in high temperature cuprate superconductors.展开更多
High resolution angle-resolved photoemission spectroscopy(ARPES)measurements are carried out on CaKFe_4 As_4,KCa_2 Fe_4 As_4 F_2 and(Ba_(0.6)K_(0.4))Fe_2 As_2 superconductors.Clear evidence of band folding between the...High resolution angle-resolved photoemission spectroscopy(ARPES)measurements are carried out on CaKFe_4 As_4,KCa_2 Fe_4 As_4 F_2 and(Ba_(0.6)K_(0.4))Fe_2 As_2 superconductors.Clear evidence of band folding between the Brillouin zone center and corners with a(π,π)wave vector has been found from the measured Fermi surface and band structures in all the three kinds of superconductors.A dominant √2×√2 surface reconstruction is observed on the cleaved surface of CaKFe_4As_4 by scanning tunneling microscopy(STM)measurements.We propose that the commonly observed √2×√2 reconstruction in the FeAs-based superconductors provides a general scenario to understand the origin of the(π,π)band folding.Our observations provide new insights in understanding the electronic structure and superconductivity mechanism in iron-based superconductors.展开更多
Introduction:Allergen-specific CD4+T cells play a central role in autoimmune disorders,allergies and asthma,with Th2-type immunity being the typical functional response of CD4+T cells.This study aimed to investigate t...Introduction:Allergen-specific CD4+T cells play a central role in autoimmune disorders,allergies and asthma,with Th2-type immunity being the typical functional response of CD4+T cells.This study aimed to investigate the role of MBD2 in regulating Th2 cell differentiation.Methods:Splenic mononuclear cells were extracted from C57BL/6 mice,and CD4+T cells were isolated using magnetic beads and confirmed through flow cytometry.Lentivirus was employed to construct MBD2-silenced CD4+T cells.In vitro experiments were performed to treat splenogenic mononuclear cells and CD4+T cells with Ovalbumin(OVA),and Th2 cell ratios and IL-4 levels were assessed using flow cytometry and ELISA.Results:The purity of the isolated CD4+T cells was 95.73%,confirming successful isolation of primary CD4+T cells.Compared to the control group,the Th2 cell ratio exhibited an increase in the Th2-induced group.Treatment with 5-Aza(concentrations,1-100μM)promoted Th2 cell differentiation and increased IL-4 levels.Notably,when combined with Th2 induction and 10μM 5-Aza treatment,silencing MBD2 further amplified Th2 cell ratios and elevated IL-4 levels in cell supernatants.Furthermore,OVA(concentration,200μg/mL)induced the differentiation of CD4+T cells into Th2 cells and increased IL-4 secretion.Interestingly,silencing MBD2 significantly increased the Th2 cell ratio and IL-4 levels in OVA-treated CD4+T cells.Conclusion:In summary,OVA promoted CD4+T cell differentiation into Th2 cells and enhanced IL-4 levels.MBD2 was identified as a mediator of Th2 cell differentiation in splenic-derived CD4+T cells,influenced by OVA or 5-Aza treatment.展开更多
Remote sensing image scene classification and remote sensing technology applications are hot research topics.Although CNN-based models have reached high average accuracy,some classes are still misclassified,such as“f...Remote sensing image scene classification and remote sensing technology applications are hot research topics.Although CNN-based models have reached high average accuracy,some classes are still misclassified,such as“freeway,”“spare residential,”and“commercial_area.”These classes contain typical decisive features,spatial-relation features,and mixed decisive and spatial-relation features,which limit high-quality image scene classification.To address this issue,this paper proposes a Grad-CAM and capsule network hybrid method for image scene classification.The Grad-CAM and capsule network structures have the potential to recognize decisive features and spatial-relation features,respectively.By using a pre-trained model,hybrid structure,and structure adjustment,the proposed model can recognize both decisive and spatial-relation features.A group of experiments is designed on three popular data sets with increasing classification difficulties.In the most advanced experiment,92.67%average accuracy is achieved.Specifically,83%,75%,and 86%accuracies are obtained in the classes of“church,”“palace,”and“commercial_area,”respectively.This research demonstrates that the hybrid structure can effectively improve performance by considering both decisive and spatial-relation features.Therefore,Grad-CAM-CapsNet is a promising and powerful structure for image scene classification.展开更多
Halophytes have evolved specialized strategies to cope with high salinity.The extreme halophyte sea lavender(Limonium bicolor)lacks trichomes but possesses salt glands on its epidermis that can excrete harmful ions,su...Halophytes have evolved specialized strategies to cope with high salinity.The extreme halophyte sea lavender(Limonium bicolor)lacks trichomes but possesses salt glands on its epidermis that can excrete harmful ions,such as sodium,to avoid salt damage.Here,we report a high-quality,2.92-Gb,chromosome-scale L.bicolor genome assembly based on a combination of Illumina short reads,single-molecule,real-time long reads,chromosome conformation capture(Hi-C)data,and Bionano genome maps,greatly enriching the genomic information on recretohalophytes with multicellular salt glands.Although the L.bicolor genome contains genes that show similarity to trichome fate genes from Arabidopsis thaliana,it lacks homologs of the decision fate genes GLABRA3,ENHANCER OF GLABRA3,GLABRA2,TRANSPARENT TESTA GLABRA2,and SIAMESE,providing a molecular explanation for the absence of trichomes in this species.We identified key genes(LbHLH and LbTTG1)controlling salt gland development among classical trichome homologous genes and confirmed their roles by showing that their mutations markedly disrupted salt gland initiation,salt secretion,and salt tolerance,thus offering genetic support for the long-standing hypothesis that salt glands and trichomes may share a common origin.In addition,a whole-genome duplication event occurred in the L.bicolor genome after its divergence from Tartary buckwheat and may have contributed to its adaptation to high salinity.The L.bicolor genome resource and genetic evidence reported in this study provide profound insights into plant salt tolerance mechanisms that may facilitate the engineering of salt-tolerant crops.展开更多
In unconventional superconductors, it is generally believed that understanding the physical properties of the normal state is a pre-requisite for understanding the superconductivity mechanism. In conventional supercon...In unconventional superconductors, it is generally believed that understanding the physical properties of the normal state is a pre-requisite for understanding the superconductivity mechanism. In conventional superconductors like niobium or lead, the normal state is a Fermi liquid with a well-defined Fermi surface and well-defined quasipartcles along the Fermi surface. Superconductivity is realized in this case by the Fermi surface instability in the superconducting state and the formation and condensation of the electron pairs(Cooper pairing). The high temperature cuprate superconductors, on the other hand, represent another extreme case that superconductivity can be realized in the underdoped region where there is neither well-defined Fermi surface due to the pseudogap formation nor quasiparticles near the antinodal regions in the normal state. Here we report a novel scenario that superconductivity is realized in a system with well-defined Fermi surface but without quasiparticles along the Fermi surface in the normal state.High resolution laser-based angle-resolved photoemission measurements have been performed on an optimally-doped iron-based superconductor(Ba_(0.6)K_(0.4))Fe_2As_2. We find that, while sharp superconducting coherence peaks emerge in the superconducting state on the hole-like Fermi surface sheets, no quasiparticle peak is present in the normal state. Its electronic behaviours deviate strongly from a Fermi liquid system. The superconducting gap of such a system exhibits an unusual temperature dependence that it is nearly a constant in the superconducting state and abruptly closes at Tc. These observations have provided a new platform to study unconventional superconductivity in a non-Fermi liquid system.展开更多
The ongoing discoveries and studies of novel topological quantum materials have become an emergent and important field of condensed matter physics. Recently, Hfres ignited renewed interest as a candidate of a novel to...The ongoing discoveries and studies of novel topological quantum materials have become an emergent and important field of condensed matter physics. Recently, Hfres ignited renewed interest as a candidate of a novel topological material. The single-layer Hffes is predicted to be a tWOldimensional large band gap topological insulator and can be stacked into a bulk that may host a temperatureldriven topological phase transition. Historically, Hfres attracted considerable interest for its anomalous transport properties characterized by a peculiar resistivity peak accompanied by a sign reversal carrier type. The origin of the transport anomaly remains under a hot debate. Here we report the first high-resolution laserlbased anglelresolved photoemission measurements on the temperature-dependent electronic structure in Hffes. Our results indicated that a temperature-induced Lifshitz transition occurs in Hffes, which provides a natural understanding on the origin of the transport anomaly in Hffe~. In addition, our observa- tions suggest that Hffes is a weak topological insulator that is located at the phase boundary between weak and strong topological insulators at very low temperature.展开更多
Comparison and validation of canopy reflectance(CR)models are two important steps to ensure their reliability.Pure forest plantations are an ideal type of forest for validating CR models because of their simple backgr...Comparison and validation of canopy reflectance(CR)models are two important steps to ensure their reliability.Pure forest plantations are an ideal type of forest for validating CR models because of their simple background and the low variance in the crown structures which are usually assumed to be identical in most CR models.A Geometric Optical Model for Forest Plantations(GOFP)was compared using dataset in two radiation transfer model intercomparison exercise(RAMI)stands and validated using in situ dataset of detailed optical and structural data of two forest plantations in the Saihanba Forestry Center,China.The results show that(1)the tree distributions in stands described by the hypergeometric model in GOFP show good consistencies with the dataset in the two RAMI stands and measurements from the two Saihanba forest stands;and(2)the CRs simulated with GOFP are also compared well in the two RAMI stands and validated with measurements collected with unmanned aerial vehicles in the two Saihanba stands.GOFP shows a better consistency with the CR measurements than those from CR models for natual forestsbecause the tree distribution in forest plantations is described more reasonably in GOFP.展开更多
The electronic structure and superconducting gap structure are prerequisites to establish microscopic theories in understanding the superconductivity mechanism of iron-based superconductors.However,even for the most e...The electronic structure and superconducting gap structure are prerequisites to establish microscopic theories in understanding the superconductivity mechanism of iron-based superconductors.However,even for the most extensively studied optimally-doped Ba_(0.6)K_(0.4)Fe_(2)As_(2),there remain outstanding controversies on its electronic structure and superconducting gap structure.Here we resolve these issues by carrying out high-resolution angle-resolved photoemission spectroscopy(ARPES)measurements on the optimally-doped Ba_(0.6)K_(0.4)Fe_(2)As_(2)superconductor using both Helium lamp and laser light sources.Our results indicate the‘‘flat band"feature observed around the Brillouin zone center in the superconducting state originates from the combined effect of the superconductivity-induced band back-bending and the folding of a band from the zone corner to the center.We found direct evidence of the band folding between the zone corner and the center in both the normal and superconducting state.Our resolution of the origin of the flat band makes it possible to assign the three hole-like bands around the zone center and determine their superconducting gap correctly.Around the zone corner,we observe a tiny electronlike band and an M-shaped band simultaneously in both the normal and superconducting states.The obtained gap size for the bands around the zone corner(~5.5 meV)is significantly smaller than all the previous ARPES measurements.Our results establish a new superconducting gap structure around the zone corner and resolve a number of prominent controversies concerning the electronic structure and superconducting gap structure in the optimally-doped Ba_(0.6)K_(0.4)Fe_(2)As_(2).They provide new insights in examining and establishing theories in understanding superconductivity mechanism in iron-based superconductors.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.52204104 and U19A2098)the Science and Technology Department of Sichuan Province,China(Grant No.2023YFH0022).
文摘For expedited transportation,vehicular tunnels are often designed as two adjacent tunnels,which frequently experience dynamic stress waves from various orientations during blasting excavation.To analyze the impact of dynamic loading orientation on the stability of the twin-tunnel,a split Hopkinson pressure bar(SHPB)apparatus was used to conduct a dynamic test on the twin-tunnel specimens.The two tunnels were rotated around the specimen’s center to consider the effect of dynamic loading orientation.LS-DYNA software was used for numerical simulation to reveal the failure properties and stress wave propagation law of the twin-tunnel specimens.The findings indicate that,for a twin-tunnel exposed to a dynamic load from different orientations,the crack initiation position appears most often at the tunnel corner,tunnel spandrel,and tunnel floor.As the impact direction is created by a certain angle(30°,45°,60°,120°,135°,and 150°),the fractures are produced in the middle of the line between the left tunnel corner and the right tunnel spandrel.As the impact loading angle(a)is 90°,the tunnel sustains minimal damage,and only tensile fractures form in the surrounding rocks.The orientation of the impact load could change the stress distribution in the twin-tunnel,and major fractures are more likely to form in areas where the tensile stress is concentrated.
基金Supported by Natural Science Foundation of Fujian Province(2023J01130334)Natural Science Foundation of Xiamen City(3502Z20227315).
文摘Diet is one of the main pathways for heavy metals to enter the human body,so studying the content of heavy metals in agricultural products and evaluating them is of great significance.When farmland soil is contaminated with heavy metals,the heavy metals accumulated in the soil will be absorbed by the roots of rice plants growing on it,and will migrate and transform between different tissues and organs of rice plants.There is a significant correlation between heavy metal pollution in soil and the content of heavy metals in rice.The migration and enrichment of heavy metals in the agricultural soil rice system is a complex process that is influenced by many factors,such as the physical and chemical properties of the soil,the content and occurrence forms of heavy metals in the soil,and the physiological characteristics of rice plants.In actual field environments,these influencing factors have significant spatial differences and are relatively complex.Therefore,it is necessary to conduct practical analysis of the various influencing factors in actual field environments.Based on actual data analysis,studying the heavy metal content in rice and the characteristics of heavy metal accumulation and migration in rice plants is of great significance for improving the food safety of rice.
文摘Landslide is one of the multitudinous serious geological hazards. The key to its control and reduction lies on dynamic monitoring and early warning. The article points out the insufficiency of traditional measuring means applied for large-scale landslide monitoring and proposes the method for extensive landslide displacement field monitoring using high- resolution remote images. Matching of cognominal points is realized by using the invariant features of SIFT algorithm in image translation, rotation, zooming, and affine transformation, and through recognition and comparison of characteristics of high-resolution images in different landsliding periods. Following that, landslide displacement vector field can be made known by measuring the distances and directions between cognominal points. As evidenced by field application of the method for landslide monitoring at West Open Mine in Fushun city of China, the method has the attraction of being able to make areal measurement through satellite observation and capable of obtaining at the same time the information of large- area intensive displacement field, for facilitating automatic delimitation of extent of landslide displacement vector field and sliding mass. This can serve as a basis for making analysis of laws governing occurrence of landslide and adoption of countermeasures.
基金supported by the National Natural Science Foundation of China(31871637,32072073,and 32001500)the Project of Transgenic New Variety Cultivation(2016ZX08003003)。
文摘The current assembled maize genomes cannot represent the broad genetic diversity of maize germplasms.Acquiring more genome sequences is critical for constructing a pan-genome and elucidating the linkage between genotype and phenotype in maize.Here we describe the genome sequence and annotation of A188,a maize inbred line with high phenotypic variation relative to other lines,acquired by single-molecule sequencing and optical genome mapping.We assembled a 2210-Mb genome with a scaffold N50 size of 11.61 million bases(Mb),compared to 9.73 Mb for B73 and 10.2 Mb for Mo17.Based on the B73_Ref Gen_V4 genome,295 scaffolds(2084.35 Mb,94.30%of the final genome assembly)were anchored and oriented on ten chromosomes.Comparative analysis revealed that~30%of the predicted A188 genes showed large structural divergence from B73,Mo17,and W22 genomes,which causes high protein divergence and may lead to phenotypic variation among the four inbred lines.As a line with high embryonic callus(EC)induction capacity,A188 provides a convenient tool for elucidating the molecular mechanism underlying the formation of EC in maize.Combining our new A188 genome with previously reported QTL and RNA sequencing data revealed eight genes with large structural variation and two differentially expressed genes playing potential roles in maize EC induction.
基金Supported by the National Natural Science Foundation of China(Grant Nos.11888101,11922414,and 11534007)the National Key Research and Development Program of China(Grant Nos.2016YFA0300300 and 2017YFA0302900)+2 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(Grant No.XDB25000000)the Youth Innovation Promotion Association of CAS(Grant No.2017013)the Research Program of Beijing Academy of Quantum Information Sciences(Grant No.Y18G06).
文摘High temperature superconductivity in cuprates is realized by doping the Mott insulator with charge carriers.A central issue is how such an insulating state can evolve into a conducting or superconducting state when charge carriers are introduced.Here,by in situ vacuum annealing and Rb deposition on the Bi2Sr2Ca0.6Dy0.4Cu2O8+δ(Bi2212)sample surface to push its doping level continuously from deeply underdoped(Tc=25K,doping level p^0.066)to the near-zero doping parent Mott insulator,angle-resolved photoemission spectroscopy measurements are carried out to observe the detailed electronic structure evolution in the lightly hole-doped region for the first time.Our results indicate that the chemical potential lies at about l eV above the charge transfer band for the parent state at zero doping,which is quite close to the upper Hubbard band.With increasing hole doping,the chemical potential moves continuously towards the charge transfer band and the band structure evolution exhibits a rigid band shift-like behavior.When the chemical potential approaches the charge transfer band at a doping level of^0.05,the nodal spectral weight near the Fermi level increases,followed by the emergence of the coherent quasiparticle peak and the insulator-superconductor transition.Our observations provide key insights in understanding the insulator-superconductor transition in doping the parent cuprate compound and for establishing related theories.
基金Supported by the National Natural Science Foundation of China under Grant No 11888101the National Key Research and Development Program of China under Grant Nos 2016YFA0300300 and 2017YFA0302900+3 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(XDB25000000)the Youth Innovation Promotion Association of CAS under Grant No2017013the Research Program of Beijing Academy of Quantum Information Sciences under Grant No Y18G06supported by the Office of Basic Energy Sciences,U.S.Department of Energy(DOE)under Contract No de-sc0012704
文摘High resolution laser-based angle-resolved photoemission measurements are carried out on an overdoped superconductor Bi_2Sr_2CaCu_2O_(8+)with a_(c )of 75 K.Two Fermi surface sheets caused by bilayer splitting are clearly identified with rather different doping levels:the bonding sheet corresponds to a doping level of 0.14,which is slightly underdoped while the antibonding sheet has a doping of 0.27 that is heavily overdoped,giving an overall doping level of 0.20 for the sample.Different superconducting gap sizes on the two Fermi surface sheets are revealed.The superconducting gap on the antibonding Fermi surface sheet follows a standard d-wave form while it deviates from the standard d-wave form for the bonding Fermi surface sheet.The maximum gap difference between the two Fermi surface sheets near the antinodal region is~2 meV.These observations provide important information for studying the relationship between the Fermi surface topology and superconductivity,and the layer-dependent superconductivity in high temperature cuprate superconductors.
基金Supported by the National Key Research and Development Program of China (Grant Nos.2016YFA0300300,2017YFA0302900,2018YFA0704200 and 2019YFA0308000)the National Natural Science Foundation of China (Grant Nos.11888101,11922414 and11874405)+2 种基金the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (Grant No.XDB25000000)the Youth Innovation Promotion Association of CAS (Grant No.2017013)the Research Program of Beijing Academy of Quantum Information Sciences (Grant No.Y18G06)。
文摘High resolution angle-resolved photoemission spectroscopy(ARPES)measurements are carried out on CaKFe_4 As_4,KCa_2 Fe_4 As_4 F_2 and(Ba_(0.6)K_(0.4))Fe_2 As_2 superconductors.Clear evidence of band folding between the Brillouin zone center and corners with a(π,π)wave vector has been found from the measured Fermi surface and band structures in all the three kinds of superconductors.A dominant √2×√2 surface reconstruction is observed on the cleaved surface of CaKFe_4As_4 by scanning tunneling microscopy(STM)measurements.We propose that the commonly observed √2×√2 reconstruction in the FeAs-based superconductors provides a general scenario to understand the origin of the(π,π)band folding.Our observations provide new insights in understanding the electronic structure and superconductivity mechanism in iron-based superconductors.
基金supported by grants from the National Natural Science Foundation of China(Nos.81760009 and 81560007).
文摘Introduction:Allergen-specific CD4+T cells play a central role in autoimmune disorders,allergies and asthma,with Th2-type immunity being the typical functional response of CD4+T cells.This study aimed to investigate the role of MBD2 in regulating Th2 cell differentiation.Methods:Splenic mononuclear cells were extracted from C57BL/6 mice,and CD4+T cells were isolated using magnetic beads and confirmed through flow cytometry.Lentivirus was employed to construct MBD2-silenced CD4+T cells.In vitro experiments were performed to treat splenogenic mononuclear cells and CD4+T cells with Ovalbumin(OVA),and Th2 cell ratios and IL-4 levels were assessed using flow cytometry and ELISA.Results:The purity of the isolated CD4+T cells was 95.73%,confirming successful isolation of primary CD4+T cells.Compared to the control group,the Th2 cell ratio exhibited an increase in the Th2-induced group.Treatment with 5-Aza(concentrations,1-100μM)promoted Th2 cell differentiation and increased IL-4 levels.Notably,when combined with Th2 induction and 10μM 5-Aza treatment,silencing MBD2 further amplified Th2 cell ratios and elevated IL-4 levels in cell supernatants.Furthermore,OVA(concentration,200μg/mL)induced the differentiation of CD4+T cells into Th2 cells and increased IL-4 secretion.Interestingly,silencing MBD2 significantly increased the Th2 cell ratio and IL-4 levels in OVA-treated CD4+T cells.Conclusion:In summary,OVA promoted CD4+T cell differentiation into Th2 cells and enhanced IL-4 levels.MBD2 was identified as a mediator of Th2 cell differentiation in splenic-derived CD4+T cells,influenced by OVA or 5-Aza treatment.
基金funded by the open fund of the Key Laboratory of Jianghuai Arable Land Resources Protection and Eco-restoration(Ministry of Natural Resources)(No.2022-ARPE-KF04)the Open Fund of Key Laboratory of Urban Land Resources Monitoring and Simulation(Ministry of Natural Resources)(No.KF-2020-05-084).
文摘Remote sensing image scene classification and remote sensing technology applications are hot research topics.Although CNN-based models have reached high average accuracy,some classes are still misclassified,such as“freeway,”“spare residential,”and“commercial_area.”These classes contain typical decisive features,spatial-relation features,and mixed decisive and spatial-relation features,which limit high-quality image scene classification.To address this issue,this paper proposes a Grad-CAM and capsule network hybrid method for image scene classification.The Grad-CAM and capsule network structures have the potential to recognize decisive features and spatial-relation features,respectively.By using a pre-trained model,hybrid structure,and structure adjustment,the proposed model can recognize both decisive and spatial-relation features.A group of experiments is designed on three popular data sets with increasing classification difficulties.In the most advanced experiment,92.67%average accuracy is achieved.Specifically,83%,75%,and 86%accuracies are obtained in the classes of“church,”“palace,”and“commercial_area,”respectively.This research demonstrates that the hybrid structure can effectively improve performance by considering both decisive and spatial-relation features.Therefore,Grad-CAM-CapsNet is a promising and powerful structure for image scene classification.
基金supported by the National Natural Science Research Foundation of China(NSFC)(project nos.3217030131770288.and 31600200)the MOE Layout Foundation of Humanities and Social Sciences(21YJAZH108)the Shandong Provincial Bohai Granary Science and Technology Demonstration Project(2019BHLC004)。
文摘Halophytes have evolved specialized strategies to cope with high salinity.The extreme halophyte sea lavender(Limonium bicolor)lacks trichomes but possesses salt glands on its epidermis that can excrete harmful ions,such as sodium,to avoid salt damage.Here,we report a high-quality,2.92-Gb,chromosome-scale L.bicolor genome assembly based on a combination of Illumina short reads,single-molecule,real-time long reads,chromosome conformation capture(Hi-C)data,and Bionano genome maps,greatly enriching the genomic information on recretohalophytes with multicellular salt glands.Although the L.bicolor genome contains genes that show similarity to trichome fate genes from Arabidopsis thaliana,it lacks homologs of the decision fate genes GLABRA3,ENHANCER OF GLABRA3,GLABRA2,TRANSPARENT TESTA GLABRA2,and SIAMESE,providing a molecular explanation for the absence of trichomes in this species.We identified key genes(LbHLH and LbTTG1)controlling salt gland development among classical trichome homologous genes and confirmed their roles by showing that their mutations markedly disrupted salt gland initiation,salt secretion,and salt tolerance,thus offering genetic support for the long-standing hypothesis that salt glands and trichomes may share a common origin.In addition,a whole-genome duplication event occurred in the L.bicolor genome after its divergence from Tartary buckwheat and may have contributed to its adaptation to high salinity.The L.bicolor genome resource and genetic evidence reported in this study provide profound insights into plant salt tolerance mechanisms that may facilitate the engineering of salt-tolerant crops.
基金supported by the National Key Research and Development Program of China (2016YFA0300300 and 2017YFA0302900)the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB07020300 and XDB25000000)+1 种基金the National Basic Research Program of China (2015CB921000), the National Natural Science Foundation of China (11334010)and the Youth Innovation Promotion Association of CAS (2017013)
文摘In unconventional superconductors, it is generally believed that understanding the physical properties of the normal state is a pre-requisite for understanding the superconductivity mechanism. In conventional superconductors like niobium or lead, the normal state is a Fermi liquid with a well-defined Fermi surface and well-defined quasipartcles along the Fermi surface. Superconductivity is realized in this case by the Fermi surface instability in the superconducting state and the formation and condensation of the electron pairs(Cooper pairing). The high temperature cuprate superconductors, on the other hand, represent another extreme case that superconductivity can be realized in the underdoped region where there is neither well-defined Fermi surface due to the pseudogap formation nor quasiparticles near the antinodal regions in the normal state. Here we report a novel scenario that superconductivity is realized in a system with well-defined Fermi surface but without quasiparticles along the Fermi surface in the normal state.High resolution laser-based angle-resolved photoemission measurements have been performed on an optimally-doped iron-based superconductor(Ba_(0.6)K_(0.4))Fe_2As_2. We find that, while sharp superconducting coherence peaks emerge in the superconducting state on the hole-like Fermi surface sheets, no quasiparticle peak is present in the normal state. Its electronic behaviours deviate strongly from a Fermi liquid system. The superconducting gap of such a system exhibits an unusual temperature dependence that it is nearly a constant in the superconducting state and abruptly closes at Tc. These observations have provided a new platform to study unconventional superconductivity in a non-Fermi liquid system.
基金supported by the National Key Research and Development Program of China (2016YFA0300600)the National Natural Science Foundation of China(11574367)+1 种基金the National Basic Research Program of China (2013CB921700,2013CB921904 and 2015CB921300)the Strategic Priority Research Program(B) of the Chinese Academy of Sciences(XDB07020300)
文摘The ongoing discoveries and studies of novel topological quantum materials have become an emergent and important field of condensed matter physics. Recently, Hfres ignited renewed interest as a candidate of a novel topological material. The single-layer Hffes is predicted to be a tWOldimensional large band gap topological insulator and can be stacked into a bulk that may host a temperatureldriven topological phase transition. Historically, Hfres attracted considerable interest for its anomalous transport properties characterized by a peculiar resistivity peak accompanied by a sign reversal carrier type. The origin of the transport anomaly remains under a hot debate. Here we report the first high-resolution laserlbased anglelresolved photoemission measurements on the temperature-dependent electronic structure in Hffes. Our results indicated that a temperature-induced Lifshitz transition occurs in Hffes, which provides a natural understanding on the origin of the transport anomaly in Hffe~. In addition, our observa- tions suggest that Hffes is a weak topological insulator that is located at the phase boundary between weak and strong topological insulators at very low temperature.
基金funded by the National Natural Science Foundation of China(grant no.41701383,42071392,and 41801234)Anhui Provincial Natural Science Foundation(grant no.1808085QD105)+1 种基金the Fundamental Research Funds for the Central Universities of China(grant no.PA2020GDSK0083)the Fund of Key Laboratory of Information Perception and Systems forPublic Security of MIIT(Nanjing University of Science and Technology)(grant no.202003).
文摘Comparison and validation of canopy reflectance(CR)models are two important steps to ensure their reliability.Pure forest plantations are an ideal type of forest for validating CR models because of their simple background and the low variance in the crown structures which are usually assumed to be identical in most CR models.A Geometric Optical Model for Forest Plantations(GOFP)was compared using dataset in two radiation transfer model intercomparison exercise(RAMI)stands and validated using in situ dataset of detailed optical and structural data of two forest plantations in the Saihanba Forestry Center,China.The results show that(1)the tree distributions in stands described by the hypergeometric model in GOFP show good consistencies with the dataset in the two RAMI stands and measurements from the two Saihanba forest stands;and(2)the CRs simulated with GOFP are also compared well in the two RAMI stands and validated with measurements collected with unmanned aerial vehicles in the two Saihanba stands.GOFP shows a better consistency with the CR measurements than those from CR models for natual forestsbecause the tree distribution in forest plantations is described more reasonably in GOFP.
基金financial support from the National Key Research and Development Program of China(2016YFA0300300,2017YFA0302900,2018YFA0704200 and 2019YFA0308000)the National Natural Science Foundation of China(11888101,11922414,11874405,and 62022089)+2 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(XDB25000000 and XDB33000000)the Youth Innovation Promotion Association of CAS(2017013 and 2019007)the Research Program of Beijing Academy of Quantum Information Sciences(Y18G06)。
文摘The electronic structure and superconducting gap structure are prerequisites to establish microscopic theories in understanding the superconductivity mechanism of iron-based superconductors.However,even for the most extensively studied optimally-doped Ba_(0.6)K_(0.4)Fe_(2)As_(2),there remain outstanding controversies on its electronic structure and superconducting gap structure.Here we resolve these issues by carrying out high-resolution angle-resolved photoemission spectroscopy(ARPES)measurements on the optimally-doped Ba_(0.6)K_(0.4)Fe_(2)As_(2)superconductor using both Helium lamp and laser light sources.Our results indicate the‘‘flat band"feature observed around the Brillouin zone center in the superconducting state originates from the combined effect of the superconductivity-induced band back-bending and the folding of a band from the zone corner to the center.We found direct evidence of the band folding between the zone corner and the center in both the normal and superconducting state.Our resolution of the origin of the flat band makes it possible to assign the three hole-like bands around the zone center and determine their superconducting gap correctly.Around the zone corner,we observe a tiny electronlike band and an M-shaped band simultaneously in both the normal and superconducting states.The obtained gap size for the bands around the zone corner(~5.5 meV)is significantly smaller than all the previous ARPES measurements.Our results establish a new superconducting gap structure around the zone corner and resolve a number of prominent controversies concerning the electronic structure and superconducting gap structure in the optimally-doped Ba_(0.6)K_(0.4)Fe_(2)As_(2).They provide new insights in examining and establishing theories in understanding superconductivity mechanism in iron-based superconductors.