This article addresses the issues of falling into local optima and insufficient exploration capability in the Arithmetic Optimization Algorithm (AOA), proposing an improved Arithmetic Optimization Algorithm with a mul...This article addresses the issues of falling into local optima and insufficient exploration capability in the Arithmetic Optimization Algorithm (AOA), proposing an improved Arithmetic Optimization Algorithm with a multi-strategy mechanism (BSFAOA). This algorithm introduces three strategies within the standard AOA framework: an adaptive balance factor SMOA based on sine functions, a search strategy combining Spiral Search and Brownian Motion, and a hybrid perturbation strategy based on Whale Fall Mechanism and Polynomial Differential Learning. The BSFAOA algorithm is analyzed in depth on the well-known 23 benchmark functions, CEC2019 test functions, and four real optimization problems. The experimental results demonstrate that the BSFAOA algorithm can better balance the exploration and exploitation capabilities, significantly enhancing the stability, convergence mode, and search efficiency of the AOA algorithm.展开更多
As an extension of overlap functions, pseudo-semi-overlap functions are a crucial class of aggregation functions. Therefore, (I, PSO)-fuzzy rough sets are introduced, utilizing pseudo-semi-overlap functions, and furth...As an extension of overlap functions, pseudo-semi-overlap functions are a crucial class of aggregation functions. Therefore, (I, PSO)-fuzzy rough sets are introduced, utilizing pseudo-semi-overlap functions, and further extended for applications in image edge extraction. Firstly, a new clustering function, the pseudo-semi-overlap function, is introduced by eliminating the symmetry and right continuity present in the overlap function. The relaxed nature of this function enhances its applicability in image edge extraction. Secondly, the definitions of (I, PSO)-fuzzy rough sets are provided, using (I, PSO)-fuzzy rough sets, a pair of new fuzzy mathematical morphological operators (IPSOFMM operators) is proposed. Finally, by combining the fuzzy C-means algorithm and IPSOFMM operators, a novel image edge extraction algorithm (FCM-IPSO algorithm) is proposed and implemented. Compared to existing algorithms, the FCM-IPSO algorithm exhibits more image edges and a 73.81% decrease in the noise introduction rate. The outstanding performance of (I, PSO)-fuzzy rough sets in image edge extraction demonstrates their practical application value.展开更多
Development of efficient heterostructured photocatalysts that respond to visible light remains a considerable challenge.We herein show the synthesis of ZnIn2S4/carbon quantum dot hybrid photocatalysts with flowerlike ...Development of efficient heterostructured photocatalysts that respond to visible light remains a considerable challenge.We herein show the synthesis of ZnIn2S4/carbon quantum dot hybrid photocatalysts with flowerlike microspheres via a facile solvothermal method.The ZnIn2S4/carbon quantum dot flowerlike microspheres display enhanced photocatalytic and photoelectrochemical activity compared with that of pure ZnIn2S4.With a content of only 0.5 wt%carbon quantum dots,93%of Cr(VI)is reduced under visible‐light irradiation at 40 min.As a co‐catalyst,the carbon quantum dots improve the light absorption and lengthen the lifetime of charge carriers,consequently enhancing the photocatalytic and photoelectrochemical activity.展开更多
The West Qinling Orogen(WQO) in Central China Orogenic Belt contains numerous metasedimentary rock-hosted gold deposits(>2000 t Au), which mainly formed during two pulses: one previously recognized in the Late Tria...The West Qinling Orogen(WQO) in Central China Orogenic Belt contains numerous metasedimentary rock-hosted gold deposits(>2000 t Au), which mainly formed during two pulses: one previously recognized in the Late Triassic to Early Jurassic(T3 - J1) and one only recently identified in the Late Jurassic to Early Cretaceous(J3 - K1). Few studies have focused on the origin and geotectonic setting of the J3 - K1 gold deposits.Textural relationships, LA-ICP-MS trace element and sulfur isotope compositions of pyrites in hydrothermally altered T3 dykes within the J3 - K1 Daqiao deposit were used to constrain relative timing relationships between mineralization and pyrite growth in the dykes, and to characterize the source of ore fluid. These results are integrated with an overview of the regional geodynamic setting, to advance understanding of the tectonic driver for J3 - K1 hydrothermal gold systems. Pyrite in breccia-and dykehosted gold ores at Daqiao have similar chemical and isotopic compositions and are considered to be representative of J3 - K1 gold deposits in WQO. Co/Ni and sulfur isotope ratios suggest that ore fluids were derived from underlying Paleozoic Ni-and Se-rich carbonaceous sedimentary rocks. The geochemical data do not support the involvement of magmatic fluids. However, in the EQO(East Qinling Orogen), J3 - K1 deposits are genetically related to magmatism. Gold mineralization in WQO is contemporaneous with magmatic deposits in the EQO and both are mainly controlled by NE-and EWtrending structures produced by changes in plate motion of the Paleo-Pacific plate as it was subducted beneath the Eurasian continent. We therefore infer that the J3 - K1 structural regime facilitated the ascent of magma in the EQO and metamorphic fluids in the WQO with consequent differences in the character of contemporaneous ore deposits. If this is correct, then the far-field effects of subduction along the eastern margin of NE Asia extended 1000's of km into the continental interior.展开更多
Bone marrow mesenchymal stem cell(BMSC)osteogenic differentiation and osteoblast function play critical roles in bone formation,which is a highly regulated process.Long noncoding RNAs(lncRNAs)perform diverse functions...Bone marrow mesenchymal stem cell(BMSC)osteogenic differentiation and osteoblast function play critical roles in bone formation,which is a highly regulated process.Long noncoding RNAs(lncRNAs)perform diverse functions in a variety of biological processes,including BMSC osteogenic differentiation.Although several studies have reported that HOX transcript antisense RNA(HOTAIR)is involved in BMSC osteogenic differentiation,its effect on bone formation in vivo remains unclear.Here,by constructing transgenic mice with BMSC(Prx1-HOTAIR)-and osteoblast(Bglap-HOTAIR)-specific overexpression of HOTAIR,we found that Prx1-HOTAIR and Bglap-HOTAIR transgenic mice show different bone phenotypes in vivo.Specifically,Prx1-HOTAIR mice showed delayed bone formation,while Bglap-HOTAIR mice showed increased bone formation.HOTAIR inhibits BMSC osteogenic differentiation but promotes osteoblast function in vitro.Furthermore,we identified that HOTAIR is mainly located in the nucleus of BMSCs and in the cytoplasm of osteoblasts.HOTAIR displays a nucleocytoplasmic translocation pattern during BMSC osteogenic differentiation.We first identified that the RNA-binding protein human antigen R(HuR)is responsible for HOTAIR nucleocytoplasmic translocation.HOTAIR is essential for osteoblast function,and cytoplasmic HOTAIR binds to miR-214 and acts as a ceRNA to increase Atf4 protein levels and osteoblast function.BglapHOTAIR mice,but not Prx1-HOTAIR mice,showed alleviation of bone loss induced by unloading.This study reveals the importance of temporal and spatial regulation of HOTAIR in BMSC osteogenic differentiation and bone formation,which provides new insights into precise regulation as a target for bone loss.展开更多
The application of ionic liquids as alternatives to conventional organic solvents in the extraction process has been investigated. In the present study, fourteen species of imidazolium-based ionic liquids were added i...The application of ionic liquids as alternatives to conventional organic solvents in the extraction process has been investigated. In the present study, fourteen species of imidazolium-based ionic liquids were added into the NaOH (aq) to remove the mercaptans. The influences of anion species and cation alkyl chain length of the imidazolium-based ionic liquids on the performance of mercaptan removal from light oils have been discussed. The efficiency of extraction for mercaptans exhibited the order of [Ac]- 〉 [OH]- [Br]- 〉 [BF4]-. The longer alkyl chain imidazolium-based ionic liquids contributed to enhance desulfurization rate of l-butyl mercaptan. 100% desulfurization rate of l-butyl mercaptan was achieved by the anion of Ac- ionic liquids and NaOH (aq) at a volume ratio of 40:1 (V(oil]:Vfionic liouid)) and a short eouilibrium time within 10 min.展开更多
Layered lithium-rich manganese-based oxide(LRMO)has the limitation of inevitable evolution of lattice oxygen release and layered structure transformation.Herein,a multilayer reconstruction strategy is applied to LRMO ...Layered lithium-rich manganese-based oxide(LRMO)has the limitation of inevitable evolution of lattice oxygen release and layered structure transformation.Herein,a multilayer reconstruction strategy is applied to LRMO via facile pyrolysis of potassium Prussian blue.The multilayer interface is visually observed using an atomic-resolution scanning transmission electron microscope and a high-resolution transmission electron microscope.Combined with the electrochemical characterization,the redox of lattice oxygen is suppressed during the initial charging.In situ X-ray diffraction and the high-resolution transmission electron microscope demonstrate that the suppressed evolution of lattice oxygen eliminates the variation in the unit cell parameters during initial(de)lithiation,which further prevents lattice distortion during long cycling.As a result,the initial Coulombic efficiency of the modified LRMO is up to 87.31%,and the rate capacity and long-term cycle stability also improved considerably.In this work,a facile surface reconstruction strategy is used to suppress vigorous anionic redox,which is expected to stimulate material design in high-performance lithium ion batteries.展开更多
High temperature Superconducting Magnetic Energy Storage(SMES) systems can exchange energy with substantial renewable power grids in a small period of time with very high efficiency. Because of this distinctive featur...High temperature Superconducting Magnetic Energy Storage(SMES) systems can exchange energy with substantial renewable power grids in a small period of time with very high efficiency. Because of this distinctive feature, they store the abundant wind power when the power network is congested and release the energy back to the system when there is no congestion. However, considering the cost and lifespan of SMES systems, there is an urgent demand to conduct a cost-benefit analysis to justify its role in smart grid development. This study explores the application and performs economic analysis of a 5 MJ SMES in a practical renewable power system in China based on the PSCAD/EMTDC software. An optimal location of SMES in Zhangbei wind farm is presented using real power transmission parameters. The stabilities of the renewable power grid with and without SMES are discussed. In addition, a financial feasibility study is conducted by comparing the cost and the savings from wind power curtailment of deploying SMES and battery. The economic analysis tries to find the balance between SMES investment cost and wind farm operation cost by using real data over a calendar year. The technical analysis can help guide the optimal allocation of SMES for compensating power system instability with substantial wind power. Further, the economic analysis provides a useful indication of its practical application feasibility to fight the balance between cost and benefit.展开更多
This article explores the topic of fault diagnosis and maintenance strategies for instrument automation control systems,analyzing them through specific cases.The aim of this research is to improve the stability and re...This article explores the topic of fault diagnosis and maintenance strategies for instrument automation control systems,analyzing them through specific cases.The aim of this research is to improve the stability and reliability of the system by conducting a thorough investigation of faults and maintenance in instrument automation control systems.By doing so,this research hopes to provide a strong guarantee for the smooth progress of industrial production.展开更多
<i><span style="font-family:;" "="">Solanum nigrum</span></i><span style="font-family:;" "=""> L. has a delightful prospect as a hyperacc...<i><span style="font-family:;" "="">Solanum nigrum</span></i><span style="font-family:;" "=""> L. has a delightful prospect as a hyperaccumulation plant for cadmium pollution remediation, and microplastic is a new type of pollution that has received wide attention. In this study, the effects of polyethylene microplastics (LDPE) (0.135, 0.27, 0.81 and 1.35 mg·kg<sup>-1</sup>) and cadmium (20 mg·kg<sup>-1</sup>) on the growth indexes and soil physical and chemical properties of <i>Solanum nigrum</i> L. were investigated in a 17-day microcosm experiment. The results showed that single LDPE contamination showed a trend of low concentration promotion and medium-high concentration inhibited the growth index of <i>Solanum nigrum</i> L. and soil physicochemical index, and single Cd contamination was more stressful to plants than single LDPE contamination, while low concentration of LDPE could reduce the effect of Cd on soil physical and chemical properties and promote plant growth and uptake of soil nutrients. These findings suggest that high concentrations of microplastics can inhibit the growth of <i>Solanum nigrum</i> L. alone or in combination with Cd, rather than reducing the toxicity of Cd.</span>展开更多
Although their cost-effectiveness and intrinsic safety,aqueous zinc-ion batteries suffer from notorious side reactions including hydrogen evolution reaction,Zn corrosion and passivation,and Zn dendrite formation on th...Although their cost-effectiveness and intrinsic safety,aqueous zinc-ion batteries suffer from notorious side reactions including hydrogen evolution reaction,Zn corrosion and passivation,and Zn dendrite formation on the anode.Despite numerous strategies to alleviate these side reactions have been demonstrated,they can only provide limited performance improvement from a single aspect.Herein,a triple-functional additive with trace amounts,ammonium hydroxide,was demonstrated to comprehensively protect zinc anodes.The results show that the shift of electrolyte pH from 4.1 to 5.2 lowers the HER potential and encourages the in situ formation of a uniform ZHS-based solid electrolyte interphase on Zn anodes.Moreover,cationic NH^(4+)can preferentially adsorb on the Zn anode surface to shield the“tip effect”and homogenize the electric field.Benefitting from this comprehensive protection,dendrite-free Zn deposition and highly reversible Zn plating/stripping behaviors were realized.Besides,improved electrochemical performances can also be achieved in Zn//MnO_(2)full cells by taking the advantages of this triple-functional additive.This work provides a new strategy for stabilizing Zn anodes from a comprehensive perspective.展开更多
Additive manufacturing(AM)of Mg alloys has become a promising strategy for producing complex structures,but the corrosion performance of AM Mg components remains unexploited.In this study,wire and arc additive manufac...Additive manufacturing(AM)of Mg alloys has become a promising strategy for producing complex structures,but the corrosion performance of AM Mg components remains unexploited.In this study,wire and arc additive manufacturing(WAAM)was employed to produce single AZ31 layer.The results revealed that the WAAM AZ31 was characterized by significant grain refinement with non-textured crystallographic orientation,similar phase composition and stabilized corrosion performance comparing to the cast AZ31.These varied corrosion behaviors were principally ascribed to the size of grain,where cast AZ31 and WAAM AZ31 were featured by micro galvanic corrosion and intergranular corrosion,respectively.展开更多
In this study,MnCo2O4 nanosheets were proposed to be utilized as an electrode material for supercapacitors.A two-step hydrothermal method with post-annealing treatment was employed in preparation of the nanostructures...In this study,MnCo2O4 nanosheets were proposed to be utilized as an electrode material for supercapacitors.A two-step hydrothermal method with post-annealing treatment was employed in preparation of the nanostructures.MnCo2O4 electrode delivered a high specific capacitance of 2000 F g^-1 at 0.5 A g^-1,remarkable high-rate capability of 1150 F g^-1 at 20 A g^-1,and an excellent cycling stability of 92.3%at 5 A g^-1 after 5000 cycles.It is found that a three-electrode supercapacitor based on MnCo2O4 exhibits a promising electrochemical performance,better than the other similar materials,benefited from the synergistic effects of MnCo2O4 nanosheets.In fact,the self-assembly of nanosheets structure with high specific surface area and mesoporous structure can potentially enhance the electrochemical performance of supercapacitors.展开更多
The deactivation mechanism of Co/MgO catalyst for the reforming of methane with carbon dioxide was investigated. The conversion of CH4 displayed a significant decrease in the initial stage caused by carbon deposition....The deactivation mechanism of Co/MgO catalyst for the reforming of methane with carbon dioxide was investigated. The conversion of CH4 displayed a significant decrease in the initial stage caused by carbon deposition.There were two types of cokes, carbon nanotubes(CNTs) and carbon nano-onions(CNOs). The number of the CNO layers that coated on the surface of Co nanoparticles(NPs) increased rapidly in the initial reforming time,which was responsible for the deactivation of the Co/MgO catalyst. The deposition of CNOs was attributed to the oxidation of Co NPs. Therefore, the deactivation of the Co/MgO catalyst was originated from the first oxidization of the Co NPs into Co3 O4 by O species(OH intermediate, CO_2, H2 O) during the reforming reaction,which accelerates the formation of coke that blocked the active metal, thus led to catalyst deactivation.展开更多
Mechanical stimulation plays an important role in bone remodeling. Exercise-induced mechanical loading enhances bone strength,whereas mechanical unloading leads to bone loss. Increasing evidence has demonstrated that ...Mechanical stimulation plays an important role in bone remodeling. Exercise-induced mechanical loading enhances bone strength,whereas mechanical unloading leads to bone loss. Increasing evidence has demonstrated that long noncoding RNAs(lnc RNAs) play key roles in diverse biological, physiological and pathological contexts. However, the roles of lnc RNAs in mechanotransduction and their relationships with bone formation remain unknown. In this study, we screened mechanosensing lnc RNAs in osteoblasts and identified Neat1, the most clearly decreased lnc RNA under simulated microgravity. Of note, not only Neat1 expression but also the specific paraspeckle structure formed by Neat1 was sensitive to different mechanical stimulations, which were closely associated with osteoblast function. Paraspeckles exhibited small punctate aggregates under simulated microgravity and elongated prolate or larger irregular structures under mechanical loading. Neat1 knockout mice displayed disrupted bone formation, impaired bone structure and strength, and reduced bone mass. Neat1 deficiency in osteoblasts reduced the response of osteoblasts to mechanical stimulation. In vivo, Neat1 knockout in mice weakened the bone phenotypes in response to mechanical loading and hindlimb unloading stimulation. Mechanistically, paraspeckles promoted nuclear retention of E3 ubiquitin ligase Smurf1 m RNA and downregulation of their translation, thus inhibiting ubiquitination-mediated degradation of the osteoblast master transcription factor Runx2, a Smurf1 target. Our study revealed that Neat1 plays an essential role in osteoblast function under mechanical stimulation, which provides a paradigm for the function of the lnc RNA-assembled structure in response to mechanical stimulation and offers a therapeutic strategy for long-term spaceflight-or bedrest-induced bone loss and age-related osteoporosis.展开更多
Aqueous zinc-ion batteries(ZIBs) are attracting considerable attention because of their low cost,high safety and abundant anode material resources.However,the major challenge faced by aqueous ZIBs is the lack of stabl...Aqueous zinc-ion batteries(ZIBs) are attracting considerable attention because of their low cost,high safety and abundant anode material resources.However,the major challenge faced by aqueous ZIBs is the lack of stable and high capacity cathode materials due to their complicated reaction mechanism and slow Zn-ion transport kinetics.This study reports a unique 3 D ’flower-like’ zinc cobaltite(ZnCo_(2)O_(4-x)) with enriched oxygen vacancies as a new cathode material for aqueous ZIBs.Computational calculations reveal that the presence of oxygen vacancies significantly enhances the electronic conductivity and accelerates Zn^(2+) diffusion by providing enlarged channels.The as-fabricated batteries present an impressive specific capacity of 148.3 mAh g^(-1) at the current density of 0.05 A g^(-1),high energy(2.8 Wh kg^(-1)) and power densities(27.2 W kg^(-1)) based on the whole device,which outperform most of the reported aqueous ZIBs.Moreover,a flexible solid-state pouch cell was demonstrated,which delivers an extremely stable capacity under bending states.This work demonstrates that the performance of Zn-ion storage can be effectively enhanced by tailoring the atomic structure of cathode materials,guiding the development of low-cost and eco-friendly energy storage materials.展开更多
Catalytic oxidation of benzene with N_(2)O to phenol over the hierarchical and microporous Fe/ZSM-5-based catalysts in a continuous fixedbed reactor was investigated.The spent catalyst was in-situ regenerated by an ox...Catalytic oxidation of benzene with N_(2)O to phenol over the hierarchical and microporous Fe/ZSM-5-based catalysts in a continuous fixedbed reactor was investigated.The spent catalyst was in-situ regenerated by an oxidative treatment using N_(2)O and in total 10 reaction-regeneration cycles were performed.A 100% N_(2)O conversion,93.3% phenol selectivity,and high initial phenol formation rate of 16.49±0.06mmol_(phenol gcatalyst)^(-1)h^(-1)at time on stream(TOS) of 5 min,and a good phenol productivity of 147.06 mmol_(phenol gcatalyst)^(-1)during catalyst lifetime of 1800 min were obtained on a fresh hierarchical Fe/ZSM-5-Hi2.8 catalyst.With the reaction-regeneration cycle,N_(2)O conversion is fully recovered within TOS of 3 h,moreover,the phenol productivity was decreased ca.2.2±0.8% after each cycle,leading to a total phenol productivity of ca.0.44 ton_(pheol kg_(catalyst)^(-1)estimated for 300 cycles.Catalyst characterizations imply that the coke is rapidly deposited on catalyst surface in the initial TOS of 3 h(0.28 mgc_(gcatalyst)^(-1)min^(-1)) and gradually becomes graphitic during the TOS of 30 h with a slow formation rate of 0.06 mgc g_(catalyst)^(-1)min^(-1).Among others(e.g.,the decrease of textural property and acidity),the nearly complete coverage of the active Fe-O-Al sites by coke accounts for the main catalyst deactivation.Besides these reversible deactivation characteristics related to coking,the irreversible catalyst deactivation is also observed with the reaction-regeneration cycle.The latter is reflected by a further decreased amount of the active Fe-O-Al sites,which agglomerate on catalyst surface with the cycle,likely associated with the hard coke residue that is not completely removed by the regeneration.展开更多
Mineral resources are essential to prosperity and security of modern societies.How mineral resources can guar-antee sustainable development of economy in countries,especially those developing countries,has long been a...Mineral resources are essential to prosperity and security of modern societies.How mineral resources can guar-antee sustainable development of economy in countries,especially those developing countries,has long been a focus of attention of international communities.This paper provides a comprehensive summary for major ad-vance of the research on mineral resources in past decades,and proposes some key issues regarding ore-forming mechanism,exploration and utilization of major and critical mineral resources.On the basis of these aspects,we also identify four priority science issues to be addressed in the future,including(1)mechanism of both metal circulation and extremely high concentration,(2)theories and technologies of prospecting deep-earth resources,(3)investigation of mineral resources in seafloor and polar regions,and(4)efficient,clean and recycling utiliza-tion of mineral resources.It can be expected that new advances in these four issues would tremendously promote the innovation of mineral resource science,and provide scientific and technologic support to meet the demand of mineral resources for human activities and the harmonious development of both mineral-resource exploration and ecological restoration.展开更多
文摘This article addresses the issues of falling into local optima and insufficient exploration capability in the Arithmetic Optimization Algorithm (AOA), proposing an improved Arithmetic Optimization Algorithm with a multi-strategy mechanism (BSFAOA). This algorithm introduces three strategies within the standard AOA framework: an adaptive balance factor SMOA based on sine functions, a search strategy combining Spiral Search and Brownian Motion, and a hybrid perturbation strategy based on Whale Fall Mechanism and Polynomial Differential Learning. The BSFAOA algorithm is analyzed in depth on the well-known 23 benchmark functions, CEC2019 test functions, and four real optimization problems. The experimental results demonstrate that the BSFAOA algorithm can better balance the exploration and exploitation capabilities, significantly enhancing the stability, convergence mode, and search efficiency of the AOA algorithm.
文摘As an extension of overlap functions, pseudo-semi-overlap functions are a crucial class of aggregation functions. Therefore, (I, PSO)-fuzzy rough sets are introduced, utilizing pseudo-semi-overlap functions, and further extended for applications in image edge extraction. Firstly, a new clustering function, the pseudo-semi-overlap function, is introduced by eliminating the symmetry and right continuity present in the overlap function. The relaxed nature of this function enhances its applicability in image edge extraction. Secondly, the definitions of (I, PSO)-fuzzy rough sets are provided, using (I, PSO)-fuzzy rough sets, a pair of new fuzzy mathematical morphological operators (IPSOFMM operators) is proposed. Finally, by combining the fuzzy C-means algorithm and IPSOFMM operators, a novel image edge extraction algorithm (FCM-IPSO algorithm) is proposed and implemented. Compared to existing algorithms, the FCM-IPSO algorithm exhibits more image edges and a 73.81% decrease in the noise introduction rate. The outstanding performance of (I, PSO)-fuzzy rough sets in image edge extraction demonstrates their practical application value.
文摘Development of efficient heterostructured photocatalysts that respond to visible light remains a considerable challenge.We herein show the synthesis of ZnIn2S4/carbon quantum dot hybrid photocatalysts with flowerlike microspheres via a facile solvothermal method.The ZnIn2S4/carbon quantum dot flowerlike microspheres display enhanced photocatalytic and photoelectrochemical activity compared with that of pure ZnIn2S4.With a content of only 0.5 wt%carbon quantum dots,93%of Cr(VI)is reduced under visible‐light irradiation at 40 min.As a co‐catalyst,the carbon quantum dots improve the light absorption and lengthen the lifetime of charge carriers,consequently enhancing the photocatalytic and photoelectrochemical activity.
基金financially supported by the National Natural Science Foundation of China (Grant No. 41325007) the GPMR State Key Laboratory (grant MSFGPMR03)+1 种基金the China Geological Survey (Grant No. 1212011120570)National Demonstration Center for Experimental Mineral Exploration Education at China University of Geosciences (Wuhan)
文摘The West Qinling Orogen(WQO) in Central China Orogenic Belt contains numerous metasedimentary rock-hosted gold deposits(>2000 t Au), which mainly formed during two pulses: one previously recognized in the Late Triassic to Early Jurassic(T3 - J1) and one only recently identified in the Late Jurassic to Early Cretaceous(J3 - K1). Few studies have focused on the origin and geotectonic setting of the J3 - K1 gold deposits.Textural relationships, LA-ICP-MS trace element and sulfur isotope compositions of pyrites in hydrothermally altered T3 dykes within the J3 - K1 Daqiao deposit were used to constrain relative timing relationships between mineralization and pyrite growth in the dykes, and to characterize the source of ore fluid. These results are integrated with an overview of the regional geodynamic setting, to advance understanding of the tectonic driver for J3 - K1 hydrothermal gold systems. Pyrite in breccia-and dykehosted gold ores at Daqiao have similar chemical and isotopic compositions and are considered to be representative of J3 - K1 gold deposits in WQO. Co/Ni and sulfur isotope ratios suggest that ore fluids were derived from underlying Paleozoic Ni-and Se-rich carbonaceous sedimentary rocks. The geochemical data do not support the involvement of magmatic fluids. However, in the EQO(East Qinling Orogen), J3 - K1 deposits are genetically related to magmatism. Gold mineralization in WQO is contemporaneous with magmatic deposits in the EQO and both are mainly controlled by NE-and EWtrending structures produced by changes in plate motion of the Paleo-Pacific plate as it was subducted beneath the Eurasian continent. We therefore infer that the J3 - K1 structural regime facilitated the ascent of magma in the EQO and metamorphic fluids in the WQO with consequent differences in the character of contemporaneous ore deposits. If this is correct, then the far-field effects of subduction along the eastern margin of NE Asia extended 1000's of km into the continental interior.
基金supported by the National Natural Science Foundation of China Project(No.82072108,82192880,82192882,81830061,91740114 and 32000879)the Space Medical Experiment Project of China Manned Space Program(HYZHXM01006)National Key Laboratory of Space Medicine,China Astronaut Research and Training Center(SMFA22Q02)。
文摘Bone marrow mesenchymal stem cell(BMSC)osteogenic differentiation and osteoblast function play critical roles in bone formation,which is a highly regulated process.Long noncoding RNAs(lncRNAs)perform diverse functions in a variety of biological processes,including BMSC osteogenic differentiation.Although several studies have reported that HOX transcript antisense RNA(HOTAIR)is involved in BMSC osteogenic differentiation,its effect on bone formation in vivo remains unclear.Here,by constructing transgenic mice with BMSC(Prx1-HOTAIR)-and osteoblast(Bglap-HOTAIR)-specific overexpression of HOTAIR,we found that Prx1-HOTAIR and Bglap-HOTAIR transgenic mice show different bone phenotypes in vivo.Specifically,Prx1-HOTAIR mice showed delayed bone formation,while Bglap-HOTAIR mice showed increased bone formation.HOTAIR inhibits BMSC osteogenic differentiation but promotes osteoblast function in vitro.Furthermore,we identified that HOTAIR is mainly located in the nucleus of BMSCs and in the cytoplasm of osteoblasts.HOTAIR displays a nucleocytoplasmic translocation pattern during BMSC osteogenic differentiation.We first identified that the RNA-binding protein human antigen R(HuR)is responsible for HOTAIR nucleocytoplasmic translocation.HOTAIR is essential for osteoblast function,and cytoplasmic HOTAIR binds to miR-214 and acts as a ceRNA to increase Atf4 protein levels and osteoblast function.BglapHOTAIR mice,but not Prx1-HOTAIR mice,showed alleviation of bone loss induced by unloading.This study reveals the importance of temporal and spatial regulation of HOTAIR in BMSC osteogenic differentiation and bone formation,which provides new insights into precise regulation as a target for bone loss.
文摘The application of ionic liquids as alternatives to conventional organic solvents in the extraction process has been investigated. In the present study, fourteen species of imidazolium-based ionic liquids were added into the NaOH (aq) to remove the mercaptans. The influences of anion species and cation alkyl chain length of the imidazolium-based ionic liquids on the performance of mercaptan removal from light oils have been discussed. The efficiency of extraction for mercaptans exhibited the order of [Ac]- 〉 [OH]- [Br]- 〉 [BF4]-. The longer alkyl chain imidazolium-based ionic liquids contributed to enhance desulfurization rate of l-butyl mercaptan. 100% desulfurization rate of l-butyl mercaptan was achieved by the anion of Ac- ionic liquids and NaOH (aq) at a volume ratio of 40:1 (V(oil]:Vfionic liouid)) and a short eouilibrium time within 10 min.
基金This work was financially supported by the High‐level Talents'Discipline Construction Fund of Shandong University(31370089963078)the Shandong Provincial Science and Technology Major Project(2018JM RH0211 and 2017CXGC1010)+3 种基金the Research Funds of Shandong University(10000089395121)the Natural Science Foundation of Shandong Province(ZR2019MEM052 and ZR2017MEM002)The National Natural Science Foundation of China(grant no.52002287)the Start‐up Funding of Wenzhou University are acknowledged.
文摘Layered lithium-rich manganese-based oxide(LRMO)has the limitation of inevitable evolution of lattice oxygen release and layered structure transformation.Herein,a multilayer reconstruction strategy is applied to LRMO via facile pyrolysis of potassium Prussian blue.The multilayer interface is visually observed using an atomic-resolution scanning transmission electron microscope and a high-resolution transmission electron microscope.Combined with the electrochemical characterization,the redox of lattice oxygen is suppressed during the initial charging.In situ X-ray diffraction and the high-resolution transmission electron microscope demonstrate that the suppressed evolution of lattice oxygen eliminates the variation in the unit cell parameters during initial(de)lithiation,which further prevents lattice distortion during long cycling.As a result,the initial Coulombic efficiency of the modified LRMO is up to 87.31%,and the rate capacity and long-term cycle stability also improved considerably.In this work,a facile surface reconstruction strategy is used to suppress vigorous anionic redox,which is expected to stimulate material design in high-performance lithium ion batteries.
基金funded by the National Key Research and Development Plan,Energy Storage Technology of 10MW Level Redox Battery(2017YFB0903504)China State Grid Corporation science and technology project(DG71-16-002,DG83-17-002)the international cooperation project between China and United Kingdom,RAEng Newton Research Collaboration Programme of UK/1415134
文摘High temperature Superconducting Magnetic Energy Storage(SMES) systems can exchange energy with substantial renewable power grids in a small period of time with very high efficiency. Because of this distinctive feature, they store the abundant wind power when the power network is congested and release the energy back to the system when there is no congestion. However, considering the cost and lifespan of SMES systems, there is an urgent demand to conduct a cost-benefit analysis to justify its role in smart grid development. This study explores the application and performs economic analysis of a 5 MJ SMES in a practical renewable power system in China based on the PSCAD/EMTDC software. An optimal location of SMES in Zhangbei wind farm is presented using real power transmission parameters. The stabilities of the renewable power grid with and without SMES are discussed. In addition, a financial feasibility study is conducted by comparing the cost and the savings from wind power curtailment of deploying SMES and battery. The economic analysis tries to find the balance between SMES investment cost and wind farm operation cost by using real data over a calendar year. The technical analysis can help guide the optimal allocation of SMES for compensating power system instability with substantial wind power. Further, the economic analysis provides a useful indication of its practical application feasibility to fight the balance between cost and benefit.
文摘This article explores the topic of fault diagnosis and maintenance strategies for instrument automation control systems,analyzing them through specific cases.The aim of this research is to improve the stability and reliability of the system by conducting a thorough investigation of faults and maintenance in instrument automation control systems.By doing so,this research hopes to provide a strong guarantee for the smooth progress of industrial production.
文摘<i><span style="font-family:;" "="">Solanum nigrum</span></i><span style="font-family:;" "=""> L. has a delightful prospect as a hyperaccumulation plant for cadmium pollution remediation, and microplastic is a new type of pollution that has received wide attention. In this study, the effects of polyethylene microplastics (LDPE) (0.135, 0.27, 0.81 and 1.35 mg·kg<sup>-1</sup>) and cadmium (20 mg·kg<sup>-1</sup>) on the growth indexes and soil physical and chemical properties of <i>Solanum nigrum</i> L. were investigated in a 17-day microcosm experiment. The results showed that single LDPE contamination showed a trend of low concentration promotion and medium-high concentration inhibited the growth index of <i>Solanum nigrum</i> L. and soil physicochemical index, and single Cd contamination was more stressful to plants than single LDPE contamination, while low concentration of LDPE could reduce the effect of Cd on soil physical and chemical properties and promote plant growth and uptake of soil nutrients. These findings suggest that high concentrations of microplastics can inhibit the growth of <i>Solanum nigrum</i> L. alone or in combination with Cd, rather than reducing the toxicity of Cd.</span>
基金supported by the National Key Research and Development Program of China(2019YFE0114400)the Guangdong Basic and Applied Basic Research Foundation(2021B1515120005)+7 种基金the National Natural Science Foundation of China(32171721)the Guangdong Basic and Applied Basic Research Foundation(2021B151512000)the Guangzhou Science and Technology Plan Project(202102020262)the State Key Laboratory of Pulp&Paper Engineering(2022C01),the State Key Laboratory of Pulp&Paper Engineering(202208)the Engineering and Physical Sciences Research Council(EPSRCEP/V027433/1EP/V027433/2EP/Y008707/1)。
文摘Although their cost-effectiveness and intrinsic safety,aqueous zinc-ion batteries suffer from notorious side reactions including hydrogen evolution reaction,Zn corrosion and passivation,and Zn dendrite formation on the anode.Despite numerous strategies to alleviate these side reactions have been demonstrated,they can only provide limited performance improvement from a single aspect.Herein,a triple-functional additive with trace amounts,ammonium hydroxide,was demonstrated to comprehensively protect zinc anodes.The results show that the shift of electrolyte pH from 4.1 to 5.2 lowers the HER potential and encourages the in situ formation of a uniform ZHS-based solid electrolyte interphase on Zn anodes.Moreover,cationic NH^(4+)can preferentially adsorb on the Zn anode surface to shield the“tip effect”and homogenize the electric field.Benefitting from this comprehensive protection,dendrite-free Zn deposition and highly reversible Zn plating/stripping behaviors were realized.Besides,improved electrochemical performances can also be achieved in Zn//MnO_(2)full cells by taking the advantages of this triple-functional additive.This work provides a new strategy for stabilizing Zn anodes from a comprehensive perspective.
基金the financial support by National Key Research and Development Project(Grand No.2020YFC1107202)Guangdong Basic and Applied Basic Research Foundation(Grand No.2020A1515110754)+3 种基金MOE Key Lab of Disaster Forest and Control in Engineering,Jinan University(Grand No.20200904008)Educational Commission of Guangdong Province(Grand No.2020KTSCX012)the Fundamental Research Funds for Central Universities(Grand No.21620342)the support from National Natural Science Foundation of China,NSFC(Grand No.51775556)。
文摘Additive manufacturing(AM)of Mg alloys has become a promising strategy for producing complex structures,but the corrosion performance of AM Mg components remains unexploited.In this study,wire and arc additive manufacturing(WAAM)was employed to produce single AZ31 layer.The results revealed that the WAAM AZ31 was characterized by significant grain refinement with non-textured crystallographic orientation,similar phase composition and stabilized corrosion performance comparing to the cast AZ31.These varied corrosion behaviors were principally ascribed to the size of grain,where cast AZ31 and WAAM AZ31 were featured by micro galvanic corrosion and intergranular corrosion,respectively.
基金supported by the National Natural Science Foundation of China (51572194)the National Key Research and Development Program of China (2018YFB0105900)
文摘In this study,MnCo2O4 nanosheets were proposed to be utilized as an electrode material for supercapacitors.A two-step hydrothermal method with post-annealing treatment was employed in preparation of the nanostructures.MnCo2O4 electrode delivered a high specific capacitance of 2000 F g^-1 at 0.5 A g^-1,remarkable high-rate capability of 1150 F g^-1 at 20 A g^-1,and an excellent cycling stability of 92.3%at 5 A g^-1 after 5000 cycles.It is found that a three-electrode supercapacitor based on MnCo2O4 exhibits a promising electrochemical performance,better than the other similar materials,benefited from the synergistic effects of MnCo2O4 nanosheets.In fact,the self-assembly of nanosheets structure with high specific surface area and mesoporous structure can potentially enhance the electrochemical performance of supercapacitors.
基金Supported by the National Natural Science Foundation of China(21736010,U1462128,91334108)the State Key Development Program for Basic Research of China(2015CB251402)
文摘The deactivation mechanism of Co/MgO catalyst for the reforming of methane with carbon dioxide was investigated. The conversion of CH4 displayed a significant decrease in the initial stage caused by carbon deposition.There were two types of cokes, carbon nanotubes(CNTs) and carbon nano-onions(CNOs). The number of the CNO layers that coated on the surface of Co nanoparticles(NPs) increased rapidly in the initial reforming time,which was responsible for the deactivation of the Co/MgO catalyst. The deposition of CNOs was attributed to the oxidation of Co NPs. Therefore, the deactivation of the Co/MgO catalyst was originated from the first oxidization of the Co NPs into Co3 O4 by O species(OH intermediate, CO_2, H2 O) during the reforming reaction,which accelerates the formation of coke that blocked the active metal, thus led to catalyst deactivation.
基金supported by the National Natural Science Foundation of China Project (Nos. 31630038, 81822026,91740114, 81830061, and 31900849)
文摘Mechanical stimulation plays an important role in bone remodeling. Exercise-induced mechanical loading enhances bone strength,whereas mechanical unloading leads to bone loss. Increasing evidence has demonstrated that long noncoding RNAs(lnc RNAs) play key roles in diverse biological, physiological and pathological contexts. However, the roles of lnc RNAs in mechanotransduction and their relationships with bone formation remain unknown. In this study, we screened mechanosensing lnc RNAs in osteoblasts and identified Neat1, the most clearly decreased lnc RNA under simulated microgravity. Of note, not only Neat1 expression but also the specific paraspeckle structure formed by Neat1 was sensitive to different mechanical stimulations, which were closely associated with osteoblast function. Paraspeckles exhibited small punctate aggregates under simulated microgravity and elongated prolate or larger irregular structures under mechanical loading. Neat1 knockout mice displayed disrupted bone formation, impaired bone structure and strength, and reduced bone mass. Neat1 deficiency in osteoblasts reduced the response of osteoblasts to mechanical stimulation. In vivo, Neat1 knockout in mice weakened the bone phenotypes in response to mechanical loading and hindlimb unloading stimulation. Mechanistically, paraspeckles promoted nuclear retention of E3 ubiquitin ligase Smurf1 m RNA and downregulation of their translation, thus inhibiting ubiquitination-mediated degradation of the osteoblast master transcription factor Runx2, a Smurf1 target. Our study revealed that Neat1 plays an essential role in osteoblast function under mechanical stimulation, which provides a paradigm for the function of the lnc RNA-assembled structure in response to mechanical stimulation and offers a therapeutic strategy for long-term spaceflight-or bedrest-induced bone loss and age-related osteoporosis.
基金supported by the National Natural Science Foundation of China(Nos.51873198,51503184 and 21703248)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB20000000)+1 种基金the Engineering and Physical Sciences Research Council(EPSRC,EP/R023581/1)the RSC Mobility Grant(M19-7656)and the STFC Batteries Network(ST/R006873/1)。
文摘Aqueous zinc-ion batteries(ZIBs) are attracting considerable attention because of their low cost,high safety and abundant anode material resources.However,the major challenge faced by aqueous ZIBs is the lack of stable and high capacity cathode materials due to their complicated reaction mechanism and slow Zn-ion transport kinetics.This study reports a unique 3 D ’flower-like’ zinc cobaltite(ZnCo_(2)O_(4-x)) with enriched oxygen vacancies as a new cathode material for aqueous ZIBs.Computational calculations reveal that the presence of oxygen vacancies significantly enhances the electronic conductivity and accelerates Zn^(2+) diffusion by providing enlarged channels.The as-fabricated batteries present an impressive specific capacity of 148.3 mAh g^(-1) at the current density of 0.05 A g^(-1),high energy(2.8 Wh kg^(-1)) and power densities(27.2 W kg^(-1)) based on the whole device,which outperform most of the reported aqueous ZIBs.Moreover,a flexible solid-state pouch cell was demonstrated,which delivers an extremely stable capacity under bending states.This work demonstrates that the performance of Zn-ion storage can be effectively enhanced by tailoring the atomic structure of cathode materials,guiding the development of low-cost and eco-friendly energy storage materials.
基金Financial support by the Specialized Research Fund for Doctoral Program of Higher Education,China (No.20120010110003)。
文摘Catalytic oxidation of benzene with N_(2)O to phenol over the hierarchical and microporous Fe/ZSM-5-based catalysts in a continuous fixedbed reactor was investigated.The spent catalyst was in-situ regenerated by an oxidative treatment using N_(2)O and in total 10 reaction-regeneration cycles were performed.A 100% N_(2)O conversion,93.3% phenol selectivity,and high initial phenol formation rate of 16.49±0.06mmol_(phenol gcatalyst)^(-1)h^(-1)at time on stream(TOS) of 5 min,and a good phenol productivity of 147.06 mmol_(phenol gcatalyst)^(-1)during catalyst lifetime of 1800 min were obtained on a fresh hierarchical Fe/ZSM-5-Hi2.8 catalyst.With the reaction-regeneration cycle,N_(2)O conversion is fully recovered within TOS of 3 h,moreover,the phenol productivity was decreased ca.2.2±0.8% after each cycle,leading to a total phenol productivity of ca.0.44 ton_(pheol kg_(catalyst)^(-1)estimated for 300 cycles.Catalyst characterizations imply that the coke is rapidly deposited on catalyst surface in the initial TOS of 3 h(0.28 mgc_(gcatalyst)^(-1)min^(-1)) and gradually becomes graphitic during the TOS of 30 h with a slow formation rate of 0.06 mgc g_(catalyst)^(-1)min^(-1).Among others(e.g.,the decrease of textural property and acidity),the nearly complete coverage of the active Fe-O-Al sites by coke accounts for the main catalyst deactivation.Besides these reversible deactivation characteristics related to coking,the irreversible catalyst deactivation is also observed with the reaction-regeneration cycle.The latter is reflected by a further decreased amount of the active Fe-O-Al sites,which agglomerate on catalyst surface with the cycle,likely associated with the hard coke residue that is not completely removed by the regeneration.
基金This work was supported by the National Natural Science Foundation of China(Grant No.L1924041)Research Project on the Discipline Development Strategy of Academic Divisions of the Chinese Academy of Sciences(Grant No.XK2019DXC006).
文摘Mineral resources are essential to prosperity and security of modern societies.How mineral resources can guar-antee sustainable development of economy in countries,especially those developing countries,has long been a focus of attention of international communities.This paper provides a comprehensive summary for major ad-vance of the research on mineral resources in past decades,and proposes some key issues regarding ore-forming mechanism,exploration and utilization of major and critical mineral resources.On the basis of these aspects,we also identify four priority science issues to be addressed in the future,including(1)mechanism of both metal circulation and extremely high concentration,(2)theories and technologies of prospecting deep-earth resources,(3)investigation of mineral resources in seafloor and polar regions,and(4)efficient,clean and recycling utiliza-tion of mineral resources.It can be expected that new advances in these four issues would tremendously promote the innovation of mineral resource science,and provide scientific and technologic support to meet the demand of mineral resources for human activities and the harmonious development of both mineral-resource exploration and ecological restoration.