Single-atom catalysts(SACs)have gained substantial attention because of their exceptional catalytic properties.However,the high surface energy limits their synthesis,thus creating significant challenges for further de...Single-atom catalysts(SACs)have gained substantial attention because of their exceptional catalytic properties.However,the high surface energy limits their synthesis,thus creating significant challenges for further development.In the last few years,metal–organic frameworks(MOFs)have received significant consideration as ideal candidates for synthesizing SACs due to their tailorable chemistry,tunable morphologies,high porosity,and chemical/thermal stability.From this perspective,this review thoroughly summarizes the previously reported methods and possible future approaches for constructing MOF-based(MOF-derived-supported and MOF-supported)SACs.Then,MOF-based SAC's identification techniques are briefly assessed to understand their coordination environments,local electronic structures,spatial distributions,and catalytic/electrochemical reaction mechanisms.This review systematically highlights several photocatalytic and electrocatalytic applications of MOF-based SACs for energy conversion and storage,including hydrogen evolution reactions,oxygen evolution reactions,O_(2)/CO_(2)/N_(2) reduction reactions,fuel cells,and rechargeable batteries.Some light is also shed on the future development of this highly exciting field by highlighting the advantages and limitations of MOF-based SACs.展开更多
At the EAST tokamak, the ion temperature(T_(i)) is observed to be clamped around 1.25 keV in electron cyclotron resonance(ECR)-heated plasmas, even at core electron temperatures up to 10 keV(depending on the ECR heati...At the EAST tokamak, the ion temperature(T_(i)) is observed to be clamped around 1.25 keV in electron cyclotron resonance(ECR)-heated plasmas, even at core electron temperatures up to 10 keV(depending on the ECR heating power and the plasma density). This clamping results from the lack of direct ion heating and high levels of turbulence-driven transport. Turbulent transport analysis shows that trapped electron mode and electron temperature gradient-driven modes are the most unstable modes in the core of ECR-heated H-mode plasmas. Nevertheless, recently it was found that the T_(i)/T_(e)ratio can increase further with the fraction of the neutral beam injection(NBI) power, which leads to a higher core ion temperature(Ti0). In NBI heating-dominant H-mode plasmas, the ion temperature gradient-driven modes become the most unstable modes.Furthermore, a strong and broad internal transport barrier(ITB) can form at the plasma core in high-power NBI-heated H-mode plasmas when the T_(i)/T_(e)ratio approaches ~1, which results in steep core Teand Tiprofiles, as well as a peaked neprofile. Power balance analysis shows a weaker Teprofile stiffness after the formation of ITBs in the core plasma region, where Ticlamping is broken,and the core Tican increase further above 2 keV, which is 80% higher than the value of Ticlamping in ECR-heated plasmas. This finding proposes a possible solution to the problem of Ticlamping on EAST and demonstrates an advanced operational regime with the formation of a strong and broad ITB for future fusion plasmas dominated by electron heating.展开更多
A neural network model with a classical annotation method has been used on the EXL-50tokamak to predict impending disruption.However,the results revealed issues of overfitting and overconfidence in predictions caused ...A neural network model with a classical annotation method has been used on the EXL-50tokamak to predict impending disruption.However,the results revealed issues of overfitting and overconfidence in predictions caused by inaccurate labeling.To mitigate these issues,an improved training framework has been proposed.In this approach,soft labels from previous training serve as teachers to supervise the further learning process;this has lead to a significant improvement in predictive model performance.Notably,this enhancement is primarily attributed to the coupling effect of the soft labels and correction mechanism.This improved training framework introduces an instance-specific label smoothing method,which reflects a more nuanced model assessment on the likelihood of a disruption.It presents a possible solution to effectively address the challenges associated with accurate labeling across different machines.展开更多
Co-N-C is a promising oxygen electrochemical catalyst due to its high stability and good durability.However,due to the limited adsorption ability improvement for oxygen-containing intermediates,it usually exhibits ina...Co-N-C is a promising oxygen electrochemical catalyst due to its high stability and good durability.However,due to the limited adsorption ability improvement for oxygen-containing intermediates,it usually exhibits inadequate catalytic activity with 2-electron pathway and high selectivity of hydrogen peroxide.Herein,the adsorption of Co-N-C to these intermediates is modulated by constructing heterostructures using transition metals and their derivatives based on d-band theory.The heterostructured nanobelts with MoC core and pomegranate-like carbon shell consisting of Co nanoparticles and N dopant(MoC/Co-N-C)are engineered to successfully modulate the d band center of active Co-N-C sites,resulting in a remarkably enhanced electrocatalysis performance.The optimally performing MoC/Co-N-C exhibits outstanding bi-catalytic activity and stability for the oxygen electrochemistry,featuring a high wave-half potential of 0.865 V for the oxygen reduction reaction(ORR)and low overpotential of 370 mV for the oxygen evolution reaction(OER)at 10 mA cm^(-2).The zinc air batteries with the MoC/Co-N-C catalyst demonstrate a large power density of 180 mW cm^(-2)and a long cycling lifespan(2000 cycles).The density functional theory calculations with Hubbard correction(DFT+U)reveal the electron transferring from Co to Mo atoms that effectively modulate the d band center of the active Co sites and achieve optimum adsorption ability with"single site double adsorption"mode.展开更多
Currently ether solvents have been regarded as the most compatible organic solvents with lithium metal in electrolytes of lithium batteries.However,ether solvents are unstable under high voltage (>4.0 V),and prone ...Currently ether solvents have been regarded as the most compatible organic solvents with lithium metal in electrolytes of lithium batteries.However,ether solvents are unstable under high voltage (>4.0 V),and prone to side reactions with nickel-rich high-voltage cathode materials.In this work,a novel dual-solvent electrolyte in ethylene glycol dimethyl ether (DME) and butyronitrile (BN) mixed solvent was designed and fabricated for Li/Li Ni_(0.5)Mn_(0.3)Co_(0.2)O_(2)-based lithium metal batteries.When charged to high voltage4.3 V,the battery cycled in this optimal electrolyte can maintain the capacity at 133.7 m Ah g^(-1) with a retention of 88.84%after 150 cycles at 0.2 C and-10℃.During long-term cycling,the battery also exhibits excellent cycling performance with capacity maintained at about 112.0 m Ah g^(-1) after 500 cycles at 1C and-10℃.BN has strong oxidation resistance and high conductivity,which can inhibit the decomposition of ether solvents under high voltage and improve the low temperature performance of battery effectively.Additionally,the cyano (–C≡N) group in BN molecular has a strong coordination ability with the high-valent metal ions and can mask the active ions on the cathode,correspondingly reducing the corrosion of cathode material by the electrolyte.Moreover,cyano group can participate in the hydrolysis to remove trace amounts of water and acidic by-products such as HF in the electrolyte.Therefore,the boosting effect of butyronitrile for ether solvents can provide a promising strategy for enhancing the performance of high voltage lithium metal batteries for practical industrialization.展开更多
Electrocatalytic water splitting is a viable technique for generating hydrogen but is precluded from the sluggish kinetics of oxygen evolution reactions(OER).Small molecule oxidation reactions with lower working poten...Electrocatalytic water splitting is a viable technique for generating hydrogen but is precluded from the sluggish kinetics of oxygen evolution reactions(OER).Small molecule oxidation reactions with lower working potentials,such as methanol oxidation reactions,are good alternatives to OER with faster kinetics.However,the typically employed Ni-based electrocatalysts have poor activity and stability.Herein,a novel three-dimensional(3D)-networking Modoped Ni(OH)_(2) with ultralow Ni-Ni coordination is synthesized,which exhibits a high MOR activity of 100 mA cm^(−2) at 1.39 V,delivering 28 mV dec^(−1) for the Tafel slope.Meanwhile,hydrogen evolution with value-added formate co-generation is boosted with a current density of more than 500 mA cm^(−2) at a cell voltage of 2.00 V for 50 h,showing excellent stability in an industrial alkaline concentration(6 M KOH).Mechanistic studies based on density functional the-ory and X-ray absorption spectroscopy showed that the improved performance is mainly attributed to the ultralow Ni-Ni coordination,3D-networking structures and Mo dopants,which improve the catalytic activity,increase the active site density and strengthen the Ni(OH)_(2)3D-networking structures,respectively.This study paves a new way for designing electrocatalysts with enhanced activity and durability for industrial energy-saving hydrogen production.展开更多
Li metal is the most ideal anode material for next-generation high energy lithium-ion batteries.The uncontrollable growth of Li dendrites,however,hinders its practical application.Herein,we propose the adoption of Zn ...Li metal is the most ideal anode material for next-generation high energy lithium-ion batteries.The uncontrollable growth of Li dendrites,however,hinders its practical application.Herein,we propose the adoption of Zn nanoparticles uniformly embedded in N-doped carbon polyhedra homogeneously built on carbon cloth(Zn@NC@CC)to prevent the formation of Li dendrites.Based on theoretical calculation and experimental observation,lithiophilic Zn nanoparticles and N-doping inside of the assynthesized Zn@NC play a synergistic role in enhancing the adsorption capacity with Li,thus resulting in uniform Li deposition and complete suppression of Li dendrites.Moreover,the porous N-doped carbon polyhedras uniformly distributed on carbon cloth effectively relieves the volume change of Li upon repeated Li stripping/plating process,which contributes to preserving the structural integrity of the whole electrode and hence enhancing its long-term cycling stability.Benefiting from these synergistic effects,the Li-Zn@NC@CC electrode delivers a prolonged lifespan of over 1200 h at 1 mA cm^(-2) with an areal capacity of 1 mA h cm^(-2) in symmetric cells and high Coulombic efficiencies of 95.4%under an ultrahigh capacity of 12 mA h cm^(-2).Remarkably,Li-Zn@NC@CC//LiFePO_(4) full cells deliver a high reversible capacity of 110.2 mA h g^(-1) at 1 C over 200 cycles.展开更多
The solid oxide electrolytic cell(SOEC)is one of the most promising energy conversion and storage devices,which could convert CO_(2) to CO with high Faradaic efficiency and production rate.However,the lack of active a...The solid oxide electrolytic cell(SOEC)is one of the most promising energy conversion and storage devices,which could convert CO_(2) to CO with high Faradaic efficiency and production rate.However,the lack of active and stable cathode materials impedes their practical applications.Here we focus on the promising perovskite oxide cathode material Sr_(2)Fe_(1.5)Mo_(0.5)O_(6)-σ,with the aim of understanding how A-atom stoichiometry and catalytic performance are linked.We find that increasing the strontium content in the perovskite improves the chemisorption of CO_(2) on its surface,forming a SrCO_(3) phase.This hinders the charge transfer and oxygen exchange processes.Simulta-neously,strontoium segregation to the cathode surface facilitates coking of the surface during CO_(2) electrolysis,which poisons the electrode.Consequently,a small number of Sr deficiencies are optimal for both electrochemical performance and long-term stability.Our results provide new insights for designing high-performance CO_(2) electrolysis cathode materials.展开更多
Interfaces of metal-oxide heterostructured electrocatalyst are critical to their catalytic activities due to the significant interfacial effects. However, there are still obscurities in the essence of interfacial effe...Interfaces of metal-oxide heterostructured electrocatalyst are critical to their catalytic activities due to the significant interfacial effects. However, there are still obscurities in the essence of interfacial effects caused by crystalline defects and mismatch of electronic structure at metal-oxide nanojunctions. To deeply understand the interfacial effects, we engineered crystalline-defect Pd-Cu2O interfaces through nonepitaxial growth by a facile redox route. The Pd-Cu2O nanoheterostructures exhibit much higher electrocatalytic activity toward glucose oxidation than their single counterparts and their physical mixture,which makes it have a promising potential for practical application of glucose biosensors.Experimental study and density functional theory(DFT) calculations demonstrated that the interfacial electron accumulation and the shifting up of d bands center of Cu-Pd toward the Fermi level were responsible for excellent electrocatalytic activity. Further study found that Pd(3 1 0) facets exert a strong metaloxide interface interaction with Cu2O(1 1 1) facets due to their lattice mismatch. This leads to the sinking of O atoms and protruding of Cu atoms of Cu2O, and the Pd crystalline defects, further resulting in electron accumulation at the interface and the shifting up of d bands center of Cu-Pd, which is different from previously reported charge transfer between the interfaces. Our findings could contribute to design and development of advanced metal-oxide heterostructured electrocatalysts.展开更多
Flexible pressure sensors capable of monitoring diverse physiological signals and body movements have garnered tremendous attention in wearable electronic devices.Thereinto,high constant sensitivity over a wide pressu...Flexible pressure sensors capable of monitoring diverse physiological signals and body movements have garnered tremendous attention in wearable electronic devices.Thereinto,high constant sensitivity over a wide pressure range combined with breathability,biocompatibility,biodegradability is pivotal for manufacturing of reliable pressure sensors in practical sensing applications.In this work,inspired by the multilayered structure of skin epidermis,we propose and demonstrate a multi-attribute wearable piezoresistive pressure sensor consisting of multilayered gradient conductive poly(ε-caprolactone)nanofiber membranes composites.In response to externally applied pressure,a layer-by-layer current path is activated inside the multilayered membranes composites,leading to the most salient sensing performance of high constant sensitivity of 33.955 kPa^(−1) within the pressure range of 0–80 kPa.The proposed pressure sensor also exhibits a fast response–relaxation time,a low detection limit,excellent stability,which can be successfully used to measure human physiological signals.Lastly,an integrated sensor array system that can locate objects’positions is constructed and applied to simulate sitting posture monitoring.These results indicate that the proposed pressure sensor holds great potential in health monitoring and wearable electronic devices.展开更多
Metal-organic framework materials(MOFs),such as zeolitic imidazolate framework(ZIF),have been widely used in energy storage due to their advantages such as high structural stability,large specific surface,more active ...Metal-organic framework materials(MOFs),such as zeolitic imidazolate framework(ZIF),have been widely used in energy storage due to their advantages such as high structural stability,large specific surface,more active sites and skeleton structures.Herein,a novel two-dimensional(2D)Co Cu-ZIF was synthesized by a facile solvothermal method.The as-prepared Co Cu-ZIF nanosheets exhibit an ultrahigh reversible capacity of 2287.4 m Ah/g and remains at 1172.1 m Ah/g after 300 cycles at a current density of 100 m A/g,far better than that of the single Co-ZIF and Cu-ZIF.Additionally,the specific discharge capacity of Co Cu-ZIF nanosheets can maintain at about 590 m Ah/g after 1000 cycles at the current density of 2 A/g.Owing to the synergistic effect of two metals,function of nitrogen in the molecular and selfassembly 2D nanosheets,our research can provide strong support for the practical application of Co Cu-ZIF materials in lithium ion batteries.展开更多
The silicon-based materials are promising candidates for lithium-ion batteries owing to their high energy density.However,achieving long lifespan under realistic conditions remains a challenge because of the volume ex...The silicon-based materials are promising candidates for lithium-ion batteries owing to their high energy density.However,achieving long lifespan under realistic conditions remains a challenge because of the volume expansion and low conductivity.In this work,the highly elastic cobweb-like composite materials consisted by SiO and nanofibers are designed and fabricated for high-efficient lithium storage by ballmilling&electrostatic spinning method.The reconstructed heterostructure and highly elastic nanofibers can simultaneously increase the conductivity and inhibit the"expansion effect"of silicon-based materials.The constructed electrode of n-SiO/CNF delivers an initial capacity of 1700 m Ah/g,and maintains the capacities over 1000 m Ah/g after 100 cycles at the current density of 500 m A/g.Meanwhile,this electrode can give an initial coulombic efficiency over 85%and maintains at 98%in the following charge/discharge processes.Furthermore,it exhibits efficient long-term electrochemical performance,maintaining the capacity at about 1000 m Ah/g at a high current density of 1000 m A/g after 1000 cycles.This work could provide a promising strategy for enhancing the performance of siliconbased composite materials for practical application in lithium-ion batteries.展开更多
This study simulated FY-2 D satellite infrared brightness images based on the WRF and RTTOV models. The effects of prediction errors in WRF micro-and macroscale cloud variables on FY-2 D infrared brightness temperatur...This study simulated FY-2 D satellite infrared brightness images based on the WRF and RTTOV models. The effects of prediction errors in WRF micro-and macroscale cloud variables on FY-2 D infrared brightness temperature accuracy were analyzed. The principle findings were as follows. In the T+0–48 h simulation time, the root mean square errors of the simulated brightness temperatures were within the range 10–27 K, i.e., better than the range of 20–40 K achieved previously. In the T+0–24 h simulation time, the correlation coefficients between the simulated and measured brightness temperatures for all four channels were >0.5. The simulation performance of water channel IR3 was stable and the best. The four types of cloud microphysical scheme considered all showed that the simulated values of brightness temperature in clouds were too high and that the distributions of cloud systems were incomplete, especially in typhoon areas. The performance of the THOM scheme was considered best, followed in descending order by the WSM6, WDM6, and LIN schemes. Compared with observed values, the maximum deviation appeared in the range 253–273 K for all schemes. On the microscale, the snow water mixing ratio of the THOM scheme was much bigger than that of the other schemes. Improving the production efficiency or increasing the availability of solid water in the cloud microphysical scheme would provide slight benefit for brightness temperature simulations. On the macroscale, the cloud amount obtained by the scheme used in this study was small. Improving the diagnostic scheme for cloud amount, especially high-level cloud, could improve the accuracy of brightness temperature simulations. These results could provide an intuitive reference for forecasters and constitute technical support for the creation of simulated brightness temperature images for the FY-4 satellite.展开更多
Background:Accurate diagnosis of Pneumocystis jirovecii pneumonia(PJP)is challenging,and the delayed diagnosis of PJP is associated with high mortality in patients with connective tissue disease(CTD).Metagenomic next-...Background:Accurate diagnosis of Pneumocystis jirovecii pneumonia(PJP)is challenging,and the delayed diagnosis of PJP is associated with high mortality in patients with connective tissue disease(CTD).Metagenomic next-generation sequencing(mNGS)technology facilitates etiological diagnosis of various infectious diseases,with promising application in diagnosing PJP.This study aimed to investigate the value of mNGS using bronchoalveolar lavage fluid(BALF)for diagnosing PJP infection.Methods:Data from 55 patients with CTD and suspected pulmonary infection was retrospectively collected and analysed.A PJP group and non-PJP group were formed.The clinical manifestations,laboratory test results,treatment methods,and outcomes were summarized.BALF mNGS results were compared with traditional pathogen tests(TPT)and serum 1,3-beta-D-glucan(BDG)testing.Results:The mean age of PJP patients was 54 years,and 59%(10/17)of the patients were female.A significant difference was found between the average daily dose of prednisone administered to the PJP group and non-PJP group(25 mg vs.16 mg,P<0.001).The PJP group had a significantly higher incidence of dyspnoea(88%[15/17]vs.16%[6/38],P<0.001)and elevated serum BDG level(167.73 vs.30.67 pg/mL,P<0.001).BALF mNGS was more sensitive than both TPT(100%[95%confidence interval{CI}:77.1%-100%]vs.11.8%[95%CI:2.1%-37.7%],P<0.001)and serum BDG(100%[95%CI:77.1%-100%]vs.85.7%[95%CI:42%-99.2%],P<0.001).BALF mNGS was more specific than serum BDG(89.5%[95%CI:74.3%-96.6%]vs.46.7%[95%CI:22.3%-72.6%],P=0.493).Co-infection with cytomegalovirus(CMV)was more common in the PJP patients than in the non-PJP patients(59%[10/17]vs.11%[4/38],respectively,P<0.001).Conclusion:BALF mNGS technology is highly effective for diagnosing PJP in patients with CTD and identifying co-infections.展开更多
基金support from the Shenzhen Science and Technology Program(No.KQTD20190929173914967,ZDSYS20220527171401003,and JCYJ20200109110416441).
文摘Single-atom catalysts(SACs)have gained substantial attention because of their exceptional catalytic properties.However,the high surface energy limits their synthesis,thus creating significant challenges for further development.In the last few years,metal–organic frameworks(MOFs)have received significant consideration as ideal candidates for synthesizing SACs due to their tailorable chemistry,tunable morphologies,high porosity,and chemical/thermal stability.From this perspective,this review thoroughly summarizes the previously reported methods and possible future approaches for constructing MOF-based(MOF-derived-supported and MOF-supported)SACs.Then,MOF-based SAC's identification techniques are briefly assessed to understand their coordination environments,local electronic structures,spatial distributions,and catalytic/electrochemical reaction mechanisms.This review systematically highlights several photocatalytic and electrocatalytic applications of MOF-based SACs for energy conversion and storage,including hydrogen evolution reactions,oxygen evolution reactions,O_(2)/CO_(2)/N_(2) reduction reactions,fuel cells,and rechargeable batteries.Some light is also shed on the future development of this highly exciting field by highlighting the advantages and limitations of MOF-based SACs.
基金supported by National Natural Science Foundation of China(No.12135015)the Users with Excellence Program of Hefei Science Center,CAS(No.2021HSCUE012)+3 种基金the National Key R&D Program of China(No.2022Y FE03010003)the Major Science and Technology Infrastructure Maintenance and Reconstruction Projects of the Chinese Academy of Sciences 2021the Special Funds for Improving Conditions for Scientific Research in National Scientific Institutions 2022the China Scholarship Council。
文摘At the EAST tokamak, the ion temperature(T_(i)) is observed to be clamped around 1.25 keV in electron cyclotron resonance(ECR)-heated plasmas, even at core electron temperatures up to 10 keV(depending on the ECR heating power and the plasma density). This clamping results from the lack of direct ion heating and high levels of turbulence-driven transport. Turbulent transport analysis shows that trapped electron mode and electron temperature gradient-driven modes are the most unstable modes in the core of ECR-heated H-mode plasmas. Nevertheless, recently it was found that the T_(i)/T_(e)ratio can increase further with the fraction of the neutral beam injection(NBI) power, which leads to a higher core ion temperature(Ti0). In NBI heating-dominant H-mode plasmas, the ion temperature gradient-driven modes become the most unstable modes.Furthermore, a strong and broad internal transport barrier(ITB) can form at the plasma core in high-power NBI-heated H-mode plasmas when the T_(i)/T_(e)ratio approaches ~1, which results in steep core Teand Tiprofiles, as well as a peaked neprofile. Power balance analysis shows a weaker Teprofile stiffness after the formation of ITBs in the core plasma region, where Ticlamping is broken,and the core Tican increase further above 2 keV, which is 80% higher than the value of Ticlamping in ECR-heated plasmas. This finding proposes a possible solution to the problem of Ticlamping on EAST and demonstrates an advanced operational regime with the formation of a strong and broad ITB for future fusion plasmas dominated by electron heating.
基金supported by National Natural Science Foundation of China(Nos.12175277 and 11975271)the National Key R&D Program of China(No.2022YFE 03050003)。
文摘A neural network model with a classical annotation method has been used on the EXL-50tokamak to predict impending disruption.However,the results revealed issues of overfitting and overconfidence in predictions caused by inaccurate labeling.To mitigate these issues,an improved training framework has been proposed.In this approach,soft labels from previous training serve as teachers to supervise the further learning process;this has lead to a significant improvement in predictive model performance.Notably,this enhancement is primarily attributed to the coupling effect of the soft labels and correction mechanism.This improved training framework introduces an instance-specific label smoothing method,which reflects a more nuanced model assessment on the likelihood of a disruption.It presents a possible solution to effectively address the challenges associated with accurate labeling across different machines.
基金financially supported by the National Natural Science Foundation of China(No.21975163)the Shenzhen Innovative Research Team Program(KQTD20190929173914967)the Senior Talent Research Start-up Fund of Shenzhen University(000265)。
文摘Co-N-C is a promising oxygen electrochemical catalyst due to its high stability and good durability.However,due to the limited adsorption ability improvement for oxygen-containing intermediates,it usually exhibits inadequate catalytic activity with 2-electron pathway and high selectivity of hydrogen peroxide.Herein,the adsorption of Co-N-C to these intermediates is modulated by constructing heterostructures using transition metals and their derivatives based on d-band theory.The heterostructured nanobelts with MoC core and pomegranate-like carbon shell consisting of Co nanoparticles and N dopant(MoC/Co-N-C)are engineered to successfully modulate the d band center of active Co-N-C sites,resulting in a remarkably enhanced electrocatalysis performance.The optimally performing MoC/Co-N-C exhibits outstanding bi-catalytic activity and stability for the oxygen electrochemistry,featuring a high wave-half potential of 0.865 V for the oxygen reduction reaction(ORR)and low overpotential of 370 mV for the oxygen evolution reaction(OER)at 10 mA cm^(-2).The zinc air batteries with the MoC/Co-N-C catalyst demonstrate a large power density of 180 mW cm^(-2)and a long cycling lifespan(2000 cycles).The density functional theory calculations with Hubbard correction(DFT+U)reveal the electron transferring from Co to Mo atoms that effectively modulate the d band center of the active Co sites and achieve optimum adsorption ability with"single site double adsorption"mode.
基金financially supported by the National Natural Science Foundation of China(Nos.21978073 and U1903217)Project funded by the China Postdoctoral Science Foundation(No.2019M662574)。
文摘Currently ether solvents have been regarded as the most compatible organic solvents with lithium metal in electrolytes of lithium batteries.However,ether solvents are unstable under high voltage (>4.0 V),and prone to side reactions with nickel-rich high-voltage cathode materials.In this work,a novel dual-solvent electrolyte in ethylene glycol dimethyl ether (DME) and butyronitrile (BN) mixed solvent was designed and fabricated for Li/Li Ni_(0.5)Mn_(0.3)Co_(0.2)O_(2)-based lithium metal batteries.When charged to high voltage4.3 V,the battery cycled in this optimal electrolyte can maintain the capacity at 133.7 m Ah g^(-1) with a retention of 88.84%after 150 cycles at 0.2 C and-10℃.During long-term cycling,the battery also exhibits excellent cycling performance with capacity maintained at about 112.0 m Ah g^(-1) after 500 cycles at 1C and-10℃.BN has strong oxidation resistance and high conductivity,which can inhibit the decomposition of ether solvents under high voltage and improve the low temperature performance of battery effectively.Additionally,the cyano (–C≡N) group in BN molecular has a strong coordination ability with the high-valent metal ions and can mask the active ions on the cathode,correspondingly reducing the corrosion of cathode material by the electrolyte.Moreover,cyano group can participate in the hydrolysis to remove trace amounts of water and acidic by-products such as HF in the electrolyte.Therefore,the boosting effect of butyronitrile for ether solvents can provide a promising strategy for enhancing the performance of high voltage lithium metal batteries for practical industrialization.
基金We gratefully thank the financial support from the National Natural Science Foundation of China(22272108,21975163 and 22003041)Shenzhen Science and Technology Program(No.KQTD20190929173914967,JCYJ20200109110416441)the Senior Talent Research Start-up Fund of Shenzhen University(000263 and 000265).
文摘Electrocatalytic water splitting is a viable technique for generating hydrogen but is precluded from the sluggish kinetics of oxygen evolution reactions(OER).Small molecule oxidation reactions with lower working potentials,such as methanol oxidation reactions,are good alternatives to OER with faster kinetics.However,the typically employed Ni-based electrocatalysts have poor activity and stability.Herein,a novel three-dimensional(3D)-networking Modoped Ni(OH)_(2) with ultralow Ni-Ni coordination is synthesized,which exhibits a high MOR activity of 100 mA cm^(−2) at 1.39 V,delivering 28 mV dec^(−1) for the Tafel slope.Meanwhile,hydrogen evolution with value-added formate co-generation is boosted with a current density of more than 500 mA cm^(−2) at a cell voltage of 2.00 V for 50 h,showing excellent stability in an industrial alkaline concentration(6 M KOH).Mechanistic studies based on density functional the-ory and X-ray absorption spectroscopy showed that the improved performance is mainly attributed to the ultralow Ni-Ni coordination,3D-networking structures and Mo dopants,which improve the catalytic activity,increase the active site density and strengthen the Ni(OH)_(2)3D-networking structures,respectively.This study paves a new way for designing electrocatalysts with enhanced activity and durability for industrial energy-saving hydrogen production.
基金partially supported by the National Science Fund for Distinguished Young Scholars(51625102)the National Natural Science Foundation of China(51971065,51901045)+3 种基金the National Natural Science Foundation of China(NSFCàU1903217)the National Natural Science Foundation of China(No.21978073)the Innovation Program of Shanghai Municipal Education Commission(2019-01-07-00-07-E00028)the Programs for Professor of Special Appointment(Eastern Scholar)at Shanghai Institutions of Higher Learning。
文摘Li metal is the most ideal anode material for next-generation high energy lithium-ion batteries.The uncontrollable growth of Li dendrites,however,hinders its practical application.Herein,we propose the adoption of Zn nanoparticles uniformly embedded in N-doped carbon polyhedra homogeneously built on carbon cloth(Zn@NC@CC)to prevent the formation of Li dendrites.Based on theoretical calculation and experimental observation,lithiophilic Zn nanoparticles and N-doping inside of the assynthesized Zn@NC play a synergistic role in enhancing the adsorption capacity with Li,thus resulting in uniform Li deposition and complete suppression of Li dendrites.Moreover,the porous N-doped carbon polyhedras uniformly distributed on carbon cloth effectively relieves the volume change of Li upon repeated Li stripping/plating process,which contributes to preserving the structural integrity of the whole electrode and hence enhancing its long-term cycling stability.Benefiting from these synergistic effects,the Li-Zn@NC@CC electrode delivers a prolonged lifespan of over 1200 h at 1 mA cm^(-2) with an areal capacity of 1 mA h cm^(-2) in symmetric cells and high Coulombic efficiencies of 95.4%under an ultrahigh capacity of 12 mA h cm^(-2).Remarkably,Li-Zn@NC@CC//LiFePO_(4) full cells deliver a high reversible capacity of 110.2 mA h g^(-1) at 1 C over 200 cycles.
基金financially supported by the National Natural Science Foundation of China(No.21975163)Natural Science Foundation of Guangdong Province of China(2020A1515011165)Shenzhen Sci-ence and Technology Program(No.KQTD20190929173914967)and(No.JCYJ20220818100004009)。
文摘The solid oxide electrolytic cell(SOEC)is one of the most promising energy conversion and storage devices,which could convert CO_(2) to CO with high Faradaic efficiency and production rate.However,the lack of active and stable cathode materials impedes their practical applications.Here we focus on the promising perovskite oxide cathode material Sr_(2)Fe_(1.5)Mo_(0.5)O_(6)-σ,with the aim of understanding how A-atom stoichiometry and catalytic performance are linked.We find that increasing the strontium content in the perovskite improves the chemisorption of CO_(2) on its surface,forming a SrCO_(3) phase.This hinders the charge transfer and oxygen exchange processes.Simulta-neously,strontoium segregation to the cathode surface facilitates coking of the surface during CO_(2) electrolysis,which poisons the electrode.Consequently,a small number of Sr deficiencies are optimal for both electrochemical performance and long-term stability.Our results provide new insights for designing high-performance CO_(2) electrolysis cathode materials.
基金supported by the National Natural Science Foundation of China(21203236)Guangdong Department of Science and Technology(2017A050501052)Shenzhen Research Plan(JCYJ20160229195455154)
文摘Interfaces of metal-oxide heterostructured electrocatalyst are critical to their catalytic activities due to the significant interfacial effects. However, there are still obscurities in the essence of interfacial effects caused by crystalline defects and mismatch of electronic structure at metal-oxide nanojunctions. To deeply understand the interfacial effects, we engineered crystalline-defect Pd-Cu2O interfaces through nonepitaxial growth by a facile redox route. The Pd-Cu2O nanoheterostructures exhibit much higher electrocatalytic activity toward glucose oxidation than their single counterparts and their physical mixture,which makes it have a promising potential for practical application of glucose biosensors.Experimental study and density functional theory(DFT) calculations demonstrated that the interfacial electron accumulation and the shifting up of d bands center of Cu-Pd toward the Fermi level were responsible for excellent electrocatalytic activity. Further study found that Pd(3 1 0) facets exert a strong metaloxide interface interaction with Cu2O(1 1 1) facets due to their lattice mismatch. This leads to the sinking of O atoms and protruding of Cu atoms of Cu2O, and the Pd crystalline defects, further resulting in electron accumulation at the interface and the shifting up of d bands center of Cu-Pd, which is different from previously reported charge transfer between the interfaces. Our findings could contribute to design and development of advanced metal-oxide heterostructured electrocatalysts.
基金the National Natural Science Foundation of China(Nos.62174068 and 61888102)Rizhao City Key Research and Development Program(No.2021ZDYF010102).
文摘Flexible pressure sensors capable of monitoring diverse physiological signals and body movements have garnered tremendous attention in wearable electronic devices.Thereinto,high constant sensitivity over a wide pressure range combined with breathability,biocompatibility,biodegradability is pivotal for manufacturing of reliable pressure sensors in practical sensing applications.In this work,inspired by the multilayered structure of skin epidermis,we propose and demonstrate a multi-attribute wearable piezoresistive pressure sensor consisting of multilayered gradient conductive poly(ε-caprolactone)nanofiber membranes composites.In response to externally applied pressure,a layer-by-layer current path is activated inside the multilayered membranes composites,leading to the most salient sensing performance of high constant sensitivity of 33.955 kPa^(−1) within the pressure range of 0–80 kPa.The proposed pressure sensor also exhibits a fast response–relaxation time,a low detection limit,excellent stability,which can be successfully used to measure human physiological signals.Lastly,an integrated sensor array system that can locate objects’positions is constructed and applied to simulate sitting posture monitoring.These results indicate that the proposed pressure sensor holds great potential in health monitoring and wearable electronic devices.
基金the finacial support from the National Natural Science Foundation of China(Nos.21978073 and U1903217)the Project of Hubei Provincial Science&Technology Department(No.2018ACA147)。
文摘Metal-organic framework materials(MOFs),such as zeolitic imidazolate framework(ZIF),have been widely used in energy storage due to their advantages such as high structural stability,large specific surface,more active sites and skeleton structures.Herein,a novel two-dimensional(2D)Co Cu-ZIF was synthesized by a facile solvothermal method.The as-prepared Co Cu-ZIF nanosheets exhibit an ultrahigh reversible capacity of 2287.4 m Ah/g and remains at 1172.1 m Ah/g after 300 cycles at a current density of 100 m A/g,far better than that of the single Co-ZIF and Cu-ZIF.Additionally,the specific discharge capacity of Co Cu-ZIF nanosheets can maintain at about 590 m Ah/g after 1000 cycles at the current density of 2 A/g.Owing to the synergistic effect of two metals,function of nitrogen in the molecular and selfassembly 2D nanosheets,our research can provide strong support for the practical application of Co Cu-ZIF materials in lithium ion batteries.
基金financially supported by the National Natural Science Foundation of China(Nos.21706055,21978073 and U1903217)。
文摘The silicon-based materials are promising candidates for lithium-ion batteries owing to their high energy density.However,achieving long lifespan under realistic conditions remains a challenge because of the volume expansion and low conductivity.In this work,the highly elastic cobweb-like composite materials consisted by SiO and nanofibers are designed and fabricated for high-efficient lithium storage by ballmilling&electrostatic spinning method.The reconstructed heterostructure and highly elastic nanofibers can simultaneously increase the conductivity and inhibit the"expansion effect"of silicon-based materials.The constructed electrode of n-SiO/CNF delivers an initial capacity of 1700 m Ah/g,and maintains the capacities over 1000 m Ah/g after 100 cycles at the current density of 500 m A/g.Meanwhile,this electrode can give an initial coulombic efficiency over 85%and maintains at 98%in the following charge/discharge processes.Furthermore,it exhibits efficient long-term electrochemical performance,maintaining the capacity at about 1000 m Ah/g at a high current density of 1000 m A/g after 1000 cycles.This work could provide a promising strategy for enhancing the performance of siliconbased composite materials for practical application in lithium-ion batteries.
基金supported jointly by the Major Special Projects of the Information System Bureau,the Special Proget of Earth Observation with High Resolution(Grant No.GFZX0402180102)the National Natural Science Foundation of China(Grant No.U1533131)
文摘This study simulated FY-2 D satellite infrared brightness images based on the WRF and RTTOV models. The effects of prediction errors in WRF micro-and macroscale cloud variables on FY-2 D infrared brightness temperature accuracy were analyzed. The principle findings were as follows. In the T+0–48 h simulation time, the root mean square errors of the simulated brightness temperatures were within the range 10–27 K, i.e., better than the range of 20–40 K achieved previously. In the T+0–24 h simulation time, the correlation coefficients between the simulated and measured brightness temperatures for all four channels were >0.5. The simulation performance of water channel IR3 was stable and the best. The four types of cloud microphysical scheme considered all showed that the simulated values of brightness temperature in clouds were too high and that the distributions of cloud systems were incomplete, especially in typhoon areas. The performance of the THOM scheme was considered best, followed in descending order by the WSM6, WDM6, and LIN schemes. Compared with observed values, the maximum deviation appeared in the range 253–273 K for all schemes. On the microscale, the snow water mixing ratio of the THOM scheme was much bigger than that of the other schemes. Improving the production efficiency or increasing the availability of solid water in the cloud microphysical scheme would provide slight benefit for brightness temperature simulations. On the macroscale, the cloud amount obtained by the scheme used in this study was small. Improving the diagnostic scheme for cloud amount, especially high-level cloud, could improve the accuracy of brightness temperature simulations. These results could provide an intuitive reference for forecasters and constitute technical support for the creation of simulated brightness temperature images for the FY-4 satellite.
基金Foundation of Fujian Medical University,Grant/Award Number:2019QH1161。
文摘Background:Accurate diagnosis of Pneumocystis jirovecii pneumonia(PJP)is challenging,and the delayed diagnosis of PJP is associated with high mortality in patients with connective tissue disease(CTD).Metagenomic next-generation sequencing(mNGS)technology facilitates etiological diagnosis of various infectious diseases,with promising application in diagnosing PJP.This study aimed to investigate the value of mNGS using bronchoalveolar lavage fluid(BALF)for diagnosing PJP infection.Methods:Data from 55 patients with CTD and suspected pulmonary infection was retrospectively collected and analysed.A PJP group and non-PJP group were formed.The clinical manifestations,laboratory test results,treatment methods,and outcomes were summarized.BALF mNGS results were compared with traditional pathogen tests(TPT)and serum 1,3-beta-D-glucan(BDG)testing.Results:The mean age of PJP patients was 54 years,and 59%(10/17)of the patients were female.A significant difference was found between the average daily dose of prednisone administered to the PJP group and non-PJP group(25 mg vs.16 mg,P<0.001).The PJP group had a significantly higher incidence of dyspnoea(88%[15/17]vs.16%[6/38],P<0.001)and elevated serum BDG level(167.73 vs.30.67 pg/mL,P<0.001).BALF mNGS was more sensitive than both TPT(100%[95%confidence interval{CI}:77.1%-100%]vs.11.8%[95%CI:2.1%-37.7%],P<0.001)and serum BDG(100%[95%CI:77.1%-100%]vs.85.7%[95%CI:42%-99.2%],P<0.001).BALF mNGS was more specific than serum BDG(89.5%[95%CI:74.3%-96.6%]vs.46.7%[95%CI:22.3%-72.6%],P=0.493).Co-infection with cytomegalovirus(CMV)was more common in the PJP patients than in the non-PJP patients(59%[10/17]vs.11%[4/38],respectively,P<0.001).Conclusion:BALF mNGS technology is highly effective for diagnosing PJP in patients with CTD and identifying co-infections.