The unfavorable photochemical processes at the molecular level have become a bar-rier limiting the use of aromatic amides as high-performance luminescent materials.Herein,we propose a reliable strategy for manipulatin...The unfavorable photochemical processes at the molecular level have become a bar-rier limiting the use of aromatic amides as high-performance luminescent materials.Herein,we propose a reliable strategy for manipulating noncovalent conformational lock(NCL)via side-chain engineering to burst out eye-catching luminescence at the aggregate level.Contrary to the invisible emission in dilute solutions,dyad OO with a three-centered H-bond gave the wondrous crystallization-induced emis-sion with a quantum yield of 66.8%and clusterization-triggered emission,which were much brighter than those of isomers.Theoretical calculations demonstrate that crystallization-induced planarized intramolecular charge transfer(PICT),con-formation rigidification,and through-space conjugation(TSC)are responsible for aggregate-state luminescence.Robust NCL composed of intramolecular N-H⋅⋅⋅Ointeractions could boost molecular rigidity and planarity,thus greatly facilitating PICT and TSC.This study would inspire researchers to design efficient luminescent materials at the aggregate level via rational conformational control.展开更多
In this study,we propose the first unified implementation strategy for peridynamics in commercial finite element method(FEM)software packages based on their application programming interface using the peridynamics-bas...In this study,we propose the first unified implementation strategy for peridynamics in commercial finite element method(FEM)software packages based on their application programming interface using the peridynamics-based finite element method(PeriFEM).Using ANSYS and ABAQUS as examples,we present the numerical results and implementation details of PeriFEM in commercial FEM software.PeriFEM is a reformulation of the traditional FEM for solving peridynamic equations numerically.It is considered that the non-local features of peridynamics yet possesses the same computational framework as the traditional FEM.Therefore,this implementation benefits from the consistent computational frameworks of both PeriFEM and the traditional FEM.An implicit algorithm is used for both ANSYS and ABAQUS;however,different convergence criteria are adopted owing to their unique features.In ANSYS,APDL enables users to conveniently obtain broken-bond information from UPFs;thus,the convergence criterion is chosen as no new broken bond.In ABAQUS,obtaining broken-bond information is not convenient for users;thus,the default convergence criterion is used in ABAQUS.The codes integrated into ANSYS and ABAQUS are both verified through benchmark examples,and the computational convergence and costs are compared.The results show that,for some specific examples,ABAQUS is more efficient,whereas the convergence criterion adopted in ANSYS is more robust.Finally,3D examples are presented to demonstrate the ability of the proposed approach to deal with complex engineering problems.展开更多
The conventional distillation is hard to accomplish the separation of acetonitrile/ethyl acetate/n-hexane mixture. Herein, a heterogeneous azeotropic distillation(HAD) without adding entrainer is proposed to separate ...The conventional distillation is hard to accomplish the separation of acetonitrile/ethyl acetate/n-hexane mixture. Herein, a heterogeneous azeotropic distillation(HAD) without adding entrainer is proposed to separate ternary mixture. The proposed scheme is optimized via the simulated annealing algorithm and minimum total annual cost(TAC) is used as objective functions. To minimize energy consumption,heat pump is added on the basis of optimal heterogeneous azeotropic distillation and heat integration technology is used to further improve the energy recovery. The TAC, gas emission, energy consumption and exergy destruction are used to discuss the economy and environmental protection of processes.Among all the processes, the heat pump with higher preheating temperature(HPT) assisted HAD process by combining with heat integration(HAD-HPT-HI) has best performances on economic, environment,energy and exergy. Compared with conventional HAD process, the HAD-HPT-HI achieves the reductions of 52.17%, 68.86%, 65.87% and 65.46% on TAC, total energy consumption, gas emissions and exergy destruction, respectively.展开更多
Contour bevel gears have the advantages of high coincidence,low noise and large bearing capacity,which are widely used in automobile manufacturing,shipbuilding and construction machinery.However,when the surface quali...Contour bevel gears have the advantages of high coincidence,low noise and large bearing capacity,which are widely used in automobile manufacturing,shipbuilding and construction machinery.However,when the surface quality is poor,the effective contact area between the gear mating surfaces decreases,affecting the stability of the fit and thus the transmission accuracy,so it is of great significance to optimize the surface quality of the contour bevel gear.This paper firstly analyzes the formation process of machined surface roughness of contour bevel gears on the basis of generating machining method,and dry milling experiments of contour bevel gears are conducted to analyze the effects of cutting speed and feed rate on the machined surface roughness and surface topography of the workpiece.Then,the surface defects on the machined surface of the workpiece are studied by SEM,and the causes of the surface defects are analyzed by EDS.After that,XRD is used to compare the microscopic grains of the machined surface and the substrate material for diffraction peak analysis,and the effect of cutting parameters on the microhardness of the workpiece machined surface is investigated by work hardening experiment.The research results are of great significance for improving the machining accuracy of contour bevel gears,reducing friction losses and improving transmission efficiency.展开更多
<div style="text-align:justify;"> <strong>Objective:</strong> To evaluate the diagnostic value of color Doppler ultrasound in the diagnosis of diabetic lower extremity vascular diseases. &l...<div style="text-align:justify;"> <strong>Objective:</strong> To evaluate the diagnostic value of color Doppler ultrasound in the diagnosis of diabetic lower extremity vascular diseases. <strong>Methods: </strong>48 patients with diabetic lower extremity vascular disease admitted in our hos-pital from September 2018 to September 2019 were included in the study and divided into the observation group, and another 48 patients with the same period of health examination in our hospital were included in the study and divided into the control group. Both groups used color Doppler ultrasound to detect the blood flow of lower extremity vessels. The incidence of blood flow, vascular diameter and stenosis, occlusion and arteriosclerosis of the lower extremity were observed. <strong>Results:</strong> The blood flow and vascular di-ameter of the lower extremity in the observation group were significantly lower than those in the control group (p < 0.05). The incidence of vascular stenosis, vascular occlusion, thrombus, intimal thickening and plaque in the observation group was 85.42%, 22.92%, 10.42% and 93.75% respectively, which was significantly higher than that in the control group was 10.42%, 0.00%, 0.00% and 14.58% (p < 0.05). The incidence of lower extremity vascular lesions in the observation group was significantly higher than that in the control group (p < 0.05). <strong>Conclusion:</strong> Color Doppler ultrasound is of high diagnostic value in the diagnosis of diabetic lower extremity vascular diseases, and can be used to determine the blood flow of the lower extremity and the inner diameter of popliteal artery, thigh artery, dorsalis pedis artery and so on. At the same time, it can also clearly show the specific situation of vascular occlusion, arteriosclerosis and thrombosis, which is of great signif-icance for the prevention and diagnosis of lower extremity vascular lesions, and can provide the basis for the treatment of lower extremity vascular lesions. </div>展开更多
The high demands for load-carrying capability and structural efficiency of composite-metal bolted joints trigger in-depth investigations on failure mechanisms of the joints in hygrothermal environments.However,few stu...The high demands for load-carrying capability and structural efficiency of composite-metal bolted joints trigger in-depth investigations on failure mechanisms of the joints in hygrothermal environments.However,few studies have been presented to exhaustively reveal hygrothermal effects on the failure of CFRP-metal bolted joints,which differ from CFRP-CFRP or metal-metal bolted joints because of the remarkably different material properties of CFRPs and metals.In this paper,hygrothermal effects on tensile failures of single-lap and double-lap CFRP-aluminum bolted joints were experimentally and numerically investigated.A novel numerical model,in which a hygrothermal-included progressive damage model of composites was established and elastic-plastic models of metals were built,was proposed to predict the failures of the CFRP-metal bolted joints in hygrothermal environments and validated by corresponding experiments.Different failure mechanisms of single-lap and double-lap CFRP-aluminum bolted joints,under 23°C/Dry and 70°C/Wet conditions,were revealed,respectively.It follows that both the collapse failures of the single-lap and double-lap bolted joints were dominated by the bearing failure of the CFRP hole laminate in the two conditions,indicating that the hygrothermal environment did not change the macro failure modes of the joints.However,the hygrothermal environment considerably shortened the damage propagation processes and reduced the strength of the joints.Besides,the hygrothermal environment weakened the load-transfer capability of the single-lap joint more severely than the double-lap joint because it aggravated the secondary bending effects of the single-lap joint obviously.展开更多
To minimize the mass and increase the bearing failure load of composite double-lap bolted joints,a three-step optimization strategy including feasible region reduction,optimization model decoupling and optimization wa...To minimize the mass and increase the bearing failure load of composite double-lap bolted joints,a three-step optimization strategy including feasible region reduction,optimization model decoupling and optimization was presented.In feasible region reduction,the dimensions of the feasible design region were reduced by selecting dominant design variables from numerous multilevel parameters by sensitivity analyses,and the feasible regions of variables were reduced by influence mechanism analyses.In model decoupling,the optimization model with a large number of variables was divided into various sub-models with fewer variables by variance analysis.In the third step,the optimization sub-models were solved one by one using a genetic algorithm,and the modified characteristic curve method was adopted as the failure prediction method.Based on the proposed optimization method,optimization of a double-lap single-bolt joint was performed using the ANSYS®code.The results show that the bearing failure load increased by 13.5%and that the mass decreased by 8.7%compared with those of the initial design of the joint,which validated the effectiveness of the three-step optimization strategy.展开更多
A comprehensive study on the requirements for the highly efficient third harmonic generation(THG) and its inverse process, one-third harmonic generation(OTHG), in lossy waveguides is proposed. The field intensity rest...A comprehensive study on the requirements for the highly efficient third harmonic generation(THG) and its inverse process, one-third harmonic generation(OTHG), in lossy waveguides is proposed. The field intensity restrictions for both THG and OTHG caused by loss are demonstrated. The effective relative phase ranges, supporting the positive growth of signal fields of THG and OTHG are shrunken by the loss. Furthermore, it turns out that the effective relative phase ranges depend on the intensities of the interacting fields. At last, a modified definition of coherent length in loss situation, which evaluates the phase matching degree more precisely, is proposed by incorporating the shrunken relative phase range and the nonlinear phase mismatch. These theoretical analysis are valuable for guiding the experimental designs for highly efficient THG and OTHG.展开更多
Progressive damage models(PDMs)have been increasingly used to simulate the failure process of composite material structures.To accurately simulate the damage in each ply,3D PDMs of composite materials have received mo...Progressive damage models(PDMs)have been increasingly used to simulate the failure process of composite material structures.To accurately simulate the damage in each ply,3D PDMs of composite materials have received more attention recently.A characteristic element length(CEL),which is an important dimensional parameter of PDMs for composite materials,is quite difficult to obtain for 3D elements,especially considering the crack directions during damage propagation.In this paper,CEL models for 3D elements in PDMs of unidirectional composite structures are presented,and their approximate formulae are deduced.The damage in unidirectional composite materials can be divided into fiber cracks and inter-fiber cracks.The fiber crack and inter-fiber crack directions are considered in the CEL derivations,and thus,the CELs of 3D elements that have various damage modes and damage directions could be obtained relatively precisely.Static tensile and compressive tests of open-hole laminates were conducted,and the corresponding numerical analyses by the progressive damage method,including the proposed CEL models and those models from the literature,were performed.The numerical results are in good agreement with the experimental results,which proves the fidelity and effectiveness of the proposed CEL models.In addition,the proposed CEL models have better performance in improving the mesh independence of the numerical models.展开更多
The Circular Electron Positron Collider(CEPC)is a large scientific project initiated and hosted by China,fostered through extensive collaboration with international partners.The complex comprises four accelerators:a 3...The Circular Electron Positron Collider(CEPC)is a large scientific project initiated and hosted by China,fostered through extensive collaboration with international partners.The complex comprises four accelerators:a 30 GeV Linac,a 1.1 GeV Damping Ring,a Booster capable of achieving energies up to 180 GeV,and a Collider operating at varying energy modes(Z,W,H,and tt).The Linac and Damping Ring are situated on the surface,while the subterranean Booster and Collider are housed in a 100 km circumference underground tunnel,strategically accommodating future expansion with provisions for a potential Super Proton Proton Collider(SPPC).The CEPC primarily serves as a Higgs factory.In its baseline design with synchrotron radiation(SR)power of 30 MW per beam,it can achieve a luminosity of 5×10^(34)cm^(-2)s^(-1)per interaction point(IP),resulting in an integrated luminosity of 13 ab^(-1)for two IPs over a decade,producing 2.6 million Higgs bosons.Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons,facilitating precise measurements of Higgs coupling at sub-percent levels,exceeding the precision expected from the HL-LHC by an order of magnitude.This Technical Design Report(TDR)follows the Preliminary Conceptual Design Report(Pre-CDR,2015)and the Conceptual Design Report(CDR,2018),comprehensively detailing the machine's layout,performance metrics,physical design and analysis,technical systems design,R&D and prototyping efforts,and associated civil engineering aspects.Additionally,it includes a cost estimate and a preliminary construction timeline,establishing a framework for forthcoming engineering design phase and site selection procedures.Construction is anticipated to begin around 2027-2028,pending government approval,with an estimated duration of 8 years.The commencement of experiments and data collection could potentially be initiated in the mid-2030s.展开更多
Ultrahigh dose-rate(FLASH)radiotherapy is an emerging technology with excellent therapeutic effects and low biological toxicity.However,tumor recurrence largely impede the effectiveness of FLASH therapy.Overcoming tum...Ultrahigh dose-rate(FLASH)radiotherapy is an emerging technology with excellent therapeutic effects and low biological toxicity.However,tumor recurrence largely impede the effectiveness of FLASH therapy.Overcoming tumor recurrence is crucial for practical FLASH applications.Here,we prepared an agarose-based thermosensitive hydrogel containing a mild photothermal agent(TPE-BBT)and a glutaminase inhibitor(CB-839).Within nanoparticles,TPE-BBT exhibits aggregation-induced emission peaked at 900 nm,while the unrestricted molecular motions endow TPE-BBT with a mild photothermy generation ability.The balanced photothermal effect and photoluminescence are ideal for phototheranostics.Upon 660-nm laser irradiation,the temperature-rising effect softens and hydrolyzes the hydrogel to release TPE-BBT and CB-839 into the tumor site for concurrent mild photothermal therapy and chemotherapy,jointly inhibiting homologous recombination repair of DNA.The enhanced FLASH radiotherapy efficiently kills the tumor tissue without recurrence and obvious systematic toxicity.This work deciphers the unrestricted molecular motions in bright organic fluorophores as a source of photothermy,and provides novel recurrence-resistant radiotherapy without adverse side effects.展开更多
Constructing charge transfer(CT)state by introducing donor(D)and acceptor(A)is an efficient strategy to regulate the photophysical properties of luminescent materials.Traditional CT-type luminophores are built onπ-co...Constructing charge transfer(CT)state by introducing donor(D)and acceptor(A)is an efficient strategy to regulate the photophysical properties of luminescent materials.Traditional CT-type luminophores are built onπ-conjugated fused-ring structures,which always show hybrid CT/locally excited(LE)states and luminescence quenching effect in the aggregate state.In this work,eight conjugated biphenyl(BP)and nonconjugated diphenylmethane(DPM)derivatives with different donors and acceptors are synthesized to investigate the CT properties.Systematic photophysical characterization and theoretical calculation demonstrate that the through-space CT(TSCT)in nonconjugated DA-DPM exhibit superior photophysical performance than the conjugated DA-BP with through-bond CT(TBCT),the main manifestations are as follows:(1)TSCT luminophores produce longer maximum emission wavelength(λ_(em))than the corresponding TBCT ones.For example,the longest λ_(em)of DMA-CN-DPM(DMA,dimethylamino)is 621 nm but the corresponding λ_(em)of DMA-CN-BP is only 480 nm.(2)TSCT-based DA-DPM demonstrates more sensitive responsiveness to environmental stimuli such as temperature and polarity.(3)Complete separation of the the highest occupied molecular orbital(HOMO)and the lowest unoccupied molecular orbital(LUMO)distribution exists in all kinds of conformation of DA-DPM,which was hard to realize in conjugated DA-BP.展开更多
Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays...Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η).The fit fractions of individual components are obtained,and large interferences among the dominant components of the decays D^(0)→a_(1)(1260)π,D^(0)→π(1300)π,D^(0)→ρ(770)ρ(770),and D^(0)→2(ππ)_(S)are observed in both channels.With the obtained amplitude model,the CP-even fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are determined to be(75.2±1.1_(stat).±1.5_(syst.))%and(68.9±1.5_(stat).±2.4_(syst.))%,respectively.The branching fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are measured to be(0.688±0.010_(stat.)±0.010_(syst.))%and(0.951±0.025_(stat.)±0.021_(syst.))%,respectively.The amplitude analysis provides an important model for the binning strategy in measuring the strong phase parameters of D^(0)→4πwhen used to determine the CKM angleγ(ϕ_(3))via the B^(−)→DK^(−)decay.展开更多
The number ofψ(3686)events collected by the BESⅢdetector during the 2021 run period is determined to be(2259.3±11.1)×10~6 by counting inclusiveψ(3686)hadronic events.The uncertainty is systematic and the ...The number ofψ(3686)events collected by the BESⅢdetector during the 2021 run period is determined to be(2259.3±11.1)×10~6 by counting inclusiveψ(3686)hadronic events.The uncertainty is systematic and the statistical uncertainty is negligible.Meanwhile,the numbers ofψ(3686)events collected during the 2009 and 2012run periods are updated to be(107.7±0.6)×10~6 and(345.4±2.6)×10~6,respectively.Both numbers are consistent with the previous measurements within one standard deviation.The total number ofψ(3686)events in the three data samples is(2712.4±14.3)×10~6.展开更多
Through-space conjugation(TSC)is a noncovalently electronic interaction that is emerging as a potential complement to through-bond conjugation(TBC)-based strategies for constructing luminescent materials.However,the d...Through-space conjugation(TSC)is a noncovalently electronic interaction that is emerging as a potential complement to through-bond conjugation(TBC)-based strategies for constructing luminescent materials.However,the design of efficient luminogens based on TSC is currently challenging due to a lack of established structure-property understanding.This is particularly true in the case of luminogens displaying aggregation-induced emission(AIE)effects.In this work,three terphenyl derivatives were prepared,and their photophysical properties were systemically studied.It was found that relative to the corresponding m-and p-linked analogues,the electronic interaction of TBC is weakened while the strength of TSC is commensurately enhanced in the constitutional isomer containing an o-linked fjordtype subunit.Within this set of luminogens,the presence of a fjord-type arrangement promotes a transformation from aggregation-caused quenching to AIE.Further investigations involving congeneric quaterphenyl and pentphenyl isomers support the universality of the fjord-type unit as a framework for synthesizing AIE-active luminogens(AIEgens)with inherent TSC.This work not only provides a novel set of AIEgens but also establishes the utility of TSC in controlling the photophysical properties of nonconventional and twisted luminogens.展开更多
Background Immunotherapy shows promise as a treatment option for various cancers.However,there is growing concern over potential complications from hepatitis B virus(HBV)reactivation after checkpoint blockade immunoth...Background Immunotherapy shows promise as a treatment option for various cancers.However,there is growing concern over potential complications from hepatitis B virus(HBV)reactivation after checkpoint blockade immunotherapy.Although most of the previous clinical trials on immune checkpoint inhibitors(ICIs)excluded patients with HBV,a few case reports and retrospective studies of HBV reactivation have been published.The aim of this study is to assess the risk of hepatitis B virus reactivation(HBVr)in patients receiving ICIs for advanced cancer.Methods English and Chinese language literature published prior to April 30,2023,was searched in PubMed,EMBASE,Web of Science,Cochrane,SinoMed,CNKI and Wanfang Data for studies reporting HBVr rates in cancer patients treated with ICIs.A pooled risk estimate was calculated for HBVr rates with 95%confdence intervals(CI).Results Data from 34 studies including 7126 patients were retrieved and analyzed.The pooled HBVr rate in cancer patients treated with ICIs was 1.3%(I^(2)=90.44%,95%CI:0.2-2.9%,P<0.001).Subgroup analysis revealed that patients diagnosed with hepatocellular carcinoma(HCC),HBV carriers,and patients from Asian regions or in developing countries have a higher rate of HBVr.Conclusions Our meta-analysis demonstrated a low risk of HBVr in patients treated with ICIs for advanced cancer.ICI treatment may be safely used in patients with existing HBV infection or chronic hepatitis B,accompanied by regular monitoring and appropriate antiviral prophylaxis if necessary.展开更多
Responsive luminescence materials with prolonged lifetime and multicolor emission have drawn great attention due to their attractive optical property and potential applications.Herein,two responsive carbon dots(CDs)ba...Responsive luminescence materials with prolonged lifetime and multicolor emission have drawn great attention due to their attractive optical property and potential applications.Herein,two responsive carbon dots(CDs)based composites:CD_(1)@MCM-22P and CD_(2)@ZSM-12 were achieved by a one-step hydrothermal method.By adjusting the hydrothermal condition,CD_(1)@MCM-22P owns temperature-dependent afterglow,while CD_(2)@ZSM-12 is equipped with excitation-dependent room-temperature phosphorescence.The photoluminescence mechanisms of CD1@MCM-22P and CD_(2)@ZSM-12 were investigated and proposed,and the composites were applied in multi-mode anti-counterfeiting.This work provides an insight as well as a feasible method for the development of multi-emissive CDs@zeolite composite.展开更多
Terminal deoxynucleotidyl transferase(Td T) has been characterized as template-independent polymerase using single-stranded DNA(ss DNA) as primers to generate random oligonucleotides. However, the extension performanc...Terminal deoxynucleotidyl transferase(Td T) has been characterized as template-independent polymerase using single-stranded DNA(ss DNA) as primers to generate random oligonucleotides. However, the extension performance of Td T to single-stranded RNA(ss RNA) is vague. By systematically comparing and contrasting the performance of Td T-catalyzed ss DNA and ss RNA extension, it is indicated that the catalytic efficiency of ss RNA as primers was about 3 times lower than ss DNA as primers. Collectively, it is believed that understanding the catalytic performance of Td T will help to design the strategy to synthesize chimeric DNA on 3-OH of ss RNA, which becomes invaluable.展开更多
Using data taken at 29 center-of-mass energies between 4.16 and 4.70 GeV with the BESⅢdetector at the Beijing Electron Positron Collider corresponding to a total integrated luminosity of approximately 18.8 fb^(-1),th...Using data taken at 29 center-of-mass energies between 4.16 and 4.70 GeV with the BESⅢdetector at the Beijing Electron Positron Collider corresponding to a total integrated luminosity of approximately 18.8 fb^(-1),the process e^(+)e^(-)→pppñπ+c.c.is observed for the first time with a statistical significance of 11.5σ.The average Born cross sections in the energy ranges of(4.160,4.380)GeV,(4.400,4.600)GeV and(4.610,4.700)GeV are measured to be(21.5±5.7±1.2)fb,(46.3±10.6±2.5)fb and(59.0±9.4±3.2)fb,respectively,where the first uncertainties are statistical and the second are systematic.The line shapes of the pñ and ppπ^(-)invariant mass spectra are consistent with phase space distributions,indicating that no hexaquark or di-baryon state is observed.展开更多
基金financially supported by the National Natural Science Foundation of China(grant numbers 22205040,U2001222,and 52273168)the Basic and Applied Basic Research Foundation of Guangdong Province(grant number 2021A1515110417)J.Zhang acknowledges the support from the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie actions grant(101105790)。
文摘The unfavorable photochemical processes at the molecular level have become a bar-rier limiting the use of aromatic amides as high-performance luminescent materials.Herein,we propose a reliable strategy for manipulating noncovalent conformational lock(NCL)via side-chain engineering to burst out eye-catching luminescence at the aggregate level.Contrary to the invisible emission in dilute solutions,dyad OO with a three-centered H-bond gave the wondrous crystallization-induced emis-sion with a quantum yield of 66.8%and clusterization-triggered emission,which were much brighter than those of isomers.Theoretical calculations demonstrate that crystallization-induced planarized intramolecular charge transfer(PICT),con-formation rigidification,and through-space conjugation(TSC)are responsible for aggregate-state luminescence.Robust NCL composed of intramolecular N-H⋅⋅⋅Ointeractions could boost molecular rigidity and planarity,thus greatly facilitating PICT and TSC.This study would inspire researchers to design efficient luminescent materials at the aggregate level via rational conformational control.
基金the financial support received from the National Natural Science Foundation of China(12272082,11872016)the National Key Laboratory of Shock Wave and Detonation Physics(JCKYS2021212003).
文摘In this study,we propose the first unified implementation strategy for peridynamics in commercial finite element method(FEM)software packages based on their application programming interface using the peridynamics-based finite element method(PeriFEM).Using ANSYS and ABAQUS as examples,we present the numerical results and implementation details of PeriFEM in commercial FEM software.PeriFEM is a reformulation of the traditional FEM for solving peridynamic equations numerically.It is considered that the non-local features of peridynamics yet possesses the same computational framework as the traditional FEM.Therefore,this implementation benefits from the consistent computational frameworks of both PeriFEM and the traditional FEM.An implicit algorithm is used for both ANSYS and ABAQUS;however,different convergence criteria are adopted owing to their unique features.In ANSYS,APDL enables users to conveniently obtain broken-bond information from UPFs;thus,the convergence criterion is chosen as no new broken bond.In ABAQUS,obtaining broken-bond information is not convenient for users;thus,the default convergence criterion is used in ABAQUS.The codes integrated into ANSYS and ABAQUS are both verified through benchmark examples,and the computational convergence and costs are compared.The results show that,for some specific examples,ABAQUS is more efficient,whereas the convergence criterion adopted in ANSYS is more robust.Finally,3D examples are presented to demonstrate the ability of the proposed approach to deal with complex engineering problems.
基金financial support provided by the National Natural Science Foundation of China (22178030, 21878025, and 22078026)。
文摘The conventional distillation is hard to accomplish the separation of acetonitrile/ethyl acetate/n-hexane mixture. Herein, a heterogeneous azeotropic distillation(HAD) without adding entrainer is proposed to separate ternary mixture. The proposed scheme is optimized via the simulated annealing algorithm and minimum total annual cost(TAC) is used as objective functions. To minimize energy consumption,heat pump is added on the basis of optimal heterogeneous azeotropic distillation and heat integration technology is used to further improve the energy recovery. The TAC, gas emission, energy consumption and exergy destruction are used to discuss the economy and environmental protection of processes.Among all the processes, the heat pump with higher preheating temperature(HPT) assisted HAD process by combining with heat integration(HAD-HPT-HI) has best performances on economic, environment,energy and exergy. Compared with conventional HAD process, the HAD-HPT-HI achieves the reductions of 52.17%, 68.86%, 65.87% and 65.46% on TAC, total energy consumption, gas emissions and exergy destruction, respectively.
基金National Key R&D Program of China(Grant No.2019YFE0121300)Yancheng Hali Power Transmission and Intelligent Equipment Industrial Research Institute Project。
文摘Contour bevel gears have the advantages of high coincidence,low noise and large bearing capacity,which are widely used in automobile manufacturing,shipbuilding and construction machinery.However,when the surface quality is poor,the effective contact area between the gear mating surfaces decreases,affecting the stability of the fit and thus the transmission accuracy,so it is of great significance to optimize the surface quality of the contour bevel gear.This paper firstly analyzes the formation process of machined surface roughness of contour bevel gears on the basis of generating machining method,and dry milling experiments of contour bevel gears are conducted to analyze the effects of cutting speed and feed rate on the machined surface roughness and surface topography of the workpiece.Then,the surface defects on the machined surface of the workpiece are studied by SEM,and the causes of the surface defects are analyzed by EDS.After that,XRD is used to compare the microscopic grains of the machined surface and the substrate material for diffraction peak analysis,and the effect of cutting parameters on the microhardness of the workpiece machined surface is investigated by work hardening experiment.The research results are of great significance for improving the machining accuracy of contour bevel gears,reducing friction losses and improving transmission efficiency.
文摘<div style="text-align:justify;"> <strong>Objective:</strong> To evaluate the diagnostic value of color Doppler ultrasound in the diagnosis of diabetic lower extremity vascular diseases. <strong>Methods: </strong>48 patients with diabetic lower extremity vascular disease admitted in our hos-pital from September 2018 to September 2019 were included in the study and divided into the observation group, and another 48 patients with the same period of health examination in our hospital were included in the study and divided into the control group. Both groups used color Doppler ultrasound to detect the blood flow of lower extremity vessels. The incidence of blood flow, vascular diameter and stenosis, occlusion and arteriosclerosis of the lower extremity were observed. <strong>Results:</strong> The blood flow and vascular di-ameter of the lower extremity in the observation group were significantly lower than those in the control group (p < 0.05). The incidence of vascular stenosis, vascular occlusion, thrombus, intimal thickening and plaque in the observation group was 85.42%, 22.92%, 10.42% and 93.75% respectively, which was significantly higher than that in the control group was 10.42%, 0.00%, 0.00% and 14.58% (p < 0.05). The incidence of lower extremity vascular lesions in the observation group was significantly higher than that in the control group (p < 0.05). <strong>Conclusion:</strong> Color Doppler ultrasound is of high diagnostic value in the diagnosis of diabetic lower extremity vascular diseases, and can be used to determine the blood flow of the lower extremity and the inner diameter of popliteal artery, thigh artery, dorsalis pedis artery and so on. At the same time, it can also clearly show the specific situation of vascular occlusion, arteriosclerosis and thrombosis, which is of great signif-icance for the prevention and diagnosis of lower extremity vascular lesions, and can provide the basis for the treatment of lower extremity vascular lesions. </div>
基金supported by the National Science Foundation of China(11772028,11872131,11702012,U1864208,11572058 and 11372020)the Academic Excellence Foundation of BUAA for PhD Students.
文摘The high demands for load-carrying capability and structural efficiency of composite-metal bolted joints trigger in-depth investigations on failure mechanisms of the joints in hygrothermal environments.However,few studies have been presented to exhaustively reveal hygrothermal effects on the failure of CFRP-metal bolted joints,which differ from CFRP-CFRP or metal-metal bolted joints because of the remarkably different material properties of CFRPs and metals.In this paper,hygrothermal effects on tensile failures of single-lap and double-lap CFRP-aluminum bolted joints were experimentally and numerically investigated.A novel numerical model,in which a hygrothermal-included progressive damage model of composites was established and elastic-plastic models of metals were built,was proposed to predict the failures of the CFRP-metal bolted joints in hygrothermal environments and validated by corresponding experiments.Different failure mechanisms of single-lap and double-lap CFRP-aluminum bolted joints,under 23°C/Dry and 70°C/Wet conditions,were revealed,respectively.It follows that both the collapse failures of the single-lap and double-lap bolted joints were dominated by the bearing failure of the CFRP hole laminate in the two conditions,indicating that the hygrothermal environment did not change the macro failure modes of the joints.However,the hygrothermal environment considerably shortened the damage propagation processes and reduced the strength of the joints.Besides,the hygrothermal environment weakened the load-transfer capability of the single-lap joint more severely than the double-lap joint because it aggravated the secondary bending effects of the single-lap joint obviously.
基金This work was supported by the National Natural Science Foundation of China(11772028,11872131,11702012,U1864208,11572058 and 11372020).
文摘To minimize the mass and increase the bearing failure load of composite double-lap bolted joints,a three-step optimization strategy including feasible region reduction,optimization model decoupling and optimization was presented.In feasible region reduction,the dimensions of the feasible design region were reduced by selecting dominant design variables from numerous multilevel parameters by sensitivity analyses,and the feasible regions of variables were reduced by influence mechanism analyses.In model decoupling,the optimization model with a large number of variables was divided into various sub-models with fewer variables by variance analysis.In the third step,the optimization sub-models were solved one by one using a genetic algorithm,and the modified characteristic curve method was adopted as the failure prediction method.Based on the proposed optimization method,optimization of a double-lap single-bolt joint was performed using the ANSYS®code.The results show that the bearing failure load increased by 13.5%and that the mass decreased by 8.7%compared with those of the initial design of the joint,which validated the effectiveness of the three-step optimization strategy.
基金Project supported by Shenzhen Municipal Science and Technology Plan Project,China(Grant Nos.JCYJ20160427183803458 and JCYJ20150403161923546)
文摘A comprehensive study on the requirements for the highly efficient third harmonic generation(THG) and its inverse process, one-third harmonic generation(OTHG), in lossy waveguides is proposed. The field intensity restrictions for both THG and OTHG caused by loss are demonstrated. The effective relative phase ranges, supporting the positive growth of signal fields of THG and OTHG are shrunken by the loss. Furthermore, it turns out that the effective relative phase ranges depend on the intensities of the interacting fields. At last, a modified definition of coherent length in loss situation, which evaluates the phase matching degree more precisely, is proposed by incorporating the shrunken relative phase range and the nonlinear phase mismatch. These theoretical analysis are valuable for guiding the experimental designs for highly efficient THG and OTHG.
基金This research is supported by the National Natural Science Foundation of China(11772028,11872131,11702012,U1864208,11572058 and 11372020).
文摘Progressive damage models(PDMs)have been increasingly used to simulate the failure process of composite material structures.To accurately simulate the damage in each ply,3D PDMs of composite materials have received more attention recently.A characteristic element length(CEL),which is an important dimensional parameter of PDMs for composite materials,is quite difficult to obtain for 3D elements,especially considering the crack directions during damage propagation.In this paper,CEL models for 3D elements in PDMs of unidirectional composite structures are presented,and their approximate formulae are deduced.The damage in unidirectional composite materials can be divided into fiber cracks and inter-fiber cracks.The fiber crack and inter-fiber crack directions are considered in the CEL derivations,and thus,the CELs of 3D elements that have various damage modes and damage directions could be obtained relatively precisely.Static tensile and compressive tests of open-hole laminates were conducted,and the corresponding numerical analyses by the progressive damage method,including the proposed CEL models and those models from the literature,were performed.The numerical results are in good agreement with the experimental results,which proves the fidelity and effectiveness of the proposed CEL models.In addition,the proposed CEL models have better performance in improving the mesh independence of the numerical models.
基金support from diverse funding sources,including the National Key Program for S&T Research and Development of the Ministry of Science and Technology(MOST),Yifang Wang's Science Studio of the Ten Thousand Talents Project,the CAS Key Foreign Cooperation Grant,the National Natural Science Foundation of China(NSFC)Beijing Municipal Science&Technology Commission,the CAS Focused Science Grant,the IHEP Innovation Grant,the CAS Lead Special Training Programthe CAS Center for Excellence in Particle Physics,the CAS International Partnership Program,and the CAS/SAFEA International Partnership Program for Creative Research Teams.
文摘The Circular Electron Positron Collider(CEPC)is a large scientific project initiated and hosted by China,fostered through extensive collaboration with international partners.The complex comprises four accelerators:a 30 GeV Linac,a 1.1 GeV Damping Ring,a Booster capable of achieving energies up to 180 GeV,and a Collider operating at varying energy modes(Z,W,H,and tt).The Linac and Damping Ring are situated on the surface,while the subterranean Booster and Collider are housed in a 100 km circumference underground tunnel,strategically accommodating future expansion with provisions for a potential Super Proton Proton Collider(SPPC).The CEPC primarily serves as a Higgs factory.In its baseline design with synchrotron radiation(SR)power of 30 MW per beam,it can achieve a luminosity of 5×10^(34)cm^(-2)s^(-1)per interaction point(IP),resulting in an integrated luminosity of 13 ab^(-1)for two IPs over a decade,producing 2.6 million Higgs bosons.Increasing the SR power to 50 MW per beam expands the CEPC's capability to generate 4.3 million Higgs bosons,facilitating precise measurements of Higgs coupling at sub-percent levels,exceeding the precision expected from the HL-LHC by an order of magnitude.This Technical Design Report(TDR)follows the Preliminary Conceptual Design Report(Pre-CDR,2015)and the Conceptual Design Report(CDR,2018),comprehensively detailing the machine's layout,performance metrics,physical design and analysis,technical systems design,R&D and prototyping efforts,and associated civil engineering aspects.Additionally,it includes a cost estimate and a preliminary construction timeline,establishing a framework for forthcoming engineering design phase and site selection procedures.Construction is anticipated to begin around 2027-2028,pending government approval,with an estimated duration of 8 years.The commencement of experiments and data collection could potentially be initiated in the mid-2030s.
基金supported by the National Natural Science Foundation of China (21788102 and 82303797)the Research Grants Council of Hong Kong (16306620,16303221,N_HKUST609/19,and C6014-20W)+4 种基金the Research Grants Council of the Hong Kong Special Administrative Region,China (HKUST PDFS2324-6S01)the Innovation and Technology Commission (ITC-CNERC14SC01 and ITCPD/17-9)the Science Technology Innovation Commission of Shenzhen Municipality (KQTD20210811090142053 and GJHZ20210705141810031)the Science and Technology Plan of Shenzhen (JCYJ20200109110608167 and JCYJ20220818103007014)the Guangxi Natural Science Foundation (2023GXNSFBA026137).
文摘Ultrahigh dose-rate(FLASH)radiotherapy is an emerging technology with excellent therapeutic effects and low biological toxicity.However,tumor recurrence largely impede the effectiveness of FLASH therapy.Overcoming tumor recurrence is crucial for practical FLASH applications.Here,we prepared an agarose-based thermosensitive hydrogel containing a mild photothermal agent(TPE-BBT)and a glutaminase inhibitor(CB-839).Within nanoparticles,TPE-BBT exhibits aggregation-induced emission peaked at 900 nm,while the unrestricted molecular motions endow TPE-BBT with a mild photothermy generation ability.The balanced photothermal effect and photoluminescence are ideal for phototheranostics.Upon 660-nm laser irradiation,the temperature-rising effect softens and hydrolyzes the hydrogel to release TPE-BBT and CB-839 into the tumor site for concurrent mild photothermal therapy and chemotherapy,jointly inhibiting homologous recombination repair of DNA.The enhanced FLASH radiotherapy efficiently kills the tumor tissue without recurrence and obvious systematic toxicity.This work deciphers the unrestricted molecular motions in bright organic fluorophores as a source of photothermy,and provides novel recurrence-resistant radiotherapy without adverse side effects.
基金supported by the National Natural Science Foundation of China(22205197)the project funded by China Postdoctoral Science Foundation(2022M712721)。
文摘Constructing charge transfer(CT)state by introducing donor(D)and acceptor(A)is an efficient strategy to regulate the photophysical properties of luminescent materials.Traditional CT-type luminophores are built onπ-conjugated fused-ring structures,which always show hybrid CT/locally excited(LE)states and luminescence quenching effect in the aggregate state.In this work,eight conjugated biphenyl(BP)and nonconjugated diphenylmethane(DPM)derivatives with different donors and acceptors are synthesized to investigate the CT properties.Systematic photophysical characterization and theoretical calculation demonstrate that the through-space CT(TSCT)in nonconjugated DA-DPM exhibit superior photophysical performance than the conjugated DA-BP with through-bond CT(TBCT),the main manifestations are as follows:(1)TSCT luminophores produce longer maximum emission wavelength(λ_(em))than the corresponding TBCT ones.For example,the longest λ_(em)of DMA-CN-DPM(DMA,dimethylamino)is 621 nm but the corresponding λ_(em)of DMA-CN-BP is only 480 nm.(2)TSCT-based DA-DPM demonstrates more sensitive responsiveness to environmental stimuli such as temperature and polarity.(3)Complete separation of the the highest occupied molecular orbital(HOMO)and the lowest unoccupied molecular orbital(LUMO)distribution exists in all kinds of conformation of DA-DPM,which was hard to realize in conjugated DA-BP.
基金Supported in part by the National Key R&D Program of China(2020YFA0406300,2020YFA0406400)the National Natural Science Foundation of China(NSFC)(11625523,11635010,11735014,11835012,11935015,11935016,11935018,11961141012,12025502,12035009,12035013,12061131003,12105276,12122509,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017)+15 种基金the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics(CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1732263,U1832103,U1832207,U2032111)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH003,QYZDJ-SSW-SLH040)100 Talents Program of CASThe Institute of Nuclear and Particle Physics(INPAC)and Shanghai Key Laboratory for Particle Physics and CosmologyEuropean Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement(894790)German Research Foundation DFG(455635585),Collaborative Research Center CRC 1044,FOR5327,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(DPT2006K-120470)National Research Foundation of Korea(NRF-2022R1A2C1092335)National Science and Technology fund of MongoliaNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation of Thailand(B16F640076)Polish National Science Centre(2019/35/O/ST2/02907)The Swedish Research CouncilU.S.Department of Energy(DE-FG02-05ER41374)。
文摘Using e^(+)e^(−)annihilation data corresponding to an integrated luminosity of 2.93 fb^(−1)taken at the center-of-mass energy√s=3.773 GeV with the BESIII detector,a joint amplitude analysis is performed on the decays D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η).The fit fractions of individual components are obtained,and large interferences among the dominant components of the decays D^(0)→a_(1)(1260)π,D^(0)→π(1300)π,D^(0)→ρ(770)ρ(770),and D^(0)→2(ππ)_(S)are observed in both channels.With the obtained amplitude model,the CP-even fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are determined to be(75.2±1.1_(stat).±1.5_(syst.))%and(68.9±1.5_(stat).±2.4_(syst.))%,respectively.The branching fractions of D^(0)→π^(+)π^(−)π^(+)π^(−)and D^(0)→π^(+)π^(−)π^(0)π^(0)(non-η)are measured to be(0.688±0.010_(stat.)±0.010_(syst.))%and(0.951±0.025_(stat.)±0.021_(syst.))%,respectively.The amplitude analysis provides an important model for the binning strategy in measuring the strong phase parameters of D^(0)→4πwhen used to determine the CKM angleγ(ϕ_(3))via the B^(−)→DK^(−)decay.
基金supported in part by National Key R&D Program of China under Contracts Nos.2020YFA0406300,2020YFA0406400National Natural Science Foundation of China(NSFC)under Contracts Nos.12150004,11635010,11735014,11835012,11935015,11935016,11935018,11961141012,12025502,12035009,12035013,12061131003,12192260,12192261,12192262,12192263,12192264,12192265,12221005,12225509,12235017+17 种基金the Program of Science and Technology Development Plan of Jilin Province of China under Contract Nos.20210508047RQ and 20230101021JCthe Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility Programthe CAS Center for Excellence in Particle Physics(CCEPP)Joint Large-Scale Scientific Facility Funds of the NSFC and CAS under Contract No.U1832207CAS Key Research Program of Frontier Sciences under Contracts Nos.QYZDJ-SSW-SLH003,QYZDJ-SSW-SLH040100 Talents Program of CASThe Institute of Nuclear and Particle Physics(INPAC)Shanghai Key Laboratory for Particle Physics and CosmologyEuropean Union's Horizon 2020 research and innovation programme under Marie Sklodowska-Curie grant agreement under Contract No.894790German Research Foundation DFG under Contracts Nos.455635585,Collaborative Research Center CRC 1044,FOR5327,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey under Contract No.DPT2006K-120470National Research Foundation of Korea under Contract No.NRF-2022R1A2C1092335National Science and Technology fund of MongoliaNational Science Research and Innovation Fund(NSRF)via the Program Management Unit for Human Resources&Institutional Development,Research and Innovation of Thailand under Contract No.B16F640076Polish National Science Centre under Contract No.2019/35/O/ST2/02907The Swedish Research CouncilU.S.Department of Energy under Contract No.DE-FG02-05ER41374。
文摘The number ofψ(3686)events collected by the BESⅢdetector during the 2021 run period is determined to be(2259.3±11.1)×10~6 by counting inclusiveψ(3686)hadronic events.The uncertainty is systematic and the statistical uncertainty is negligible.Meanwhile,the numbers ofψ(3686)events collected during the 2009 and 2012run periods are updated to be(107.7±0.6)×10~6 and(345.4±2.6)×10~6,respectively.Both numbers are consistent with the previous measurements within one standard deviation.The total number ofψ(3686)events in the three data samples is(2712.4±14.3)×10~6.
基金F.H.thanks National Key Research and Development Program of China (grant no.2021YFA0910100)National Natural Science Foundation of China (grant no.22035006)+5 种基金Zhejiang Provincial Natural Science Foundation of China (grant no.LD21B020001)the Starry Night Science Fund of Zhejiang University Shanghai Institute for Advanced Study (grant no.SN-ZJU-SIAS-006)the Leading Innovation Team grant from Department of Science and Technology of Zhejiang Province (grant no.2022R01005)for financial supportH.Z.thanks the National Science Foundation of China (grant no.22205197)for supportY.-Q.H.acknowledges support from the Chinese Postdoctoral Science Foundation (grant no.2022M712735)J.L.S.thanks the Robert A.Welch Foundation for chair support (grant no.F-0018).
文摘Through-space conjugation(TSC)is a noncovalently electronic interaction that is emerging as a potential complement to through-bond conjugation(TBC)-based strategies for constructing luminescent materials.However,the design of efficient luminogens based on TSC is currently challenging due to a lack of established structure-property understanding.This is particularly true in the case of luminogens displaying aggregation-induced emission(AIE)effects.In this work,three terphenyl derivatives were prepared,and their photophysical properties were systemically studied.It was found that relative to the corresponding m-and p-linked analogues,the electronic interaction of TBC is weakened while the strength of TSC is commensurately enhanced in the constitutional isomer containing an o-linked fjordtype subunit.Within this set of luminogens,the presence of a fjord-type arrangement promotes a transformation from aggregation-caused quenching to AIE.Further investigations involving congeneric quaterphenyl and pentphenyl isomers support the universality of the fjord-type unit as a framework for synthesizing AIE-active luminogens(AIEgens)with inherent TSC.This work not only provides a novel set of AIEgens but also establishes the utility of TSC in controlling the photophysical properties of nonconventional and twisted luminogens.
文摘Background Immunotherapy shows promise as a treatment option for various cancers.However,there is growing concern over potential complications from hepatitis B virus(HBV)reactivation after checkpoint blockade immunotherapy.Although most of the previous clinical trials on immune checkpoint inhibitors(ICIs)excluded patients with HBV,a few case reports and retrospective studies of HBV reactivation have been published.The aim of this study is to assess the risk of hepatitis B virus reactivation(HBVr)in patients receiving ICIs for advanced cancer.Methods English and Chinese language literature published prior to April 30,2023,was searched in PubMed,EMBASE,Web of Science,Cochrane,SinoMed,CNKI and Wanfang Data for studies reporting HBVr rates in cancer patients treated with ICIs.A pooled risk estimate was calculated for HBVr rates with 95%confdence intervals(CI).Results Data from 34 studies including 7126 patients were retrieved and analyzed.The pooled HBVr rate in cancer patients treated with ICIs was 1.3%(I^(2)=90.44%,95%CI:0.2-2.9%,P<0.001).Subgroup analysis revealed that patients diagnosed with hepatocellular carcinoma(HCC),HBV carriers,and patients from Asian regions or in developing countries have a higher rate of HBVr.Conclusions Our meta-analysis demonstrated a low risk of HBVr in patients treated with ICIs for advanced cancer.ICI treatment may be safely used in patients with existing HBV infection or chronic hepatitis B,accompanied by regular monitoring and appropriate antiviral prophylaxis if necessary.
基金the National Natural Science Foundation of China(No.21971259).
文摘Responsive luminescence materials with prolonged lifetime and multicolor emission have drawn great attention due to their attractive optical property and potential applications.Herein,two responsive carbon dots(CDs)based composites:CD_(1)@MCM-22P and CD_(2)@ZSM-12 were achieved by a one-step hydrothermal method.By adjusting the hydrothermal condition,CD_(1)@MCM-22P owns temperature-dependent afterglow,while CD_(2)@ZSM-12 is equipped with excitation-dependent room-temperature phosphorescence.The photoluminescence mechanisms of CD1@MCM-22P and CD_(2)@ZSM-12 were investigated and proposed,and the composites were applied in multi-mode anti-counterfeiting.This work provides an insight as well as a feasible method for the development of multi-emissive CDs@zeolite composite.
基金supported by the National Natural Science Foundation of China (NSFC, Nos. 21927814 and 21772143 to J.Y. Zhang)the National Science Foundation of Tianjin (Nos. 20YDTPJC00090, 19ZXDBSY00070 and 20YFZCSY00990 to X.Q. Gong)。
文摘Terminal deoxynucleotidyl transferase(Td T) has been characterized as template-independent polymerase using single-stranded DNA(ss DNA) as primers to generate random oligonucleotides. However, the extension performance of Td T to single-stranded RNA(ss RNA) is vague. By systematically comparing and contrasting the performance of Td T-catalyzed ss DNA and ss RNA extension, it is indicated that the catalytic efficiency of ss RNA as primers was about 3 times lower than ss DNA as primers. Collectively, it is believed that understanding the catalytic performance of Td T will help to design the strategy to synthesize chimeric DNA on 3-OH of ss RNA, which becomes invaluable.
基金Supported in part by National Key R&D Program of China under Contracts Nos.Supported in part by National Key R&D Program of China(2020YFA0406300,2020YFA0406400)National Natural Science Foundation of China(NSFC)(11975118,11625523,11635010,11735014,11822506,11835012,11935015,11935016,11935018,11961141012,12022510,12025502,12035009,12035013,12061131003,12075252,12192260,12192261,12192262,12192263,12192264,12192265)+19 种基金the Natural Science Foundation of Hunan Province of China(2019JJ30019)the Science and Technology Innovation Program of Hunan Province(2020RC3054)the Chinese Academy of Sciences(CAS)Large-Scale Scientific Facility ProgramJoint Large-Scale Scientific Facility Funds of the NSFC and CAS(U1732263,U1832207)CAS Key Research Program of Frontier Sciences(QYZDJ-SSW-SLH040)100 Talents Program of CASINPAC and Shanghai Key Laboratory for Particle Physics and CosmologyERC(758462)European Union Horizon 2020 research and innovation programme under Contract No.Marie Sklodowska-Curie grant agreement(894790)German Research Foundation DFG(43159800)Collaborative Research Center CRC 1044,FOR 2359,GRK 2149Istituto Nazionale di Fisica Nucleare,ItalyMinistry of Development of Turkey(DPT2006K-120470)National Science and Technology fundOlle Engkvist Foundation(200-0605)STFC(United Kingdom)The Knut and Alice Wallenberg Foundation(Sweden)(2016.0157)The Royal Society,UK(DH140054,DH160214)The Swedish Research CouncilU.S.Department of Energy(DE-FG02-05ER41374,DE-SC-0012069)。
文摘Using data taken at 29 center-of-mass energies between 4.16 and 4.70 GeV with the BESⅢdetector at the Beijing Electron Positron Collider corresponding to a total integrated luminosity of approximately 18.8 fb^(-1),the process e^(+)e^(-)→pppñπ+c.c.is observed for the first time with a statistical significance of 11.5σ.The average Born cross sections in the energy ranges of(4.160,4.380)GeV,(4.400,4.600)GeV and(4.610,4.700)GeV are measured to be(21.5±5.7±1.2)fb,(46.3±10.6±2.5)fb and(59.0±9.4±3.2)fb,respectively,where the first uncertainties are statistical and the second are systematic.The line shapes of the pñ and ppπ^(-)invariant mass spectra are consistent with phase space distributions,indicating that no hexaquark or di-baryon state is observed.