期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Changes in soil carbon stocks and related soil properties along a 50-year grassland-to-cropland conversion chronosequence in an agro-pastoral ecotone of Inner Mongolia,China 被引量:8
1
作者 Yan JIAO Zhu XU +1 位作者 jiaohong zhao WenZhu YANG 《Journal of Arid Land》 SCIE 2012年第4期420-430,共11页
Land use change significantly influences soil properties. There is little information available on the long-term effects of post-reclamation from grassland to cropland on soil properties. We compared soil carbon (C)... Land use change significantly influences soil properties. There is little information available on the long-term effects of post-reclamation from grassland to cropland on soil properties. We compared soil carbon (C) and nitrogen (N) storage and related soil properties in a 50-year cultivation chronosequence of grassland in the agro-pastoral ecotone of Inner Mongolia. Field surveys on land use changes during the period of 1955-2002 were conducted to build a chronosequence of cropland of different ages since the conversion from grassland. The results showed that soil C and N storage, soil texture, and soil nutrient contents varied with land use types and cropland ages (P〈0.01). In the 0-30 cm soil layer, the soil organic carbon (SOC) density was significantly lower in the crop- lands (3.28 kg C/m2 for C50 soil) than in the grasslands (6.32 kg C/m2). After 5, 10, 15, 20, 35, and 50 years of crop planting (years since the onset of cultivation), the SOC losses were 17%, 12%, 19%, 47%, 46%, and 48%, respec- tively, compared with the grasslands. The soil total nitrogen (TN) density of the grasslands was 65 g N/m2, and TN density of the cropland soil was 35 g N/m2 after 50 years of crop planting. Both the SOC and TN densities could be quantitatively determined by a negative exponential function of cropland age (P〈0.0001, R2=0.8528; P〈0.0001, R2=0.9637). The dissolved organic carbon (DOC) content, pH value were decreased; and the soil bulk density and soil available potassium (AK) content, clay content, and sand content were increased since the conversion of grassland into cropland during the 50-year period. Our results show soil nutrients were higher in grassland than in cropland. The conversion of grasslands to croplands induced a loss of soil C storage and changes of related soil properties. The reclamation time of cultivated soil (cropland age) had significant effects on soil properties in the study area. 展开更多
关键词 land use type cropland age GRASSLAND soil physical-chemical properties agro-pastoral ecotone
下载PDF
Deletion of an electron donor-binding subunit of the NDH-1 complex, NdhS, results in a heat-sensitive growth phenotype in Synechocystis sp. PCC 6803 被引量:1
2
作者 jiaohong zhao Fudan Gao +2 位作者 Zijian Qiu Quanxi Wang Weimin Ma 《Chinese Science Bulletin》 SCIE EI CAS 2014年第33期4484-4490,共7页
In cyanobacteria and higher plants, NdhS is suggested to be an electron donor-binding subunit of NADPH dehydrogenase(NDH-1) complexes and its absence impairs NDH-1-dependent cyclic electron transport around photosyste... In cyanobacteria and higher plants, NdhS is suggested to be an electron donor-binding subunit of NADPH dehydrogenase(NDH-1) complexes and its absence impairs NDH-1-dependent cyclic electron transport around photosystem I(NDH-CET). Despite significant advances in the study of NdhS during recent years, its functional role in resisting heat stress is poorly understood.Here, our results revealed that the absence of NdhS resulted in a serious heat-sensitive growth phenotype in the unicellular cyanobacterium Synechocystis sp. strain PCC6803. Furthermore, the rapid and significant increase in NDH-CET caused by heat treatment was completely abolished, and the repair of photosystem II under heat stress conditions was greatly impaired when compared to that of other photosynthetic apparatus in the thylakoid membrane. We therefore conclude that NdhS plays an important role in resistance to heat stress, possibly by stabilizing the electron input module of cyanobacterial NDH-1 complexes. 展开更多
关键词 电子给体 复合物 集胞藻 表型 生长 热敏 亚单位 光系统II
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部