期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Gas content evaluation in deep coal seam with an improved method and its geological controls
1
作者 Haiqi LI Shida CHEN +2 位作者 Dazhen TANG Shuling TANG jiaosheng yang 《Frontiers of Earth Science》 SCIE CSCD 2024年第3期623-636,共14页
An improved evaluation method for estimating gas content during the inversion process of deep-burial coal was established based on the on-site natural desorption curves.The accuracy of the US Bureau of Mines(USBM),Pol... An improved evaluation method for estimating gas content during the inversion process of deep-burial coal was established based on the on-site natural desorption curves.The accuracy of the US Bureau of Mines(USBM),Polynomial fitting,Amoco,and the improved evaluation methods in the predicting of lost gas volume in deep seams in the Mabidong Block of the Qinshui Basin were then compared.Furthermore,the calculation errors of these different methods in simulating lost gas content based on coring time were compared.A newly established nonlinear equation was developed to estimate the minimum error value,by controlling the lost time within 16 min,the related errors can be reduced.The improved evaluation was shown to accurately and rapidly predict the gas content in deep seams.The results show that the deep coal bed methane accumulation is influenced by various factors,including geological structure,hydrodynamic conditions,roof lithology,and coalification.Reverse faults and weak groundwater runoff can hinder the escape of methane,and these factors should be considered in the future exploration and development of coalbed methane. 展开更多
关键词 deep coalbed methane Mabidong Block lost gas geological controls
原文传递
Pore structure characteristics of low-rank coal reservoirs with different ash yields and their implications for recoverability of coalbed methane—a case study from the Erlian Basin, northeastern China 被引量:1
2
作者 Dawei DONG jiaosheng yang +4 位作者 Qiujia HU Shitao CUI Fenjin SUN Jidong ZHANG Xinrui CUI 《Frontiers of Earth Science》 SCIE CSCD 2023年第1期18-29,共12页
Pores are the main accumulation sites and migration pathways for coalbed methane(also referred to as CBM).Pore structure restricts the content and recoverability of CBM from coal reservoirs.In this study,12 representa... Pores are the main accumulation sites and migration pathways for coalbed methane(also referred to as CBM).Pore structure restricts the content and recoverability of CBM from coal reservoirs.In this study,12 representative coal samples with different ash yields that have similar tectonic characteristics and burial depths were collected from different mining areas in the Jiergalangtu and Huolinhe depressions in the Erlian Basin.These samples were used to study the restrictions of ash yield on the characteristics of coal pore structures and the recoverability of CBM through macroscopic and microscopic structure observation,scanning electron microscope observations,vitrinite reflectance tests,low-temperature N2 adsorption,nuclear magnetic resonance(NMR),and micro-computed tomography.The results show that coal reservoirs in the study area vary greatly in ash yield,based on which they can be divided into three types,i.e.,low-ash-content,ash-bearing,and high-ash-content coal reservoirs.In addition,the ash yield has a certain impact on the development of coal pores;coal samples with lower ash yields indicate the presence of well-developed medium-large pores and better connectivity.Ash yield also has a certain impact on the brittleness of coal wherein a lower ash yield implies the development of brittle coal that is more liable to fracture as compared to less brittle samples at the same pressure.Absorbed gas content also varies significantly with ash yield;a low ash yield impacts the gas saturation of coal.Overall,for coal reservoirs in the study area,their porosity,pore diameter,movable fluid porosity,adsorbed gas amount,and recoverability decrease as the ash yield increases. 展开更多
关键词 coal reservoir ASH pore structure RECOVERABILITY Erlian Basin
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部