Purpose:This article presents an in-depth analysis of global research trends in Geosciences from 2014 to 2023.By integrating bibliometric analysis with expert insights from the Deep-time Digital Earth(DDE)initiative,t...Purpose:This article presents an in-depth analysis of global research trends in Geosciences from 2014 to 2023.By integrating bibliometric analysis with expert insights from the Deep-time Digital Earth(DDE)initiative,this article identifies key emerging themes shaping the landscape of Earth Sciences①.Design/methodology/approach:The identification process involved a meticulous analysis of over 400,000 papers from 466 Geosciences journals and approximately 5,800 papers from 93 interdisciplinary journals sourced from the Web of Science and Dimensions database.To map relationships between articles,citation networks were constructed,and spectral clustering algorithms were then employed to identify groups of related research,resulting in 407 clusters.Relevant research terms were extracted using the Log-Likelihood Ratio(LLR)algorithm,followed by statistical analyses on the volume of papers,average publication year,and average citation count within each cluster.Additionally,expert knowledge from DDE Scientific Committee was utilized to select top 30 trends based on their representation,relevance,and impact within Geosciences,and finalize naming of these top trends with consideration of the content and implications of the associated research.This comprehensive approach in systematically delineating and characterizing the trends in a way which is understandable to geoscientists.Findings:Thirty significant trends were identified in the field of Geosciences,spanning five domains:deep space,deep time,deep Earth,habitable Earth,and big data.These topics reflect the latest trends and advancements in Geosciences and have the potential to address real-world problems that are closely related to society,science,and technology.Research limitations:The analyzed data of this study only contain those were included in the Web of Science.Practical implications:This study will strongly support the organizations and individual scientists to understand the modern frontier of earth science,especially on solid earth.The organizations such as the surveys or natural science fund could map out areas for future exploration and analyze the hot topics reference to this study.Originality/value:This paper integrates bibliometric analysis with expert insights to highlight the most significant trends on earth science and reach the individual scientist and public by global voting.展开更多
Newcastle disease virus(NDV)and H9N2 subtype Avian influenza virus(AIV)are two notorious avian respiratory pathogens that cause great losses in the poultry industry.Current inactivated commercial vaccines against NDV ...Newcastle disease virus(NDV)and H9N2 subtype Avian influenza virus(AIV)are two notorious avian respiratory pathogens that cause great losses in the poultry industry.Current inactivated commercial vaccines against NDV and AIV have the disadvantages of inadequate mucosal responses,while an attenuated live vaccine bears the risk of mutation.Dendritic cell(DC)targeting strategies are attractive for their potent mucosal and adaptive immune-stimulating ability against respiratory pathogens.In this study,DC-binding peptide(DCpep)-decorated chimeric virus-like particles(cVLPs),containing NDV haemagglutinin–neuraminidase(HN)and AIV haemagglutinin(HA),were developed as a DC-targeting mucosal vaccine candidate.DCpep-decorated cVLPs activated DCs in vitro,and induced potent immune stimulation in chickens,with enhanced secretory immunoglobulin A(sIgA)secretion and splenic T cell differentiation.40μg cVLPs can provide full protection against the challenge with homologous,heterologous NDV strains,and AIV H9N2.In addition,DCpep-decorated cVLPs could induce a better immune response when administered intranasally than intramuscularly,as indicated by robust s IgA secretion and a reduced virus shedding period.Taken together,this chimericVLPs are a promising vaccine candidate to control NDV and AIV H9N2 and a useful platform bearing multivalent antigens.展开更多
文摘Purpose:This article presents an in-depth analysis of global research trends in Geosciences from 2014 to 2023.By integrating bibliometric analysis with expert insights from the Deep-time Digital Earth(DDE)initiative,this article identifies key emerging themes shaping the landscape of Earth Sciences①.Design/methodology/approach:The identification process involved a meticulous analysis of over 400,000 papers from 466 Geosciences journals and approximately 5,800 papers from 93 interdisciplinary journals sourced from the Web of Science and Dimensions database.To map relationships between articles,citation networks were constructed,and spectral clustering algorithms were then employed to identify groups of related research,resulting in 407 clusters.Relevant research terms were extracted using the Log-Likelihood Ratio(LLR)algorithm,followed by statistical analyses on the volume of papers,average publication year,and average citation count within each cluster.Additionally,expert knowledge from DDE Scientific Committee was utilized to select top 30 trends based on their representation,relevance,and impact within Geosciences,and finalize naming of these top trends with consideration of the content and implications of the associated research.This comprehensive approach in systematically delineating and characterizing the trends in a way which is understandable to geoscientists.Findings:Thirty significant trends were identified in the field of Geosciences,spanning five domains:deep space,deep time,deep Earth,habitable Earth,and big data.These topics reflect the latest trends and advancements in Geosciences and have the potential to address real-world problems that are closely related to society,science,and technology.Research limitations:The analyzed data of this study only contain those were included in the Web of Science.Practical implications:This study will strongly support the organizations and individual scientists to understand the modern frontier of earth science,especially on solid earth.The organizations such as the surveys or natural science fund could map out areas for future exploration and analyze the hot topics reference to this study.Originality/value:This paper integrates bibliometric analysis with expert insights to highlight the most significant trends on earth science and reach the individual scientist and public by global voting.
基金supported by grants from the National Key Research and Development Program of China(Grant No.2018YFD0500100)the National Natural Science Foundation of China(Grant Nos.31772735,31472195)+2 种基金the Jiangsu Provincial Natural Science Foundation of China(Grant No.BK20180299)Jiangsu Agriculture Science and Technology Innovation Fund CX(19)3019the Key Technology Research and Development Project of Jilin Province(Grant No.20180201021NY)。
文摘Newcastle disease virus(NDV)and H9N2 subtype Avian influenza virus(AIV)are two notorious avian respiratory pathogens that cause great losses in the poultry industry.Current inactivated commercial vaccines against NDV and AIV have the disadvantages of inadequate mucosal responses,while an attenuated live vaccine bears the risk of mutation.Dendritic cell(DC)targeting strategies are attractive for their potent mucosal and adaptive immune-stimulating ability against respiratory pathogens.In this study,DC-binding peptide(DCpep)-decorated chimeric virus-like particles(cVLPs),containing NDV haemagglutinin–neuraminidase(HN)and AIV haemagglutinin(HA),were developed as a DC-targeting mucosal vaccine candidate.DCpep-decorated cVLPs activated DCs in vitro,and induced potent immune stimulation in chickens,with enhanced secretory immunoglobulin A(sIgA)secretion and splenic T cell differentiation.40μg cVLPs can provide full protection against the challenge with homologous,heterologous NDV strains,and AIV H9N2.In addition,DCpep-decorated cVLPs could induce a better immune response when administered intranasally than intramuscularly,as indicated by robust s IgA secretion and a reduced virus shedding period.Taken together,this chimericVLPs are a promising vaccine candidate to control NDV and AIV H9N2 and a useful platform bearing multivalent antigens.