Carbonic acid produced by the dissolution of atmospheric and soil CO_(2)in water is usually the most dominant catalyst for chemical weathering,but a sulfuric aciddriven phenomenon,different from usual,was found in the...Carbonic acid produced by the dissolution of atmospheric and soil CO_(2)in water is usually the most dominant catalyst for chemical weathering,but a sulfuric aciddriven phenomenon,different from usual,was found in the orogenic belt watersheds dominated by silicate bedrock.This study,rooted in comprehensive field investigations in the Manas River Basin(MRB)north of the Tianshan Mountains,delves into the mechanisms and impacts of sulfuric and carbonic acid as catalysts driving diff erent types of chemical weathering in the Central Asian Orogenic Belt.Quantitative analyses elucidate that carbonate weathering constitutes 52.4%of the total chemical weathering,while silicate and evaporite account for 18.6%and 25.3%,respectively,with anthropogenic activities and atmospheric precipitation having little eff ect.The estimated total chemical weathering rate in MRB is approximately 0.075×10^(6)mol/km^(2)/year.Quantitative findings further suggest that,preceding carbonate precipitation(<10^(4)year),chemical weathering can absorb CO_(2).Subsequently,and following carbonate precipitation(10^(4)-10^(7)year),it will release CO_(2).The release significantly surpasses the global average CO_(2)consumption,contributing to a noteworthy climate impact.This study underscores the distinctive weathering mechanisms,wherein sulfuric acid emerges as the predominant catalyst.The quantity of sulfuric acid as a catalyst is approximately three times that of carbonic acid.Sulfuric acid-driven carbonate rock weathering(SCW)is identified as the sole chemical weathering type with a net CO_(2)release eff ect.SCW CO_(2)release flux(5176 mol/km^(2)/year)is roughly 2.5 times the CO_(2)absorption by Ca-Mg silicate weathering,highlighting the pivotal role of chemical weathering in sourcing atmospheric CO_(2)over the timescales of carbonate precipitation and sulfate reduction.Lastly,this study posits that catalyst and transport limitations are the most plausible critical factors in MRB.The interplay between sulfuric acid and dissolved CO_(2)competitively shapes the types and rates of chemical weathering reactions.展开更多
A Pickering emulsion based on sodium starch octenyl succinate(SSOS)was prepared and its effects on the physicochemical properties of hairtail myofibrillar protein gels(MPGs)subjected to multiple freeze-thaw(F-T)cycles...A Pickering emulsion based on sodium starch octenyl succinate(SSOS)was prepared and its effects on the physicochemical properties of hairtail myofibrillar protein gels(MPGs)subjected to multiple freeze-thaw(F-T)cycles were investigated.The whiteness,water-holding capacity,storage modulus(G')and texture properties of the MPGs were significantly improved by adding 1%-2%Pickering emulsion(P<0.05).Meanwhile,Raman spectral analysis demonstrated that Pickering emulsion promoted the transformation of secondary structure,enhanced hydrogen bonds and hydrophobic interactions,and promoted the transition of disulfide bond conformation from g-g-g to g-g-t and t-g-t.At an emulsion concentration of 2%,theα-helix content decreased by 10.37%,while theβ-sheet content increased by 7.94%,compared to the control.After F-T cycles,the structure of the MPGs was destroyed,with an increase in hardness and a decrease in whiteness and water-holding capacity,however,the quality degradation of MPGs was reduced with 1%-2%Pickering emulsion.These findings demonstrated that SSOS-Pickering emulsions,as potential fat substitutes,can enhance the gel properties and the F-T stability of MPGs.展开更多
CuCl-based catalysts are the most commonly used catalysts for the“direct synthesis”of trimethoxysilane(M3).CuCl species are sensitive to air and water,and are prone to oxidation deactivation.When CuCl is directly us...CuCl-based catalysts are the most commonly used catalysts for the“direct synthesis”of trimethoxysilane(M3).CuCl species are sensitive to air and water,and are prone to oxidation deactivation.When CuCl is directly used as a catalyst,it needs to be purified before the utilization,and the operating conditions for the catalyst preparation are relatively harsh,requiring the inert gas environment.Considering a high-temperature activation step required for CuCl-based catalysts used for catalyzing synthesis of M3 to form active phase Cu–Si alloys(Cu_(x)Si)with Si powder,in this work,a series of catalysts for the“direct synthesis”of M3 were obtained by a one-step high-temperature activation of the mixture of stable CuCl_(2) precursors,activated carbon-reducing agent,and Si powder,simultaneously achieving the reduction of CuCl_(2) to CuCl and the formation of active phase Cu_(x)Si alloys of CuCl with Si powder.The prepared samples were characterized through various characterization techniques,and investigated for the catalytic performance for the“direct synthesis”of M3.Moreover,the operation conditions were optimized,including the activation temperature,catalyst dosage,Si powder particle size,and reaction temperature.The characterization results indicate that during the one-step activation process,the CuCl_(2) precursor is reduced to CuCl,and the resulting CuCl simultaneously reacts with Si powder to form active phases Cu3Si and Cu15Si4 alloys.The optimal catalyst Sacm(250,0.8:10)exhibits a good catalytic activity with selectivity of 95%and yield of 77%for M3,and shows a good universality for various alcohol substrates.Furthermore,the catalytic mechanism of the prepared catalyst for the“direct synthesis”of M3 was discussed.展开更多
For the sake of improving the mechanical properties and corrosion resistance of biodegradable Mg alloy synergistically,various content of element V(0,0.05,0.10,0.15,0.20 wt.%)are introduced into an Mg-Zn-Y alloy with ...For the sake of improving the mechanical properties and corrosion resistance of biodegradable Mg alloy synergistically,various content of element V(0,0.05,0.10,0.15,0.20 wt.%)are introduced into an Mg-Zn-Y alloy with long-period stacking ordered(LPSO)structure,and the effects of V on its microstructure,mechanical properties and corrosion resistance are investigated systematically.The results indicate that the grains are effectively refined by V addition,and the primaryα-Mg in Mg-Zn-Y-V0.1 alloy is most significantly refined,with grain size being decreased by 62%.The amount of 18R LPSO structure is increased owing to the V addition.The growth mode of the second phase(W-phase and 18R LPSO structure)is transformed to divorced growth pattern,which ascribes to the thermodynamic drive force of V to promote the nucleation of LPSO phase.Thus,18R LPSO structure presents a continuous distribution.Due to grains refinement and modification of second phase,the tensile strength and strain of alloys are both enhanced effectively.Especially,the ultimate tensile strength and the elongation of V0.1 alloy are 254 MPa and 15.26%,which are 41%and 61%higher than those of V-free alloy,respectively.Owing to the continuously distributed 18R LPSO structure with refined grains and stable product film,the weight loss and hydrogen evolution corrosion rates of V0.1 alloy are 7.1 and 6.2 mmy^(-1),respectively,which are 42.6%and 45.4%lower than those of V-free alloy.展开更多
Oxidative stress is one of the main ways to cause alcohol-induced liver injury,and alcoholic liver disease(ALD)has been a common health problem worldwide.Lactic acid bacteria(LAB)is also considered as a potential trea...Oxidative stress is one of the main ways to cause alcohol-induced liver injury,and alcoholic liver disease(ALD)has been a common health problem worldwide.Lactic acid bacteria(LAB)is also considered as a potential treatment to alleviate alcohol-induced liver injury.Lactobacillus plantarum J26 is a LAB isolated from Chinese traditional fermented dairy products with excellent probiotic effects.This study aimed to establish a mice model of alcoholic liver injury through acute-on-chronic alcohol feeding and to study the alleviating effect of pre-intake of L.plantarum J26 on alcohol-induced oxidative liver injury and focus on its potential mechanism of alleviating effect.The results showed that pre-intake of L.plantarum J26 could improve liver pathological changes,reduce lipid accumulation,increase mitochondrial ATP and mitochondrial(mtDNA)levels,and alleviate liver injury.In addition,pre-intake L.plantarum J26 can improve the level of short-chain fatty acids(SCFAs)in the intestines in mice,short chain fatty acids can be used as a signaling molecule activation of nuclear factor E2-related factor 2(Nrf2)signaling pathway to alleviate liver oxidative stress,and maintain mitochondrial homeostasis by regulating the expression of genes related to mitochondrial dynamics and autophagy,thereby reducing cell apoptosis to alleviate alcohol-induced oxidative liver injury.展开更多
Branched-chain fatty acids(BCFAs)are new bioactive fatty acids with anti-inflammatory properties.However,the role of BCFAs in alleviating ulcerative colitis has not been clarified.Herein,we evaluated the protective ef...Branched-chain fatty acids(BCFAs)are new bioactive fatty acids with anti-inflammatory properties.However,the role of BCFAs in alleviating ulcerative colitis has not been clarified.Herein,we evaluated the protective effect of BCFAs from goat milk in mice with colitis induced using dextran sodium sulfate(DSS)and explored the corresponding mechanism.These results show that BCFAs extracted from goat milk can significantly alleviate weight loss in mice,and reduce the disease activity index and the activity of myeloperoxidase while increasing the content of antioxidant enzymes in colon tissue and reducing the oxidation stress response.These data also show that BCFAs can down-regulate the gene and protein expression of the toll-like receptor 4(TLR4)/nuclear factorκB p65(NF-κB p65)/NOD-like receptor thermal protein domain associated protein 3(NLRP3)signaling pathway,and at the same time significantly reduce the expression of pro-inflammatory factors tumor necrosis factorα(TNF-α),interleukin 1β(IL-1β),and IL-18 in colon tissue,and significantly increase the expression of the anti-inflammatory factor IL-10.In conclusion,these results demonstrated that BCFAs in goat milk exerted effects on colitis-related inflammatory cytokines and inhibited inflammation by inducing the TLR4/NF-κB/NLRP3 pathway to alleviate DSS-induced ulcerative colitis.This study provides evidence for the potential of BCFAs as bioactive fatty acids in food products and to ameliorate ulcerative colitis development in mice.展开更多
Objectives: A non-clinical study was performed to establish a LC-MS/MS method to determine the in vivo active components of doxorubicin hydrochloride liposome injection in the plasma of Sprague-Dawley rats. Methods: T...Objectives: A non-clinical study was performed to establish a LC-MS/MS method to determine the in vivo active components of doxorubicin hydrochloride liposome injection in the plasma of Sprague-Dawley rats. Methods: Ten male SD rats were administered tail vein with a single dose of 10 mg/kg, and the concentrations of doxorubicin hydrochloride in plasma, heart, liver, spleen, lung, and kidney were determined by liquid chromatography-tandem mass spectrometry, and the pharmacokinetic parameters were calculated. Results: The final concentration of doxorubicin hydrochloride ranged from 500 ng/mL to 250,000 ng/mL, and the lower limit of quantification was 500 ng/mL;the main pharmacokinetic parameters: T<sub>1/2</sub> was (19.282 ± 10.305) h, C<sub>max</sub> was (118514.828 ± 26155.134) ng/mL, AUC<sub>0-24</sub> and AUC<sub>0-∞</sub> were (1216659.205 ± 192706.268) ng/mL⋅h and (2082244.523 ± 860139.487) ng/mL⋅h, MRT<sub>0-24</sub> and MRT<sub>0-∞</sub> were (9.237 ± 0.423) h and (26.52 ± 14.015) h, respectively, and clearance (CL) was (0.005 ± 0.002) mL/h⋅ng. Conclusions: The method is simple, rapid, and sensitive, which can be used for the determination of doxorubicin hydrochloride concentration in the plasma of SD rats and pharmacokinetic non-clinical studies.展开更多
The efficient integration of satellite and terrestrial networks has become an important component for 6 G wireless architectures to provide highly reliable and secure connectivity over a wide geographical area.As the ...The efficient integration of satellite and terrestrial networks has become an important component for 6 G wireless architectures to provide highly reliable and secure connectivity over a wide geographical area.As the satellite and cellular networks are developed separately these years,the integrated network should synergize the communication,storage,computation capabilities of both sides towards an intelligent system more than mere consideration of coexistence.This has motivated us to develop double-edge intelligent integrated satellite and terrestrial networks(DILIGENT).Leveraging the boost development of multi-access edge computing(MEC)technology and artificial intelligence(AI),the framework is entitled with the systematic learning and adaptive network management of satellite and cellular networks.In this article,we provide a brief review of the state-of-art contributions from the perspective of academic research and standardization.Then we present the overall design of the proposed DILIGENT architecture,where the advantages are discussed and summarized.Strategies of task offloading,content caching and distribution are presented.Numerical results show that the proposed network architecture outperforms the existing integrated networks.展开更多
In this paper,an adaptive neural-network(NN)output feedback optimal control problem is studied for a class of strict-feedback nonlinear systems with unknown internal dynamics,input saturation and state constraints.Neu...In this paper,an adaptive neural-network(NN)output feedback optimal control problem is studied for a class of strict-feedback nonlinear systems with unknown internal dynamics,input saturation and state constraints.Neural networks are used to approximate unknown internal dynamics and an adaptive NN state observer is developed to estimate immeasurable states.Under the framework of the backstepping design,by employing the actor-critic architecture and constructing the tan-type Barrier Lyapunov function(BLF),the virtual and actual optimal controllers are developed.In order to accomplish optimal control effectively,a simplified reinforcement learning(RL)algorithm is designed by deriving the updating laws from the negative gradient of a simple positive function,instead of employing existing optimal control methods.In addition,to ensure that all the signals in the closed-loop system are bounded and the output can follow the reference signal within a bounded error,all state variables are confined within their compact sets all times.Finally,a simulation example is given to illustrate the effectiveness of the proposed control strategy.展开更多
As a viable component of 6G wireless communication architecture,satellite-terrestrial networks support efficient file delivery by leveraging the innate broadcast ability of satellite and the enhanced powerful file tra...As a viable component of 6G wireless communication architecture,satellite-terrestrial networks support efficient file delivery by leveraging the innate broadcast ability of satellite and the enhanced powerful file transmission approaches of multi-tier terrestrial networks.In the paper,we introduce edge computing technology into the satellite-terrestrial network and propose a partition-based cache and delivery strategy to make full use of the integrated resources and reducing the backhaul load.Focusing on the interference effect from varied nodes in different geographical distances,we derive the file successful transmission probability of the typical user and by utilizing the tool of stochastic geometry.Considering the constraint of nodes cache space and file sets parameters,we propose a near-optimal partition-based cache and delivery strategy by optimizing the asymptotic successful transmission probability of the typical user.The complex nonlinear programming problem is settled by jointly utilizing standard particle-based swarm optimization(PSO)method and greedy based multiple knapsack choice problem(MKCP)optimization method.Numerical results show that compared with the terrestrial only cache strategy,Ground Popular Strategy,Satellite Popular Strategy,and Independent and identically distributed popularity strategy,the performance of the proposed scheme improve by 30.5%,9.3%,12.5%and 13.7%.展开更多
Chrysanthemum(Chrysanthemum morifolium)is an ideal model species for studying petal morphogenesis because of the diversity in the flower form across varieties;however,the molecular mechanisms underlying petal developm...Chrysanthemum(Chrysanthemum morifolium)is an ideal model species for studying petal morphogenesis because of the diversity in the flower form across varieties;however,the molecular mechanisms underlying petal development are poorly understood.Here,we show that the brassinosteroid transcription factor BRI1-EMS-SUPPRESSOR 1(CmBES1)in chrysanthemum(C.morifolium cv.Jinba)is important for organ boundary formation because it represses organ boundary identity genes.Chrysanthemum plants overexpressing CmBES1 displayed increased fusion of the outermost ray florets due to the loss of differentiation of the two dorsal petals,which developed simultaneously with the ventral petals.RNA-seq analysis of the overexpression lines revealed potential genes and pathways involved in petal development,such as CUP-SHAPED COTYLEDON(CUC2),CYCLOIDEA 4(CYC4),genes encoding MADS-box transcription factors and homeodomain-leucine zippers(HD-Zips)and auxin pathway-related genes.This study characterizes the role of CmBES1 in ray floret development by its modulation of flower development and boundary identity genes in chrysanthemum.展开更多
Multivariate statistical process monitoring methods are often used in chemical process fault diagnosis.In this article,(I)the cycle temporal algorithm(CTA)combined with the dynamic kernel principal component analysis(...Multivariate statistical process monitoring methods are often used in chemical process fault diagnosis.In this article,(I)the cycle temporal algorithm(CTA)combined with the dynamic kernel principal component analysis(DKPCA)and the multiway dynamic kernel principal component analysis(MDKPCA)fault detection algorithms are proposed,which are used for continuous and batch process fault detections,respectively.In addition,(II)a fault variable identification model based on reconstructed-based contribution(RBC)model that paves the way for determining the cause of the fault are proposed.The proposed fault diagnosis model was applied to Tennessee Eastman(TE)process and penicillin fermentation process for fault diagnosis.And compare with other fault diagnosis methods.The results show that the proposed method has better detection effects than other methods.Finally,the reconstruction-based contribution(RBC)model method is used to accurately locate the root cause of the fault and determine the fault path.展开更多
Herein,we report a novel sensor to detect trypsin using a purpose-designed fluorescein-labelled peptide with negatively charged carbon nanoparticles(CNPs)modified by acid oxidation.The fluorescence of the fluorescein-...Herein,we report a novel sensor to detect trypsin using a purpose-designed fluorescein-labelled peptide with negatively charged carbon nanoparticles(CNPs)modified by acid oxidation.The fluorescence of the fluorescein-labelled peptide was quenched by CNPs.The sensor reacted with trypsin to cleave the peptide,resulting in the release of the dye moiety and a substantial increase in fluorescence intensity,which was dose-and time-dependent,and trypsin could be quantified accordingly.Correspondingly,the biosensor has led to the development of a convenient and efficient fluorescent method to measure trypsin activity,with a detection limit of 0.7 mg/mL.The method allows rapid determination of trypsin activity in the normal and acute pancreatitis range,suitable for point-of-care testing.Furthermore,the applicability of the method has been demonstrated by detecting trypsin in spiked urine samples.展开更多
Dear Editor,The optimal formation control design problem is studied for a class of second-order multi-agent systems(MASs) with obstacle avoidance.Based on the actor-critic framework, an optimized formation controller ...Dear Editor,The optimal formation control design problem is studied for a class of second-order multi-agent systems(MASs) with obstacle avoidance.Based on the actor-critic framework, an optimized formation controller is proposed by constructing a novel performance index function. Furthermore, the stability of MAS is proved by constructing the Lyapunov function. The simulation results are provided to depict the effectiveness of the proposed strategies.展开更多
In the semiconductor-based photocatalysts for overall water splitting, loading proper cocatalysts play a crucial role in enhancing the photocatalytic activity. In this work, we have chosen Ni_n/α-Ga_2O_3 as a model a...In the semiconductor-based photocatalysts for overall water splitting, loading proper cocatalysts play a crucial role in enhancing the photocatalytic activity. In this work, we have chosen Ni_n/α-Ga_2O_3 as a model and provided detailed density functional theory calculations to investigate the function of cocatalysts in hydrogen evolution reaction(HER). We have studied the formation and stability of Ni_n(n = 1–4) cluster on two stable surfaces of α-Ga_2O_3(001) and(012). In a Ni_n/α-Ga_2O_3 system, as the Ni 3d states well overlap with O and Ga states, the excited electrons transferred from Ga to Ni may participate in HER. We theoretically predict that introduction of Nincluster on(012) surface can elevate the Fermi level toward the conduction band, which is favorable for the occurrence of HER. Electrochemical computations are used to explore the mechanism of HER. It is found that, in most of Ni_n/α-Ga_2O_3 systems, the active sites of HER are on Ni_n clusters. Loading Ni_n clusters not only importantly reduces the Gibbs free energy of HER but also improves the reaction activity of surface O and Ga sites in HER. Our calculations reasonably explain the experimental observation on significant enhancement of activity for generating hydrogen after loading nickel oxide cocatalysts.展开更多
We examine quantum anomalous Hall(QAH)insulators with intrinsic magnetism displaying quantized Hall conductance at zero magnetic fields.The spin-momentum locking of the topological edge stats promises QAH insulators w...We examine quantum anomalous Hall(QAH)insulators with intrinsic magnetism displaying quantized Hall conductance at zero magnetic fields.The spin-momentum locking of the topological edge stats promises QAH insulators with great potential in device applications in the field of spintronics.Here,we generalize Haldane’s model on the honeycomb lattice to a more realistic two-orbital case without the artificial real-space complex hopping.Instead,we introduce an intraorbital coupling,stemming directly from the local spin-orbit coupling(SOC).Our dxy/dx2-y2 model may be viewed as a generalization of the bismuthene px/py-model for correlated d-orbitals.It promises a large SOC gap,featuring a high operating temperature.This two-orbital model nicely explains the low-energy excitation and the topology of two-dimensional ferromagnetic iron-halogenides.Furthermore,we find that electronic correlations can drive the QAH states to a c=0 phase,in which every band carries a nonzero Chern number.Our work not only provides a realistic QAH model,but also generalizes the nontrivial band topology to correlated orbitals,which demonstrates an exciting topological phase transition driven by Coulomb repulsions.Both the model and the material candidates provide excellent platforms for future study of the interplay between electronic correlations and nontrivial band topology.展开更多
Taking the advantage of Internet of Things(IoT)enabled measurements,this paper formulates the event detection problem as an information-plus-noise model,and detects events in power systems based on free probability th...Taking the advantage of Internet of Things(IoT)enabled measurements,this paper formulates the event detection problem as an information-plus-noise model,and detects events in power systems based on free probability theory(FPT).Using big data collected from phasor measurement units(PMUs),we construct the event detection matrix to reflect both spatial and temporal characteristics of power gird states.The event detection matrix is further described as an information matrix plus a noise matrix,and the essence of event detection is to extract event information from the event detection matrix.By associating the event detection problem with FPT,the empirical spectral distributions(ESDs)related moments of the sample covariance matrix of the information matrix are computed,to distinguish events from“noises”,including normal fluctuations,background noises,and measurement errors.Based on central limit theory(CLT),the alarm threshold is computed using measurements collected in normal states.Additionally,with the aid of sliding window,this paper builds an event detection architecture to reflect power grid state and detect events online.Case studies with simulated data from Anhui,China,and real PMU data from Guangdong,China,verify the effectiveness of the proposed method.Compared with other data-driven methods,the proposed method is more sensitive and has better adaptability to the normal fluctuations,background noises,and measurement errors in real PMU cases.In addition,it does not require large number of training samples as needed in the training-testing paradigm.展开更多
The commonly used Poisson rectangular pulse(PRP)model,employed for simulating high-resolution residential water consumption patterns(RWCPs),relies on calibration via medium-resolution RWCPs obtained from practical mea...The commonly used Poisson rectangular pulse(PRP)model,employed for simulating high-resolution residential water consumption patterns(RWCPs),relies on calibration via medium-resolution RWCPs obtained from practical measurements.This introduces inevitable uncertainty stemming from the measured RWCPs,which consequently impacts the precision of model simulations.Here we enhance the accuracy of the PRP model by addressing the uncertainty of RWCPs.We established a critical sampling size of 2000 household water consumption patterns(HWCPs)with a data logging interval(DLI)of 15 min to attain dependable RWCPs.Through Genetic Algorithm calibration,the optimal values of the PRP model's parameters were determined:pulse frequency lλ=91 d^(-1),mean of pulse intensity E(I)=0.346 m^(3) h^(-1),standard deviation of pulse intensity STD(I)=0.292 m^(3) h^(-1),mean of pulse duration E(D)=40 s,and standard deviation of pulse duration STD(D)=55 s.Furthermore,validation was conducted at both HWCP and RWCP levels.We recommend a sampling size of2000 HWCPs and a DLI of30 min for PRP model calibration to balance simulation precision and practical implementation.This study significantly advances the theoretical foundation and real-world application of the PRP model,enhancing its role in urban water supply system management.展开更多
基金support from the Third Xinjiang Scientific Expedition Program(2021XJKK0803)the National Natural Science Foundation of China(No.41930640)the Project of the Second Comprehensive Scientific Investigation on the Qinghai-Tibetan Plateau(2019QZKK1003)。
文摘Carbonic acid produced by the dissolution of atmospheric and soil CO_(2)in water is usually the most dominant catalyst for chemical weathering,but a sulfuric aciddriven phenomenon,different from usual,was found in the orogenic belt watersheds dominated by silicate bedrock.This study,rooted in comprehensive field investigations in the Manas River Basin(MRB)north of the Tianshan Mountains,delves into the mechanisms and impacts of sulfuric and carbonic acid as catalysts driving diff erent types of chemical weathering in the Central Asian Orogenic Belt.Quantitative analyses elucidate that carbonate weathering constitutes 52.4%of the total chemical weathering,while silicate and evaporite account for 18.6%and 25.3%,respectively,with anthropogenic activities and atmospheric precipitation having little eff ect.The estimated total chemical weathering rate in MRB is approximately 0.075×10^(6)mol/km^(2)/year.Quantitative findings further suggest that,preceding carbonate precipitation(<10^(4)year),chemical weathering can absorb CO_(2).Subsequently,and following carbonate precipitation(10^(4)-10^(7)year),it will release CO_(2).The release significantly surpasses the global average CO_(2)consumption,contributing to a noteworthy climate impact.This study underscores the distinctive weathering mechanisms,wherein sulfuric acid emerges as the predominant catalyst.The quantity of sulfuric acid as a catalyst is approximately three times that of carbonic acid.Sulfuric acid-driven carbonate rock weathering(SCW)is identified as the sole chemical weathering type with a net CO_(2)release eff ect.SCW CO_(2)release flux(5176 mol/km^(2)/year)is roughly 2.5 times the CO_(2)absorption by Ca-Mg silicate weathering,highlighting the pivotal role of chemical weathering in sourcing atmospheric CO_(2)over the timescales of carbonate precipitation and sulfate reduction.Lastly,this study posits that catalyst and transport limitations are the most plausible critical factors in MRB.The interplay between sulfuric acid and dissolved CO_(2)competitively shapes the types and rates of chemical weathering reactions.
基金supported by the National Natural Science Foundation of China(U20A2067,32272360)。
文摘A Pickering emulsion based on sodium starch octenyl succinate(SSOS)was prepared and its effects on the physicochemical properties of hairtail myofibrillar protein gels(MPGs)subjected to multiple freeze-thaw(F-T)cycles were investigated.The whiteness,water-holding capacity,storage modulus(G')and texture properties of the MPGs were significantly improved by adding 1%-2%Pickering emulsion(P<0.05).Meanwhile,Raman spectral analysis demonstrated that Pickering emulsion promoted the transformation of secondary structure,enhanced hydrogen bonds and hydrophobic interactions,and promoted the transition of disulfide bond conformation from g-g-g to g-g-t and t-g-t.At an emulsion concentration of 2%,theα-helix content decreased by 10.37%,while theβ-sheet content increased by 7.94%,compared to the control.After F-T cycles,the structure of the MPGs was destroyed,with an increase in hardness and a decrease in whiteness and water-holding capacity,however,the quality degradation of MPGs was reduced with 1%-2%Pickering emulsion.These findings demonstrated that SSOS-Pickering emulsions,as potential fat substitutes,can enhance the gel properties and the F-T stability of MPGs.
基金supported by the Key Research & Development Plan of Shandong Province (the Major Scientific and Technological Innovation Projects, 2021ZDSYS13)the Natural Science Foundation of Shandong Province (ZR2021MB135)
文摘CuCl-based catalysts are the most commonly used catalysts for the“direct synthesis”of trimethoxysilane(M3).CuCl species are sensitive to air and water,and are prone to oxidation deactivation.When CuCl is directly used as a catalyst,it needs to be purified before the utilization,and the operating conditions for the catalyst preparation are relatively harsh,requiring the inert gas environment.Considering a high-temperature activation step required for CuCl-based catalysts used for catalyzing synthesis of M3 to form active phase Cu–Si alloys(Cu_(x)Si)with Si powder,in this work,a series of catalysts for the“direct synthesis”of M3 were obtained by a one-step high-temperature activation of the mixture of stable CuCl_(2) precursors,activated carbon-reducing agent,and Si powder,simultaneously achieving the reduction of CuCl_(2) to CuCl and the formation of active phase Cu_(x)Si alloys of CuCl with Si powder.The prepared samples were characterized through various characterization techniques,and investigated for the catalytic performance for the“direct synthesis”of M3.Moreover,the operation conditions were optimized,including the activation temperature,catalyst dosage,Si powder particle size,and reaction temperature.The characterization results indicate that during the one-step activation process,the CuCl_(2) precursor is reduced to CuCl,and the resulting CuCl simultaneously reacts with Si powder to form active phases Cu3Si and Cu15Si4 alloys.The optimal catalyst Sacm(250,0.8:10)exhibits a good catalytic activity with selectivity of 95%and yield of 77%for M3,and shows a good universality for various alcohol substrates.Furthermore,the catalytic mechanism of the prepared catalyst for the“direct synthesis”of M3 was discussed.
基金supported financially by the National Natural Science Foundation of China(Nos.51825401,51474153 and 51574175)。
文摘For the sake of improving the mechanical properties and corrosion resistance of biodegradable Mg alloy synergistically,various content of element V(0,0.05,0.10,0.15,0.20 wt.%)are introduced into an Mg-Zn-Y alloy with long-period stacking ordered(LPSO)structure,and the effects of V on its microstructure,mechanical properties and corrosion resistance are investigated systematically.The results indicate that the grains are effectively refined by V addition,and the primaryα-Mg in Mg-Zn-Y-V0.1 alloy is most significantly refined,with grain size being decreased by 62%.The amount of 18R LPSO structure is increased owing to the V addition.The growth mode of the second phase(W-phase and 18R LPSO structure)is transformed to divorced growth pattern,which ascribes to the thermodynamic drive force of V to promote the nucleation of LPSO phase.Thus,18R LPSO structure presents a continuous distribution.Due to grains refinement and modification of second phase,the tensile strength and strain of alloys are both enhanced effectively.Especially,the ultimate tensile strength and the elongation of V0.1 alloy are 254 MPa and 15.26%,which are 41%and 61%higher than those of V-free alloy,respectively.Owing to the continuously distributed 18R LPSO structure with refined grains and stable product film,the weight loss and hydrogen evolution corrosion rates of V0.1 alloy are 7.1 and 6.2 mmy^(-1),respectively,which are 42.6%and 45.4%lower than those of V-free alloy.
基金supported by the National Key R&D Program of China(2021YFD2100701).
文摘Oxidative stress is one of the main ways to cause alcohol-induced liver injury,and alcoholic liver disease(ALD)has been a common health problem worldwide.Lactic acid bacteria(LAB)is also considered as a potential treatment to alleviate alcohol-induced liver injury.Lactobacillus plantarum J26 is a LAB isolated from Chinese traditional fermented dairy products with excellent probiotic effects.This study aimed to establish a mice model of alcoholic liver injury through acute-on-chronic alcohol feeding and to study the alleviating effect of pre-intake of L.plantarum J26 on alcohol-induced oxidative liver injury and focus on its potential mechanism of alleviating effect.The results showed that pre-intake of L.plantarum J26 could improve liver pathological changes,reduce lipid accumulation,increase mitochondrial ATP and mitochondrial(mtDNA)levels,and alleviate liver injury.In addition,pre-intake L.plantarum J26 can improve the level of short-chain fatty acids(SCFAs)in the intestines in mice,short chain fatty acids can be used as a signaling molecule activation of nuclear factor E2-related factor 2(Nrf2)signaling pathway to alleviate liver oxidative stress,and maintain mitochondrial homeostasis by regulating the expression of genes related to mitochondrial dynamics and autophagy,thereby reducing cell apoptosis to alleviate alcohol-induced oxidative liver injury.
基金financially supported by the 2021 Kabrita Nutrition Grant.
文摘Branched-chain fatty acids(BCFAs)are new bioactive fatty acids with anti-inflammatory properties.However,the role of BCFAs in alleviating ulcerative colitis has not been clarified.Herein,we evaluated the protective effect of BCFAs from goat milk in mice with colitis induced using dextran sodium sulfate(DSS)and explored the corresponding mechanism.These results show that BCFAs extracted from goat milk can significantly alleviate weight loss in mice,and reduce the disease activity index and the activity of myeloperoxidase while increasing the content of antioxidant enzymes in colon tissue and reducing the oxidation stress response.These data also show that BCFAs can down-regulate the gene and protein expression of the toll-like receptor 4(TLR4)/nuclear factorκB p65(NF-κB p65)/NOD-like receptor thermal protein domain associated protein 3(NLRP3)signaling pathway,and at the same time significantly reduce the expression of pro-inflammatory factors tumor necrosis factorα(TNF-α),interleukin 1β(IL-1β),and IL-18 in colon tissue,and significantly increase the expression of the anti-inflammatory factor IL-10.In conclusion,these results demonstrated that BCFAs in goat milk exerted effects on colitis-related inflammatory cytokines and inhibited inflammation by inducing the TLR4/NF-κB/NLRP3 pathway to alleviate DSS-induced ulcerative colitis.This study provides evidence for the potential of BCFAs as bioactive fatty acids in food products and to ameliorate ulcerative colitis development in mice.
文摘Objectives: A non-clinical study was performed to establish a LC-MS/MS method to determine the in vivo active components of doxorubicin hydrochloride liposome injection in the plasma of Sprague-Dawley rats. Methods: Ten male SD rats were administered tail vein with a single dose of 10 mg/kg, and the concentrations of doxorubicin hydrochloride in plasma, heart, liver, spleen, lung, and kidney were determined by liquid chromatography-tandem mass spectrometry, and the pharmacokinetic parameters were calculated. Results: The final concentration of doxorubicin hydrochloride ranged from 500 ng/mL to 250,000 ng/mL, and the lower limit of quantification was 500 ng/mL;the main pharmacokinetic parameters: T<sub>1/2</sub> was (19.282 ± 10.305) h, C<sub>max</sub> was (118514.828 ± 26155.134) ng/mL, AUC<sub>0-24</sub> and AUC<sub>0-∞</sub> were (1216659.205 ± 192706.268) ng/mL⋅h and (2082244.523 ± 860139.487) ng/mL⋅h, MRT<sub>0-24</sub> and MRT<sub>0-∞</sub> were (9.237 ± 0.423) h and (26.52 ± 14.015) h, respectively, and clearance (CL) was (0.005 ± 0.002) mL/h⋅ng. Conclusions: The method is simple, rapid, and sensitive, which can be used for the determination of doxorubicin hydrochloride concentration in the plasma of SD rats and pharmacokinetic non-clinical studies.
基金supportedin part by the National Science Foundation of China(NSFC)under Grant 61631005,Grant 61771065,Grant 61901048in part by the Zhijiang Laboratory Open Project Fund 2020LCOAB01in part by the Beijing Municipal Science and Technology Commission Research under Project Z181100003218015。
文摘The efficient integration of satellite and terrestrial networks has become an important component for 6 G wireless architectures to provide highly reliable and secure connectivity over a wide geographical area.As the satellite and cellular networks are developed separately these years,the integrated network should synergize the communication,storage,computation capabilities of both sides towards an intelligent system more than mere consideration of coexistence.This has motivated us to develop double-edge intelligent integrated satellite and terrestrial networks(DILIGENT).Leveraging the boost development of multi-access edge computing(MEC)technology and artificial intelligence(AI),the framework is entitled with the systematic learning and adaptive network management of satellite and cellular networks.In this article,we provide a brief review of the state-of-art contributions from the perspective of academic research and standardization.Then we present the overall design of the proposed DILIGENT architecture,where the advantages are discussed and summarized.Strategies of task offloading,content caching and distribution are presented.Numerical results show that the proposed network architecture outperforms the existing integrated networks.
基金This work was supported by National Natural Science Foundation of China(61822307,61773188).
文摘In this paper,an adaptive neural-network(NN)output feedback optimal control problem is studied for a class of strict-feedback nonlinear systems with unknown internal dynamics,input saturation and state constraints.Neural networks are used to approximate unknown internal dynamics and an adaptive NN state observer is developed to estimate immeasurable states.Under the framework of the backstepping design,by employing the actor-critic architecture and constructing the tan-type Barrier Lyapunov function(BLF),the virtual and actual optimal controllers are developed.In order to accomplish optimal control effectively,a simplified reinforcement learning(RL)algorithm is designed by deriving the updating laws from the negative gradient of a simple positive function,instead of employing existing optimal control methods.In addition,to ensure that all the signals in the closed-loop system are bounded and the output can follow the reference signal within a bounded error,all state variables are confined within their compact sets all times.Finally,a simulation example is given to illustrate the effectiveness of the proposed control strategy.
基金supported by the National Key Research and Development Program of China 2021YFB2900504,2020YFB1807900 and 2020YFB1807903by the National Science Foundation of China under Grant 62271062,62071063。
文摘As a viable component of 6G wireless communication architecture,satellite-terrestrial networks support efficient file delivery by leveraging the innate broadcast ability of satellite and the enhanced powerful file transmission approaches of multi-tier terrestrial networks.In the paper,we introduce edge computing technology into the satellite-terrestrial network and propose a partition-based cache and delivery strategy to make full use of the integrated resources and reducing the backhaul load.Focusing on the interference effect from varied nodes in different geographical distances,we derive the file successful transmission probability of the typical user and by utilizing the tool of stochastic geometry.Considering the constraint of nodes cache space and file sets parameters,we propose a near-optimal partition-based cache and delivery strategy by optimizing the asymptotic successful transmission probability of the typical user.The complex nonlinear programming problem is settled by jointly utilizing standard particle-based swarm optimization(PSO)method and greedy based multiple knapsack choice problem(MKCP)optimization method.Numerical results show that compared with the terrestrial only cache strategy,Ground Popular Strategy,Satellite Popular Strategy,and Independent and identically distributed popularity strategy,the performance of the proposed scheme improve by 30.5%,9.3%,12.5%and 13.7%.
基金supported by the National Natural Science Foundation of China(31930100)the National Natural Science Foundation of China(31701959)+1 种基金the Natural Science Fund of Jiangsu Province(BK20170717)the Fundamental Research Funds for the Central Universities(KJQN201815).
文摘Chrysanthemum(Chrysanthemum morifolium)is an ideal model species for studying petal morphogenesis because of the diversity in the flower form across varieties;however,the molecular mechanisms underlying petal development are poorly understood.Here,we show that the brassinosteroid transcription factor BRI1-EMS-SUPPRESSOR 1(CmBES1)in chrysanthemum(C.morifolium cv.Jinba)is important for organ boundary formation because it represses organ boundary identity genes.Chrysanthemum plants overexpressing CmBES1 displayed increased fusion of the outermost ray florets due to the loss of differentiation of the two dorsal petals,which developed simultaneously with the ventral petals.RNA-seq analysis of the overexpression lines revealed potential genes and pathways involved in petal development,such as CUP-SHAPED COTYLEDON(CUC2),CYCLOIDEA 4(CYC4),genes encoding MADS-box transcription factors and homeodomain-leucine zippers(HD-Zips)and auxin pathway-related genes.This study characterizes the role of CmBES1 in ray floret development by its modulation of flower development and boundary identity genes in chrysanthemum.
基金financial support from the National Natural Science Foundation of China (21706220)
文摘Multivariate statistical process monitoring methods are often used in chemical process fault diagnosis.In this article,(I)the cycle temporal algorithm(CTA)combined with the dynamic kernel principal component analysis(DKPCA)and the multiway dynamic kernel principal component analysis(MDKPCA)fault detection algorithms are proposed,which are used for continuous and batch process fault detections,respectively.In addition,(II)a fault variable identification model based on reconstructed-based contribution(RBC)model that paves the way for determining the cause of the fault are proposed.The proposed fault diagnosis model was applied to Tennessee Eastman(TE)process and penicillin fermentation process for fault diagnosis.And compare with other fault diagnosis methods.The results show that the proposed method has better detection effects than other methods.Finally,the reconstruction-based contribution(RBC)model method is used to accurately locate the root cause of the fault and determine the fault path.
文摘Herein,we report a novel sensor to detect trypsin using a purpose-designed fluorescein-labelled peptide with negatively charged carbon nanoparticles(CNPs)modified by acid oxidation.The fluorescence of the fluorescein-labelled peptide was quenched by CNPs.The sensor reacted with trypsin to cleave the peptide,resulting in the release of the dye moiety and a substantial increase in fluorescence intensity,which was dose-and time-dependent,and trypsin could be quantified accordingly.Correspondingly,the biosensor has led to the development of a convenient and efficient fluorescent method to measure trypsin activity,with a detection limit of 0.7 mg/mL.The method allows rapid determination of trypsin activity in the normal and acute pancreatitis range,suitable for point-of-care testing.Furthermore,the applicability of the method has been demonstrated by detecting trypsin in spiked urine samples.
基金supported by the National Natural Science Foundation of China(61822307)。
文摘Dear Editor,The optimal formation control design problem is studied for a class of second-order multi-agent systems(MASs) with obstacle avoidance.Based on the actor-critic framework, an optimized formation controller is proposed by constructing a novel performance index function. Furthermore, the stability of MAS is proved by constructing the Lyapunov function. The simulation results are provided to depict the effectiveness of the proposed strategies.
基金financially supported by the National Natural Science Foundation of China under Grants 21473183 and 21303079
文摘In the semiconductor-based photocatalysts for overall water splitting, loading proper cocatalysts play a crucial role in enhancing the photocatalytic activity. In this work, we have chosen Ni_n/α-Ga_2O_3 as a model and provided detailed density functional theory calculations to investigate the function of cocatalysts in hydrogen evolution reaction(HER). We have studied the formation and stability of Ni_n(n = 1–4) cluster on two stable surfaces of α-Ga_2O_3(001) and(012). In a Ni_n/α-Ga_2O_3 system, as the Ni 3d states well overlap with O and Ga states, the excited electrons transferred from Ga to Ni may participate in HER. We theoretically predict that introduction of Nincluster on(012) surface can elevate the Fermi level toward the conduction band, which is favorable for the occurrence of HER. Electrochemical computations are used to explore the mechanism of HER. It is found that, in most of Ni_n/α-Ga_2O_3 systems, the active sites of HER are on Ni_n clusters. Loading Ni_n clusters not only importantly reduces the Gibbs free energy of HER but also improves the reaction activity of surface O and Ga sites in HER. Our calculations reasonably explain the experimental observation on significant enhancement of activity for generating hydrogen after loading nickel oxide cocatalysts.
基金Supported by the National Key R&D Program of China(Grant No.2017YFE0131300)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA18010000)+1 种基金the Starting Grant of Shanghai Tech Universitythe Program for Professor of Special Appointment(Shanghai Eastern Scholar)。
文摘We examine quantum anomalous Hall(QAH)insulators with intrinsic magnetism displaying quantized Hall conductance at zero magnetic fields.The spin-momentum locking of the topological edge stats promises QAH insulators with great potential in device applications in the field of spintronics.Here,we generalize Haldane’s model on the honeycomb lattice to a more realistic two-orbital case without the artificial real-space complex hopping.Instead,we introduce an intraorbital coupling,stemming directly from the local spin-orbit coupling(SOC).Our dxy/dx2-y2 model may be viewed as a generalization of the bismuthene px/py-model for correlated d-orbitals.It promises a large SOC gap,featuring a high operating temperature.This two-orbital model nicely explains the low-energy excitation and the topology of two-dimensional ferromagnetic iron-halogenides.Furthermore,we find that electronic correlations can drive the QAH states to a c=0 phase,in which every band carries a nonzero Chern number.Our work not only provides a realistic QAH model,but also generalizes the nontrivial band topology to correlated orbitals,which demonstrates an exciting topological phase transition driven by Coulomb repulsions.Both the model and the material candidates provide excellent platforms for future study of the interplay between electronic correlations and nontrivial band topology.
基金supported by the National Key Research and Development Program of China(No.2021YFB2401302)。
文摘Taking the advantage of Internet of Things(IoT)enabled measurements,this paper formulates the event detection problem as an information-plus-noise model,and detects events in power systems based on free probability theory(FPT).Using big data collected from phasor measurement units(PMUs),we construct the event detection matrix to reflect both spatial and temporal characteristics of power gird states.The event detection matrix is further described as an information matrix plus a noise matrix,and the essence of event detection is to extract event information from the event detection matrix.By associating the event detection problem with FPT,the empirical spectral distributions(ESDs)related moments of the sample covariance matrix of the information matrix are computed,to distinguish events from“noises”,including normal fluctuations,background noises,and measurement errors.Based on central limit theory(CLT),the alarm threshold is computed using measurements collected in normal states.Additionally,with the aid of sliding window,this paper builds an event detection architecture to reflect power grid state and detect events online.Case studies with simulated data from Anhui,China,and real PMU data from Guangdong,China,verify the effectiveness of the proposed method.Compared with other data-driven methods,the proposed method is more sensitive and has better adaptability to the normal fluctuations,background noises,and measurement errors in real PMU cases.In addition,it does not require large number of training samples as needed in the training-testing paradigm.
基金supported by the National Natural Science Foundation of China(52170105)the Ministry of Science and Technology of China(2019YFD1100105)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(2019043).
文摘The commonly used Poisson rectangular pulse(PRP)model,employed for simulating high-resolution residential water consumption patterns(RWCPs),relies on calibration via medium-resolution RWCPs obtained from practical measurements.This introduces inevitable uncertainty stemming from the measured RWCPs,which consequently impacts the precision of model simulations.Here we enhance the accuracy of the PRP model by addressing the uncertainty of RWCPs.We established a critical sampling size of 2000 household water consumption patterns(HWCPs)with a data logging interval(DLI)of 15 min to attain dependable RWCPs.Through Genetic Algorithm calibration,the optimal values of the PRP model's parameters were determined:pulse frequency lλ=91 d^(-1),mean of pulse intensity E(I)=0.346 m^(3) h^(-1),standard deviation of pulse intensity STD(I)=0.292 m^(3) h^(-1),mean of pulse duration E(D)=40 s,and standard deviation of pulse duration STD(D)=55 s.Furthermore,validation was conducted at both HWCP and RWCP levels.We recommend a sampling size of2000 HWCPs and a DLI of30 min for PRP model calibration to balance simulation precision and practical implementation.This study significantly advances the theoretical foundation and real-world application of the PRP model,enhancing its role in urban water supply system management.