Planar cations or anions can form stacks in crystals or solutions,where the surrounding or environment plays a decisive role as demonstrated in previous studies.However,it remains unclear whether these counterintuitiv...Planar cations or anions can form stacks in crystals or solutions,where the surrounding or environment plays a decisive role as demonstrated in previous studies.However,it remains unclear whether these counterintuitive interactions possess any inherent stability or are thoroughly repulsive if the constraint of environment is removed.In this work,we explored the inherent stability ofπ-πstacking between closed-shell ions of like charges with prototypes derived from experimental studies.The inherent metastability was identified by the characteristic local minima and the transition states preventing their dissociation and verified by ab initio molecular dynamics(AIMD)simulations.The nature of involved interactions was deciphered with the energy decomposition approach based on the block-localized wavefunction method(BLW-ED).Like the conventional neutralπ-πstacking interactions,electron correlation is the most attractive energy component.But it is overturned by the Coulombic repulsion between net charges for all modes of dimerization,resulting in the overall repulsive inter-cation or anion in-teractions.Contributions from van der Waals interactions were also observed in the reduced density gradient analysis.The origin of the metastability was elucidated by examining the contributions of individual physical factors to the well-depths.The inherent metastability originates from the electron correlation,which dramatically increases due to the enhanced overlap between ions from a transition state to its corresponding minimum.展开更多
A novel electron donating unit,namely N-octyl-N-phenyl-thiophene(OPT),was designed in preparing electron acceptors with non-fused ring chemical structures.By introducing different functional atoms/groups into the para...A novel electron donating unit,namely N-octyl-N-phenyl-thiophene(OPT),was designed in preparing electron acceptors with non-fused ring chemical structures.By introducing different functional atoms/groups into the para-position of phenyl in the OPT units,three non-fused ring acceptors(NFREAs),C8-2F,FC8-2F and MeC8-2F,were synthesized.The absorption spectrum of the three acceptors can be extended to about 950 nm with band-gaps of 1.28—1.32 eV due to the strong electron donating ability of OPT.The frontier molecular orbital distribution of OPT based molecules obtained by quantum chemistry calculation results reveals that their energy alignment can be finely tuned to meet different requirements.Moreover,by changing the substituents on the OPT units,their Flory-Huggins interaction parameter(χ)with the donor will be greatly influenced and different phase separation behavior can be accomplished.After blended with PBDB-TF,the FC8-2F-based cell yields short circuit current density(J_(sc))of 23.21 mA·cm^(-2),fill factor(FF)of 72.11%and the highest power conversion efficiency(PCE)of 12.42%.This work provides a new pathway for molecular design of new NFREAs,and demonstrates the application potential of OPT unit in realizing low band-gap photovoltaic materials.展开更多
Energy disorder is an important factor that affects charge transport,recombination,and energy loss in organic solar cells.Here,we designed a ladder-type nonfullerene acceptor and studied the critical role of energy di...Energy disorder is an important factor that affects charge transport,recombination,and energy loss in organic solar cells.Here,we designed a ladder-type nonfullerene acceptor and studied the critical role of energy disorder in photovoltaic performance.Taking a typical seven-member fused ring acceptor IT-4F as an example,we replaced its sp3-hybridized bridging carbon atoms and linked bulky groups with triisopropylbenzene-substituted pyrrole units.The newly synthesized acceptor 2,2′-((2Z,2′Z)-((3,9-bis(2-butyloctyl)-6,12-bis(2,4,6-triisopropylphenyl)-6,12-dihydrothieno[2″,3″:4′,5′]thieno[2′,3′:4,5]pyrrolo[2,3-f]thieno[2′,3′:4,5]thieno[3,2-b]indole-2,8-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile(TBB)has a redshifted absorption spectrum with upshifted energy levels than those of IT-4F.More importantly,TBB shows more suppressed energy disorder,which leads to enhanced charge mobility and improved luminescence efficiency.Consequently,TBB-based devices obtained a power conversion efficiency of 16.2%with a relatively low nonradiative energy loss(0.22 eV),which exceeds that of IT-4F-based devices(11.5%)and is one of the top values among non-Y6 systems.This work demonstrates that rational molecular design is crucial for the suppression of energy disorder.展开更多
Organic photovoltaic(OPV)cells have demonstrated remarkable performance in small,spin-coated areas.Nevertheless significant challenges persist in the form of large efficiency losses due to the fact that the ideal morp...Organic photovoltaic(OPV)cells have demonstrated remarkable performance in small,spin-coated areas.Nevertheless significant challenges persist in the form of large efficiency losses due to the fact that the ideal morphology cannot be preserved in the transition of small-area cells to large-scale panels.Herein,the ternary strategy of incorporating the third component FTCC-Br into the active layer of PB2:BTP-eC9 is employed to improve absorption response,optimize morphology,and reduce charge recombination,leading to a power conversion efficiency(PCE)of 19.5%(certified as 19.1%by the National Institute of Metrology,China).Moreover,the addition of FTCC-Br can control the aggregation kinetics of the active layer during the film formation process,transferring the optimal morphology to the blade-coated large-area films.Based on the highly efficient ternary bulk heterojunction,the 50 cm^(2) OPVmodules exhibited a PCE of 15.2%with respect to the active area.Importantly,the ternary OPV cells retain 80%of its initial PCE after 4000 h under continuous illumination.Our work demonstrates that the addition of a third component has the potential to improve the efficiency and stability of large-area organic solar cells.展开更多
Digital light processing technique was applied to manufacture alumina ceramic parts with two types of lattice structure units, i.e. vertex interconnect structure and edge structure. The internal porosity of the unit i...Digital light processing technique was applied to manufacture alumina ceramic parts with two types of lattice structure units, i.e. vertex interconnect structure and edge structure. The internal porosity of the unit is 40%. The printed parts were sintered and the grain size is about 1.1 μm. The bending strength of the vertex interconnect structure is much larger than that of the edge structure. Materials genome initiative(MGI) aims to digital design and intelligent manufacture for advanced components. This research shows us an example to achieve this goal.展开更多
Photon upconversion is an anti-Stokes process that converts low-energy photons into high-energy photons.The use of upconversion luminescence can avoid the autofluorescence of biological tissue and realize background-f...Photon upconversion is an anti-Stokes process that converts low-energy photons into high-energy photons.The use of upconversion luminescence can avoid the autofluorescence of biological tissue and realize background-free bioimaging with a high signal-to-noise ratio at a low power density.In addition,the excitation of red or near-infrared light facilitates the reduction of photodamage in biological tissues and subsequent bioimaging of deep tissue features in vivo.Meanwhile,upconversion emission-mediated bio sensing offers both high sensitivity and low detection limits for quantitative analysis of the target substances in complicated biological samples.Due to its high upconversion quantum yield,low excitation power density,and tunable absorption and emission wavelengths,triplet-triplet annihilation upconversion(TTA-UC)has garnered considerable interest for bioimaging and biosensing.This review will introduce the fundamental concepts of TTA-UC,the factors that influence TTA-UC materials,and the methodologies for preparing TTA-UC materials.The important progress of TTA-UC in bioimaging and bio sensing in recent years will also be discussed in detail in vitro and in vivo.Furthermore,the current challenges of TTA-UC in bioimaging and biosensing will be discussed,along with potential solutions.展开更多
基金support from the Natural Science Foundation of China(No.22073060)support from the Natural Science Foundation of China(No.22273054)This work was performed in part at the Joint School of Nanoscience and Nanoengineering,a member of the National Nanotechnology Coordinated Infrastructure(NNCI),which is supported by the US National Science Foundation(Grant ECCS-2025462).
文摘Planar cations or anions can form stacks in crystals or solutions,where the surrounding or environment plays a decisive role as demonstrated in previous studies.However,it remains unclear whether these counterintuitive interactions possess any inherent stability or are thoroughly repulsive if the constraint of environment is removed.In this work,we explored the inherent stability ofπ-πstacking between closed-shell ions of like charges with prototypes derived from experimental studies.The inherent metastability was identified by the characteristic local minima and the transition states preventing their dissociation and verified by ab initio molecular dynamics(AIMD)simulations.The nature of involved interactions was deciphered with the energy decomposition approach based on the block-localized wavefunction method(BLW-ED).Like the conventional neutralπ-πstacking interactions,electron correlation is the most attractive energy component.But it is overturned by the Coulombic repulsion between net charges for all modes of dimerization,resulting in the overall repulsive inter-cation or anion in-teractions.Contributions from van der Waals interactions were also observed in the reduced density gradient analysis.The origin of the metastability was elucidated by examining the contributions of individual physical factors to the well-depths.The inherent metastability originates from the electron correlation,which dramatically increases due to the enhanced overlap between ions from a transition state to its corresponding minimum.
基金This work was financially supported by the National Natural Science Foundation of China(21835006,22075017)the National Key Research and Development Program of China(2019YFE0116700).
文摘A novel electron donating unit,namely N-octyl-N-phenyl-thiophene(OPT),was designed in preparing electron acceptors with non-fused ring chemical structures.By introducing different functional atoms/groups into the para-position of phenyl in the OPT units,three non-fused ring acceptors(NFREAs),C8-2F,FC8-2F and MeC8-2F,were synthesized.The absorption spectrum of the three acceptors can be extended to about 950 nm with band-gaps of 1.28—1.32 eV due to the strong electron donating ability of OPT.The frontier molecular orbital distribution of OPT based molecules obtained by quantum chemistry calculation results reveals that their energy alignment can be finely tuned to meet different requirements.Moreover,by changing the substituents on the OPT units,their Flory-Huggins interaction parameter(χ)with the donor will be greatly influenced and different phase separation behavior can be accomplished.After blended with PBDB-TF,the FC8-2F-based cell yields short circuit current density(J_(sc))of 23.21 mA·cm^(-2),fill factor(FF)of 72.11%and the highest power conversion efficiency(PCE)of 12.42%.This work provides a new pathway for molecular design of new NFREAs,and demonstrates the application potential of OPT unit in realizing low band-gap photovoltaic materials.
基金funded by the National Natural Science Foundation of China(grant nos.22122905,22075301,and 52120105005)H.Yao was supported by the Startup Research Fund of Southeast University(grant no.RF1028623263).
文摘Energy disorder is an important factor that affects charge transport,recombination,and energy loss in organic solar cells.Here,we designed a ladder-type nonfullerene acceptor and studied the critical role of energy disorder in photovoltaic performance.Taking a typical seven-member fused ring acceptor IT-4F as an example,we replaced its sp3-hybridized bridging carbon atoms and linked bulky groups with triisopropylbenzene-substituted pyrrole units.The newly synthesized acceptor 2,2′-((2Z,2′Z)-((3,9-bis(2-butyloctyl)-6,12-bis(2,4,6-triisopropylphenyl)-6,12-dihydrothieno[2″,3″:4′,5′]thieno[2′,3′:4,5]pyrrolo[2,3-f]thieno[2′,3′:4,5]thieno[3,2-b]indole-2,8-diyl)bis(methanylylidene))bis(5,6-difluoro-3-oxo-2,3-dihydro-1H-indene-2,1-diylidene))dimalononitrile(TBB)has a redshifted absorption spectrum with upshifted energy levels than those of IT-4F.More importantly,TBB shows more suppressed energy disorder,which leads to enhanced charge mobility and improved luminescence efficiency.Consequently,TBB-based devices obtained a power conversion efficiency of 16.2%with a relatively low nonradiative energy loss(0.22 eV),which exceeds that of IT-4F-based devices(11.5%)and is one of the top values among non-Y6 systems.This work demonstrates that rational molecular design is crucial for the suppression of energy disorder.
基金the National Natural Science Foundation of China(NSFC,grant nos.21835006 and 51961135103)the Bureau of International Cooperation Chinese Academy of Sciences(grant no.121111KYSB20200043)+1 种基金the financial support from China Postdoctoral Science Foundation(grant no.2022M723199)the Beijing National Laboratory for Molecular Sciences Junior Fellow.
文摘Organic photovoltaic(OPV)cells have demonstrated remarkable performance in small,spin-coated areas.Nevertheless significant challenges persist in the form of large efficiency losses due to the fact that the ideal morphology cannot be preserved in the transition of small-area cells to large-scale panels.Herein,the ternary strategy of incorporating the third component FTCC-Br into the active layer of PB2:BTP-eC9 is employed to improve absorption response,optimize morphology,and reduce charge recombination,leading to a power conversion efficiency(PCE)of 19.5%(certified as 19.1%by the National Institute of Metrology,China).Moreover,the addition of FTCC-Br can control the aggregation kinetics of the active layer during the film formation process,transferring the optimal morphology to the blade-coated large-area films.Based on the highly efficient ternary bulk heterojunction,the 50 cm^(2) OPVmodules exhibited a PCE of 15.2%with respect to the active area.Importantly,the ternary OPV cells retain 80%of its initial PCE after 4000 h under continuous illumination.Our work demonstrates that the addition of a third component has the potential to improve the efficiency and stability of large-area organic solar cells.
基金the National Key R&D Program of China (Grants Nos. 2017YFB0703200, 2016YFB0700500)the National Natural Science Foundation of China (Grants Nos.51372203, 51332004, 51571166, 51972268 and 51761135032)the Foreign Talents Introduction and Academic Exchange Program (Grant No. B08040) for their financial supports
文摘Digital light processing technique was applied to manufacture alumina ceramic parts with two types of lattice structure units, i.e. vertex interconnect structure and edge structure. The internal porosity of the unit is 40%. The printed parts were sintered and the grain size is about 1.1 μm. The bending strength of the vertex interconnect structure is much larger than that of the edge structure. Materials genome initiative(MGI) aims to digital design and intelligent manufacture for advanced components. This research shows us an example to achieve this goal.
基金the financial support provided by Research start-up fund of Nankai UniversityTianjin Natural Science Foundation(S22QNG922)+1 种基金National Natural Science Fund for Excellent Young Scientists Fund Program(Overseas)(013398)the Open Fund of the State Key Laboratory of Fine Chemicals(Dalian University of Technology)(KF2111)
文摘Photon upconversion is an anti-Stokes process that converts low-energy photons into high-energy photons.The use of upconversion luminescence can avoid the autofluorescence of biological tissue and realize background-free bioimaging with a high signal-to-noise ratio at a low power density.In addition,the excitation of red or near-infrared light facilitates the reduction of photodamage in biological tissues and subsequent bioimaging of deep tissue features in vivo.Meanwhile,upconversion emission-mediated bio sensing offers both high sensitivity and low detection limits for quantitative analysis of the target substances in complicated biological samples.Due to its high upconversion quantum yield,low excitation power density,and tunable absorption and emission wavelengths,triplet-triplet annihilation upconversion(TTA-UC)has garnered considerable interest for bioimaging and biosensing.This review will introduce the fundamental concepts of TTA-UC,the factors that influence TTA-UC materials,and the methodologies for preparing TTA-UC materials.The important progress of TTA-UC in bioimaging and bio sensing in recent years will also be discussed in detail in vitro and in vivo.Furthermore,the current challenges of TTA-UC in bioimaging and biosensing will be discussed,along with potential solutions.