Using interface engineering,a highly efficient catalyst with a shell@core structure was successfully synthesized by growing an amorphous material composed of Ni,Mo,and P on Cu nanowires(Ni-MoP@CuNWs).This catalyst onl...Using interface engineering,a highly efficient catalyst with a shell@core structure was successfully synthesized by growing an amorphous material composed of Ni,Mo,and P on Cu nanowires(Ni-MoP@CuNWs).This catalyst only requires an overpotential of 35 mV to reach a current density of 10 mA cm^(-2).The exceptional hydrogen evolution reaction(HER)activity is attributed to the unique amorphous rod-like nature of NiMoP@CuNWs,which possesses a special hydrophilic feature,en-hances mass transfer,promotes effective contact between the electrode and electrolyte solution,and exposes more active sites during the catalytic process.Density functional theory revealed that the introduction of Mo weakens the binding strength of the Ni site on the catalyst surface with the H atom and promotes the desorption process of the H_(2) product significantly.Owing to its facile syn-thesis,low cost,and high catalytic performance,this electrocatalyst is a promising option for com-mercial applications as a water electrolysis catalyst.展开更多
MnO_(x)-CeO_(2) catalysts are developed by hydrolysis driving redox method using acetate precursor(3 Mn1 Ce-Ac) and nitrate precursor(3 Mn1 Ce-N) for the selective catalytic reduction(SCR) of NO_(x) by NH_(3).A counte...MnO_(x)-CeO_(2) catalysts are developed by hydrolysis driving redox method using acetate precursor(3 Mn1 Ce-Ac) and nitrate precursor(3 Mn1 Ce-N) for the selective catalytic reduction(SCR) of NO_(x) by NH_(3).A counterpart sample(Cop-3 Mn1 Ce) was prepared by the NH_(3)·H_(2) O co-precipitation method for comparison purpose.Combining the results of physicochemical properties characterization and performance test,we find that the 3 Mn1 Ce-Ac catalyst with some nanorod structures is highly active for the deNOx process.The SCR activity of the 3 Mn1 Ce-Ac catalyst is more admirable than the 3 Mn1 Ce-N and the Cop-3 Mn1 Ce catalysts due to plentiful Lewis acid sites,excellent low-temperature reducibility,and superior surface area resulted from O_(2) generation during the pre paration procedure.The 3 Mn1 Ce-Ac still exhibits the greatest performance for the deNO_(x )process when gaseous acetone is in the SCR feed gas.The NOx conversion and N2 selectivity over the 3 Mn1 Ce-Ac are both improved by gaseous acetone above150℃ due to the inhibition of SCR undesired side reactions(NSCR & C-O reactions) and "slow-SCR" process.展开更多
Developing exceptionally durable and efficient oxygen reduction reaction(ORR)catalysts is of paramount importance to the widespread commercialization of proton exchange membrane fuel cells(PEMFCs)but is still challeng...Developing exceptionally durable and efficient oxygen reduction reaction(ORR)catalysts is of paramount importance to the widespread commercialization of proton exchange membrane fuel cells(PEMFCs)but is still challenging.Herein,PtCu nanoalloys rooted on nitrogen-doped carbon nanosheets(PtCuNC-700)with fully exposed PtCu nanoalloys and strong metal–support interaction were developed.Benefiting from its structural and compositional merits,PtCuNC-700 showcases superior ORR activity and stability with a specific activity of 1.05mA cm^(−2)and mass activity of 0.45 A mgPt^(−1),4.2-fold and 3.7-fold higher than Pt/C(0.25 mA cm^(−2)and 0.12 A mgPt^(−1)),respectively.Moreover,PtCuNC-700 exhibits first-class performance in H2/air PEMFC assessment and delivers a peak power density of 929.7 mW cm^(−2)and excellent cycling stability up to 30,000 cycles.Theoretical calculations disclose that the synergistic effect of alloying Pt with Cu combined with the strong interaction between PtCu nanoalloys and nitrogen-doped carbon nanosheets can effectively modify the local electron configuration and density of states of Pt sites approaching the Fermi level.Hence,the PtCu-alloy catalysts realized here diminish the energy barrier for ORR and accelerate their reaction kinetics.This work provides a reliable and effective approach to boost the activity and stability of Pt alloy-based ORR electrocatalysts in PEMFCs.展开更多
文摘Using interface engineering,a highly efficient catalyst with a shell@core structure was successfully synthesized by growing an amorphous material composed of Ni,Mo,and P on Cu nanowires(Ni-MoP@CuNWs).This catalyst only requires an overpotential of 35 mV to reach a current density of 10 mA cm^(-2).The exceptional hydrogen evolution reaction(HER)activity is attributed to the unique amorphous rod-like nature of NiMoP@CuNWs,which possesses a special hydrophilic feature,en-hances mass transfer,promotes effective contact between the electrode and electrolyte solution,and exposes more active sites during the catalytic process.Density functional theory revealed that the introduction of Mo weakens the binding strength of the Ni site on the catalyst surface with the H atom and promotes the desorption process of the H_(2) product significantly.Owing to its facile syn-thesis,low cost,and high catalytic performance,this electrocatalyst is a promising option for com-mercial applications as a water electrolysis catalyst.
基金supported by the Key Laboratory of Water and Air Pollution Control of Guangdong province,China (No.2017A030314001)the National Key Research and Development Plan (No.2019YFC0214303)+1 种基金Central Public-Interest Scientific Institution Basal Research Fund (No.PM-zx703-202002-015)the National Natural Science Foundation of China (No.22076224)。
文摘MnO_(x)-CeO_(2) catalysts are developed by hydrolysis driving redox method using acetate precursor(3 Mn1 Ce-Ac) and nitrate precursor(3 Mn1 Ce-N) for the selective catalytic reduction(SCR) of NO_(x) by NH_(3).A counterpart sample(Cop-3 Mn1 Ce) was prepared by the NH_(3)·H_(2) O co-precipitation method for comparison purpose.Combining the results of physicochemical properties characterization and performance test,we find that the 3 Mn1 Ce-Ac catalyst with some nanorod structures is highly active for the deNOx process.The SCR activity of the 3 Mn1 Ce-Ac catalyst is more admirable than the 3 Mn1 Ce-N and the Cop-3 Mn1 Ce catalysts due to plentiful Lewis acid sites,excellent low-temperature reducibility,and superior surface area resulted from O_(2) generation during the pre paration procedure.The 3 Mn1 Ce-Ac still exhibits the greatest performance for the deNO_(x )process when gaseous acetone is in the SCR feed gas.The NOx conversion and N2 selectivity over the 3 Mn1 Ce-Ac are both improved by gaseous acetone above150℃ due to the inhibition of SCR undesired side reactions(NSCR & C-O reactions) and "slow-SCR" process.
基金support from the National Natural Science Foundation of China(grant nos.52073137,51763018,U20A20246)the Fundamental Research Funds for the Central Universities(Innovation funded Projects,no.2022CXZZ104).
文摘Developing exceptionally durable and efficient oxygen reduction reaction(ORR)catalysts is of paramount importance to the widespread commercialization of proton exchange membrane fuel cells(PEMFCs)but is still challenging.Herein,PtCu nanoalloys rooted on nitrogen-doped carbon nanosheets(PtCuNC-700)with fully exposed PtCu nanoalloys and strong metal–support interaction were developed.Benefiting from its structural and compositional merits,PtCuNC-700 showcases superior ORR activity and stability with a specific activity of 1.05mA cm^(−2)and mass activity of 0.45 A mgPt^(−1),4.2-fold and 3.7-fold higher than Pt/C(0.25 mA cm^(−2)and 0.12 A mgPt^(−1)),respectively.Moreover,PtCuNC-700 exhibits first-class performance in H2/air PEMFC assessment and delivers a peak power density of 929.7 mW cm^(−2)and excellent cycling stability up to 30,000 cycles.Theoretical calculations disclose that the synergistic effect of alloying Pt with Cu combined with the strong interaction between PtCu nanoalloys and nitrogen-doped carbon nanosheets can effectively modify the local electron configuration and density of states of Pt sites approaching the Fermi level.Hence,the PtCu-alloy catalysts realized here diminish the energy barrier for ORR and accelerate their reaction kinetics.This work provides a reliable and effective approach to boost the activity and stability of Pt alloy-based ORR electrocatalysts in PEMFCs.