Certain amino acids changes in the human Na^(+)/K^(+)-ATPase pump,ATPase Na^(+)/K^(+)transporting subunit alpha 1(ATP1A1),cause Charcot-Marie-Tooth disease type 2(CMT2)disease and refractory seizures.To develop in viv...Certain amino acids changes in the human Na^(+)/K^(+)-ATPase pump,ATPase Na^(+)/K^(+)transporting subunit alpha 1(ATP1A1),cause Charcot-Marie-Tooth disease type 2(CMT2)disease and refractory seizures.To develop in vivo models to study the role of Na^(+)/K^(+)-ATPase in these diseases,we modified the Drosophila gene homolog,Atpα,to mimic the human ATP1A1 gene mutations that cause CMT2.Mutations located within the helical linker region of human ATP1A1(I592T,A597T,P600T,and D601F)were simultaneously introduced into endogenous Drosophila Atpαby CRISPR/Cas9-mediated genome editing,generating the Atpα^(TTTF)model.In addition,the same strategy was used to generate the corresponding single point mutations in flies(Atpα^(I571T),Atpα^(A576T),Atpα^(P579T),and Atpα^(D580F)).Moreover,a deletion mutation(Atpα^(mut))that causes premature termination of translation was generated as a positive control.Of these alleles,we found two that could be maintained as homozygotes(Atpα^(I571T)and Atpα^(P579T)).Three alleles(Atpα^(A576T),Atpα^(P579)and Atpα^(D580F))can form heterozygotes with the Atpαmut allele.We found that the Atpαallele carrying these CMT2-associated mutations showed differential phenotypes in Drosophila.Flies heterozygous for Atpα^(TTTF)mutations have motor performance defects,a reduced lifespan,seizures,and an abnormal neuronal morphology.These Drosophila models will provide a new platform for studying the function and regulation of the sodium-potassium pump.展开更多
Objectives:To investigate whether the protective actions of ginsenoside Rb1(Rb1)on astrocytes are mediated through the G_(s)-type G-protein-coupled receptor(GPCR-G_(s)).Methods:Primary astrocyte cultures derived from ...Objectives:To investigate whether the protective actions of ginsenoside Rb1(Rb1)on astrocytes are mediated through the G_(s)-type G-protein-coupled receptor(GPCR-G_(s)).Methods:Primary astrocyte cultures derived from neonatal mouse brain were used.Astrocyte injury was induced via oxygen-glucose deprivation/re-oxygenation(OGD/R).Cell morphology,viability,lactate dehydrogenase(LDH)leakage,apoptosis,glutamate uptake,and brain-derived neurotrophic factor(BDNF)secretion were assessed to gauge cell survival and functionality.Western blot was used to investigate the cyclic adenosine monophosphate(cAMP)and protein kinase B(Akt)signaling pathways.GPCR-G_(s)-specific inhibitors and molecular docking were used to identify target receptors.Results:Rb1 at concentrations ranging from 0.8 to 5μM did not significantly affect the viability,glutamate uptake,or BDNF secretion in normal astrocytes.OGD/R reduced astrocyte viability,increasing their LDH leakage and apoptosis rate.It also decreased glutamate uptake and BDNF secretion by these cells.Rb1 had protective effects of astrocytes challenged by OGD/R,by improving viability,reducing apoptosis,and enhancing glutamate uptake and BDNF secretion.Additionally,Rb1 activated the cAMP and Akt pathways in these cells.When the GPCR-G_(s) inhibitor NF449 was introduced,the protective effects of Rb1 completely disappeared,and its activation of cAMP and Akt signaling pathways was significantly inhibited.Conclusion:Rb1 protects against astrocytes from OGD/R-induced injury through GPCR-G_(s) mediation.展开更多
We report a theoretical work on the properties of modulational instability and bright type nonlinear localized modes in one-dimensional easy-axis weak ferromagnetic spin lattices involving next-nearest-neighbor coupli...We report a theoretical work on the properties of modulational instability and bright type nonlinear localized modes in one-dimensional easy-axis weak ferromagnetic spin lattices involving next-nearest-neighbor couplings.With a linear stability analysis, we calculate the growth rates of the modulational instability, and plot the instability regions.When the strength of the next-nearest-neighbor coupling is large enough, two new asymmetric modulational instability regions appear near the boundary of the first Brillouin zone.Furthermore, analytical forms of the bright nonlinear localized modes are constructed by means of a quasi-discreteness approach.The influence of the next-nearest-neighbor coupling on the Brillouin zone center mode and boundary mode are discussed.In particular, we discover a reversal phenomenon of the propagation direction of the Brillouin zone boundary mode.展开更多
The modulational instability, quantum breathers and two-breathers in a frustrated easy-axis ferromagnetic zig-zag chain under an external magnetic field are investigated within the Hartree approximation. By means of a...The modulational instability, quantum breathers and two-breathers in a frustrated easy-axis ferromagnetic zig-zag chain under an external magnetic field are investigated within the Hartree approximation. By means of a linear stability analysis, we analytically study the discrete modulational instability and analyze the effect of the frustration strength on the discrete modulational instability region. Using the results from the discrete modulational instability analysis, the presence conditions of those stationary bright type localized solutions are presented. On the other hand, we obtain the analytical expressions for the stationary bright localized solutions and analyze the effect of the frustration on their emergence conditions. By taking advantage of these bright type single-magnon bound wave functions obtained, quantum breather states in the present frustrated ferromagnetic zig-zag lattice are constructed. What is more, the analytical forms for quantum two-breather states are also obtained. In particular, the energy level formulas of quantum breathers and two-breathers are derived.展开更多
Royal jelly(RJ)is a biologically active substance secreted by the hypopharyngeal and mandibular glands of worker honeybees.It is widely claimed that RJ reduces oxidative stress.However,the antioxidant activity of RJ h...Royal jelly(RJ)is a biologically active substance secreted by the hypopharyngeal and mandibular glands of worker honeybees.It is widely claimed that RJ reduces oxidative stress.However,the antioxidant activity of RJ has mostly been determined by in vitro chemical detection methods or by external administration drugs that cause oxidative stress.Whether RJ can clear the endogenous production of reactive oxygen species(ROS)in cells remains largely unknown.Here,we systematically investigated the antioxidant properties of RJ using several endogenous oxidative stress models of Drosophila.We found that RJ enhanced sleep quality of aging Drosophila,which is decreased due to an increase of oxidative damage with age.RJ supplementation improved survival and suppressed ROS levels in gut cells of flies upon exposure to hydrogen peroxide or to the neurotoxic agent paraquat.Moreover,RJ supplementation moderated levels of ROS in endogenous gut cells and extended lifespan after exposure of flies to heat stress.Sleep deprivation leads to accumulation of ROS in the gut cells,and RJ attenuated the consequences of oxidative stress caused by sleep loss and prolonged lifespan.Mechanistically,RJ prevented cell oxidative damage caused by heat stress or sleep deprivation,with the antioxidant activity in vivo independent of Keap1/Nrf2 signaling.RJ supplementation activated oxidoreductase activity in the guts of flies,suggesting its ability to inhibit endogenous oxidative stress and maintain health,possibly in humans.展开更多
基金supported by the Natural Science Foundation of Fujian Province,No.2020J02027the National Natural Science Foundation of China,No.31970461the Foundation of NHC Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate,Fujian Maternity and Child Health Hospital,No.2022-NHP-05(all to WC).
文摘Certain amino acids changes in the human Na^(+)/K^(+)-ATPase pump,ATPase Na^(+)/K^(+)transporting subunit alpha 1(ATP1A1),cause Charcot-Marie-Tooth disease type 2(CMT2)disease and refractory seizures.To develop in vivo models to study the role of Na^(+)/K^(+)-ATPase in these diseases,we modified the Drosophila gene homolog,Atpα,to mimic the human ATP1A1 gene mutations that cause CMT2.Mutations located within the helical linker region of human ATP1A1(I592T,A597T,P600T,and D601F)were simultaneously introduced into endogenous Drosophila Atpαby CRISPR/Cas9-mediated genome editing,generating the Atpα^(TTTF)model.In addition,the same strategy was used to generate the corresponding single point mutations in flies(Atpα^(I571T),Atpα^(A576T),Atpα^(P579T),and Atpα^(D580F)).Moreover,a deletion mutation(Atpα^(mut))that causes premature termination of translation was generated as a positive control.Of these alleles,we found two that could be maintained as homozygotes(Atpα^(I571T)and Atpα^(P579T)).Three alleles(Atpα^(A576T),Atpα^(P579)and Atpα^(D580F))can form heterozygotes with the Atpαmut allele.We found that the Atpαallele carrying these CMT2-associated mutations showed differential phenotypes in Drosophila.Flies heterozygous for Atpα^(TTTF)mutations have motor performance defects,a reduced lifespan,seizures,and an abnormal neuronal morphology.These Drosophila models will provide a new platform for studying the function and regulation of the sodium-potassium pump.
基金supported by the grant International Cooperation Project of Prevention and Treatment of Major Diseases with Chinese Medicine(GZYYGJ2021047)the High-end Experts Support Program from the Ministry of Science and Technology(DL 2021110001L)the Basic Research Funds from the Ministry of Education(1000061223731).
文摘Objectives:To investigate whether the protective actions of ginsenoside Rb1(Rb1)on astrocytes are mediated through the G_(s)-type G-protein-coupled receptor(GPCR-G_(s)).Methods:Primary astrocyte cultures derived from neonatal mouse brain were used.Astrocyte injury was induced via oxygen-glucose deprivation/re-oxygenation(OGD/R).Cell morphology,viability,lactate dehydrogenase(LDH)leakage,apoptosis,glutamate uptake,and brain-derived neurotrophic factor(BDNF)secretion were assessed to gauge cell survival and functionality.Western blot was used to investigate the cyclic adenosine monophosphate(cAMP)and protein kinase B(Akt)signaling pathways.GPCR-G_(s)-specific inhibitors and molecular docking were used to identify target receptors.Results:Rb1 at concentrations ranging from 0.8 to 5μM did not significantly affect the viability,glutamate uptake,or BDNF secretion in normal astrocytes.OGD/R reduced astrocyte viability,increasing their LDH leakage and apoptosis rate.It also decreased glutamate uptake and BDNF secretion by these cells.Rb1 had protective effects of astrocytes challenged by OGD/R,by improving viability,reducing apoptosis,and enhancing glutamate uptake and BDNF secretion.Additionally,Rb1 activated the cAMP and Akt pathways in these cells.When the GPCR-G_(s) inhibitor NF449 was introduced,the protective effects of Rb1 completely disappeared,and its activation of cAMP and Akt signaling pathways was significantly inhibited.Conclusion:Rb1 protects against astrocytes from OGD/R-induced injury through GPCR-G_(s) mediation.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11604121 and 11875126)the Natural Science Fund Project of Hunan Province,China(Grant No.2017JJ3255)+1 种基金the National College Students’ Innovation Entrepreneurship Training Program,China(Grant No.201810531014)the Scientific Research Fund of Hunan Provincial Education Department,China(Grant No.17B212)
文摘We report a theoretical work on the properties of modulational instability and bright type nonlinear localized modes in one-dimensional easy-axis weak ferromagnetic spin lattices involving next-nearest-neighbor couplings.With a linear stability analysis, we calculate the growth rates of the modulational instability, and plot the instability regions.When the strength of the next-nearest-neighbor coupling is large enough, two new asymmetric modulational instability regions appear near the boundary of the first Brillouin zone.Furthermore, analytical forms of the bright nonlinear localized modes are constructed by means of a quasi-discreteness approach.The influence of the next-nearest-neighbor coupling on the Brillouin zone center mode and boundary mode are discussed.In particular, we discover a reversal phenomenon of the propagation direction of the Brillouin zone boundary mode.
基金Project supported by the National Natural Science Foundation of China(Grant No.11604121)the Scientific Research Fund of Hunan Provincial Education Department,China(Grant Nos.16B210 and 16A170)the Natural Science Fund Project of Jishou University,China(Grant No.jdx17036)
文摘The modulational instability, quantum breathers and two-breathers in a frustrated easy-axis ferromagnetic zig-zag chain under an external magnetic field are investigated within the Hartree approximation. By means of a linear stability analysis, we analytically study the discrete modulational instability and analyze the effect of the frustration strength on the discrete modulational instability region. Using the results from the discrete modulational instability analysis, the presence conditions of those stationary bright type localized solutions are presented. On the other hand, we obtain the analytical expressions for the stationary bright localized solutions and analyze the effect of the frustration on their emergence conditions. By taking advantage of these bright type single-magnon bound wave functions obtained, quantum breather states in the present frustrated ferromagnetic zig-zag lattice are constructed. What is more, the analytical forms for quantum two-breather states are also obtained. In particular, the energy level formulas of quantum breathers and two-breathers are derived.
基金supported by the Qi-Shan scholar grant of Fuzhou University(GXRC-20070)the National Natural Science Foundation of China(31970461)the Natural Science Foundation of Fujian Province(2020J02027).
文摘Royal jelly(RJ)is a biologically active substance secreted by the hypopharyngeal and mandibular glands of worker honeybees.It is widely claimed that RJ reduces oxidative stress.However,the antioxidant activity of RJ has mostly been determined by in vitro chemical detection methods or by external administration drugs that cause oxidative stress.Whether RJ can clear the endogenous production of reactive oxygen species(ROS)in cells remains largely unknown.Here,we systematically investigated the antioxidant properties of RJ using several endogenous oxidative stress models of Drosophila.We found that RJ enhanced sleep quality of aging Drosophila,which is decreased due to an increase of oxidative damage with age.RJ supplementation improved survival and suppressed ROS levels in gut cells of flies upon exposure to hydrogen peroxide or to the neurotoxic agent paraquat.Moreover,RJ supplementation moderated levels of ROS in endogenous gut cells and extended lifespan after exposure of flies to heat stress.Sleep deprivation leads to accumulation of ROS in the gut cells,and RJ attenuated the consequences of oxidative stress caused by sleep loss and prolonged lifespan.Mechanistically,RJ prevented cell oxidative damage caused by heat stress or sleep deprivation,with the antioxidant activity in vivo independent of Keap1/Nrf2 signaling.RJ supplementation activated oxidoreductase activity in the guts of flies,suggesting its ability to inhibit endogenous oxidative stress and maintain health,possibly in humans.