Urbanization has led to the rapid development of the construction industry.However,this has also led to higher requirements for the construction engineering management.Other than the quality monitoring of engineering ...Urbanization has led to the rapid development of the construction industry.However,this has also led to higher requirements for the construction engineering management.Other than the quality monitoring of engineering construction,the energy-saving properties of the building should also be considered.Therefore,a scientific management approach should be adopted to improve green building management.This paper primarily examines the importance of quality management in green building construction,along with the factors influencing it.It also identifies the quality issues present in current green building construction.Finally,it proposes measures for quality management in the green building construction process to facilitate the industry’s healthy development.展开更多
The statistics of the number of rapeseed seedlings are very important for breeders and planters to conduct seed quality testing,field crop management and yield estimation.Calculating the number of seedlings is ineffic...The statistics of the number of rapeseed seedlings are very important for breeders and planters to conduct seed quality testing,field crop management and yield estimation.Calculating the number of seedlings is inefficient and cumbersome in the traditional method.In this study,a method was proposed for efficient detection and calculation of rapeseed seedling number based on improved you only look once version 5(YOLOv5)to identify objects and deep-sort to perform object tracking for rapeseed seedling video.Coordinated attention(CA)mechanism was added to the trunk of the improved YOLOv5s,which made the model more effective in identifying shaded,dense and small rapeseed seedlings.Also,the use of the GSConv module replaced the standard convolution at the neck,reduced model parameters and enabled it better able to be equipped for mobile devices.The accuracy and recall rate of using improved YOLOv5s on the test set by 1.9%and 3.7%compared to 96.2%and 93.7%of YOLOv5s,respectively.The experimental results showed that the average error of monitoring the number of seedlings by unmanned aerial vehicles(UAV)video of rapeseed seedlings based on improved YOLOv5s combined with depth-sort method was 4.3%.The presented approach can realize rapid statistics of the number of rapeseed seedlings in the field based on UAV remote sensing,provide a reference for variety selection and precise management of rapeseed.展开更多
The Chinese HαSolar Explorer(CHASE)is designed to test a newly developed satellite platform and conduct solar observations.The scientific payload of the satellite is an Hαimaging spectrograph(HIS),which can,for the ...The Chinese HαSolar Explorer(CHASE)is designed to test a newly developed satellite platform and conduct solar observations.The scientific payload of the satellite is an Hαimaging spectrograph(HIS),which can,for the first time,acquire full-disk spectroscopic solar observations in the Hαwaveband.This paper briefly introduces CHASE/HIS including its scientific objectives,technical parameters,scientific application system,etc.The CHASE mission is scheduled to launch in 2021.It will complement the observations by on-orbit solar spacecraft(such as SDO,IRIS,STEREO and PSP),as well as future solar missions of the Solar Orbiter and Advanced Space-based Solar Observatory(ASO-S).展开更多
The Lyman-alpha Solar Telescope(LST)is one of the three payloads onboard the Advanced Space-based Solar Observatory(ASO-S)mission.It aims at imaging the Sun from the disk center up to 2.5 R⊙targeting solar eruptions,...The Lyman-alpha Solar Telescope(LST)is one of the three payloads onboard the Advanced Space-based Solar Observatory(ASO-S)mission.It aims at imaging the Sun from the disk center up to 2.5 R⊙targeting solar eruptions,particularly coronal mass ejections(CMEs),solar flares,prominences/filaments and related phenomena,as well as the fast and slow solar wind.The most prominent speciality of LST is the simultaneous observation of the solar atmosphere in both Lyαand white light(WL)with high temporospatial resolution both on the solar disk and the inner corona.New observations in the Lyαline together with traditional WL observations will provide us with many new insights into solar eruptions and solar wind.LST consists of a Solar Corona Imager(SCI)with a field of view(FOV)of 1.1–2.5 R⊙,a Solar Disk Imager(SDI)and a full-disk White-light Solar Telescope(WST)with an identical FOV up to 1.2 R⊙.SCI has a dual waveband in Lyα(121.6±10 nm)and in WL(700±40 nm),while SDI works in the Lyαwaveband of 121.6±7.5 nm and WST works in the violet narrow-band continuum of 360±2.0 nm.To produce high quality science data,careful ground and in-flight calibrations are required.We present our methods for different calibrations including dark field correction,flat field correction,radiometry,instrumental polarization and optical geometry.Based on the data calibration,definitions of the data levels and processing procedures for the defined levels from raw data are described.Plasma physical diagnostics offer key ingredients to understand ejecta and plasma flows in the inner corona,as well as different features on the solar disk including flares,filaments,etc.Therefore,we are making efforts to develop various tools to detect the different features observed by LST,and then to derive their physical parameters,for example,the electron density and temperature of CMEs,the outflow velocity of the solar wind,and the hydrogen density and mass flows of prominences.Coordinated observations and data analyses with the coronagraphs onboard Solar Orbiter,PROBA-3,and Aditya are also briefly discussed.展开更多
AIM:To investigate the prevalence of heterophoria and the relationship between heterophoria and refractive error in a school-based study conducted in central China.METHODS:A total of 23637 th-grade children were recru...AIM:To investigate the prevalence of heterophoria and the relationship between heterophoria and refractive error in a school-based study conducted in central China.METHODS:A total of 23637 th-grade children were recruited into the cross-sectional school-based Anyang Childhood Eye Study(ACES)by cluster sampling method.Heterophoria was examined using alternate cover and cover-uncover testing.The Maddox rod and prism test were conducted at 33 cm and 6 m distance fixation.Uncorrected viual acuity(UCVA)and best-corrected viual acuity(BCVA)were recorded as logarithm of the minimum angle of resolution(logM AR)with cycloplegic autorefraction by administrating of Mydrin-P and 1.0%cyclopentolate.Hyperopia was defined as the spherical equivalent(SE)refraction of+0.50 D or greater,and higher hyperopia was defined as+2.00 D or greater.Emmetropia was defined as the SE refraction in the range of-0.49 to+0.49 D,and myopia was in the SE refraction range from-0.50 D to less.RESULTS:Totally 2260 students in grade 7 were examined.Response rate among eligible children was 95.64%.Totally 486 children,22.66%of the population,were diagnosed with heterophoria in which 479 were diagnosed with exophoria at near distance,and 6 with esophoria.Totally 89(4.15%)children were diagnosed with heterophoria in which 82 had exophoria,and 7 had esophoria at far distance.Exophoria was common at near fixation(22.33%).Myopia was examined to be related to exophoria at near distance(OR 3.03,95%CI 2.33-3.95)and far distance fixation(OR 1.90,95%CI 1.09-3.32).CONCLUSION:Exophoria is a predominant heterophoria for 7 th-grade junior school in central China.Significant associations are discovered between heterophoria and refractive error.Hyperopia is associated with esophoria,and myopia is associated with exophoria.展开更多
As one of the most violent activities in the solar atmosphere,white-light flares(WLFs)are generally known for their enhanced white-light(or continuum)emission,which primarily originates in the solar lower atmosphere.H...As one of the most violent activities in the solar atmosphere,white-light flares(WLFs)are generally known for their enhanced white-light(or continuum)emission,which primarily originates in the solar lower atmosphere.However,we know little about how white-light emission is produced.In this study,we aim to investigate the response of the continua at 3600Åand 4250Åand also the Hαand Lyαlines during WLFs modeled using radiative hydrodynamic simulations.We take non-thermal electron beams as the energy source for the WLFs in two different initial atmospheres and vary their parameters.Our results show that the model with non-thermal electron beam heating clearly shows enhancements in the continua at 3600Åand 4250Åas well as in the Hαand Lyαlines.A larger electron beam flux,a smaller spectral index,or an initial penumbral atmosphere leads to a stronger emission increase at 3600Å,4250Åand in the Hαline.The Lyαline,however,is more obviously enhanced in a quiet-Sun initial atmosphere with a larger electron beam spectral index.It is also notable that the continua at 3600Åand 4250Åand the Hαline exhibit a dimming at the start of heating and reach their peak emissions after the peak time of the heating function,while the Lyαline does not show such behaviors.These results can serve as a reference for the analysis of future WLF observations.展开更多
A theoretical and numerical study has been performed on an air film dumper attached to a plate structure. Combined with the analysis by Fox and Whittorg a damping model of the air fiim damper has been developed. A com...A theoretical and numerical study has been performed on an air film dumper attached to a plate structure. Combined with the analysis by Fox and Whittorg a damping model of the air fiim damper has been developed. A complex stiffness was introduced to represent the air pressure in the damper cavity. The stain energy and dissipated energy were integrated from the real part and imaginary part of the complex stiffness to determine the stiffness and damping. The response of the plate with the air film damper was considered by treating the air film as multiple discrete damping-stiffness elements using ANSYS.展开更多
Bolted joints play a more and more important role in the structure with lighter weight and heavier load.This paper aims to provide an overview of different experimental approaches for the dynamic behavior of structure...Bolted joints play a more and more important role in the structure with lighter weight and heavier load.This paper aims to provide an overview of different experimental approaches for the dynamic behavior of structures in the presence of bolted joints,especially the energy dissipation or damping at frictional interfaces.The comprehension of energy dissipation mechanisms due to friction is provided first,while the key parameters and the measurement techniques,such as the excitation force,the preload of the bolt,or the pressure at the interfaces,are briefly introduced.Secondly,the round-robin systems aim to measure the hysteresis parameters of the frictional joints under tangential loads are reviewed,summarizing the basic theory and the strategies to apply the excitation force or acquire the response in different testing systems.Followed by parameter identification strategies for bolted structures,the test rigs with one or more simplified bolted joints are summarized to give an insight into the understanding of typical characteristics of bolted structures,which are affected by the presence of friction.More complex test rigs hosting real-like or actual engineering structures with bolted lap or flange joints are also introduced to show the identification process of the dynamic characteristics of bolted connections employed in specific applications.Based on the review paper,researchers can get the basic knowledge about the experimental systems of the bolted structures,especially several classical round robin systems,such as the Gaul resonator and widely used Brake-Reußbeam system.Readers can take advantage of this background for more creative and effective future studies,make more progress on the study of assembled structures and understand the influence of bolting frictional connections on the dynamic response better.展开更多
Available online Immunoglobulins G(IgGs)are Y-shaped globular proteins,however,their high flexibility and heterogeneity pose great challenges to their structure and conformation determinations.Geometric structure of I...Available online Immunoglobulins G(IgGs)are Y-shaped globular proteins,however,their high flexibility and heterogeneity pose great challenges to their structure and conformation determinations.Geometric structure of IgG closely correlates to its biofunctions,such as the antibody escape of human immunodeficiency virus(HIV)could attribute to the distance mismatch between the ends of two Fab arms(antigen-binding sites)and envelope glycoprotein spikes on virion surface.Herein,we report the first use of mobility capillary electrophoresis(MCE)and native mass spectrometry(nMS)to resolve the internal geometric structure and conformation of an IgG(trastuzumab)in solution phase.After proteolysis,the ellipsoid dimensions of IgG and its subunits were measured by MCE-nMS experiments.IgG was then reconstructed,in which the sizes and relative positions of these three subunits in three-dimensional space were characterized.It was found that the two Fab arms have an angle of~102.1°and a distance of~11.0 nm between the two antigen-binding sites under native condition,and the Fc arm was tilted~16.0°towards one of the Fab arms.Fc was not on the plane of Fab-Fab,but has an angle of no larger than 103.1°.Under acidic environment(pH 3.0),each subunit of the IgG would unfold into larger dimensions,and the angles between these subunits also change.With great potential for tumor imaging and therapy,the structure of F(ab')_(2)fragments was also measured and validated by molecular dynamic simulation.It was found that the electrostatic force among these three subunits and steric hindrance stemming from Fc help maintaining the angle between two Fab arms.展开更多
The dynamic influence of joints in aero-engine rotor systems is investigated in this paper.Firstly,the tangential stiffness and loss factor are obtained from an isolated lap joint setup with dynamic excitation experim...The dynamic influence of joints in aero-engine rotor systems is investigated in this paper.Firstly,the tangential stiffness and loss factor are obtained from an isolated lap joint setup with dynamic excitation experiments.Also,the influence of the normal contact pressure and the excitation level are examined,which revel the uncertainty in joints.Then,the updated Thin Layer Elements(TLEs)method with fitted parameters based on the experiments is established to simulate the dynamic properties of joints on the interface.The response of the rotor subjected to unbalance excitation is calculated,and the results illustrate the effectiveness of the proposed method.Meanwhile,using the Chebyshev inclusion function and a direct iteration algorithm,a nonlinear interval analysis method is established to consider the uncertainty of parameters in joints.The accuracy is proved by comparison with results obtained using the Monte-Carlo method.Combined with the updated TLEs,the nonlinear Chebyshev method is successfully applied on a finite model of a rotor.The study shows that substantial attention should be paid to the dynamical design for the joint in rotor systems,the dynamic properties of joints under complex loading and the corresponding interval analysis method need to be intensively studied.展开更多
Substantial unbalance may be caused by fan blade off during the operation period of gas turbine engines,and related dynamic problems are very critical to the safety design of rotor system in aero-engine.This article a...Substantial unbalance may be caused by fan blade off during the operation period of gas turbine engines,and related dynamic problems are very critical to the safety design of rotor system in aero-engine.This article aims to understand lateral-torsional coupled vibration of the rotor system with substantial unbalance.The governing equation of a modified unbalanced rotor system is established based on Lagrangian approach.Then,a mathematical analytical method is proposed in which a linear approximation is derived and the Floquet theory and Hill’s method are incorporated,from which the modal characteristics of the unbalanced rotor are obtained.The modal characteristics of the unbalanced rotor system are revealed comprehensively for the first time.Furthermore,the relation between the modes and responses of the unbalanced rotor is discussed in detail.The results show that the lateral vibration and torsional vibration of the unbalanced rotor are coupled through the inertial terms in the governing equations.Due to the coupling,veering and lock-in phenomena occur between the frequencies of the forward whirl mode and the torsional mode.Furthermore,lock-in can lead to a kind of principal instability.With regard to the response of the unbalanced rotor,both natural vibration components and enforced vibration components appear in the lateral response,while only natural vibration components appear during torsional vibration.Moreover,natural vibration components play a crucial role in the response within the principal instability region and cause divergence of the vibration amplitudes in the lateral and torsional directions.展开更多
Intermittent rub-impact, during which the contact between rotor and stator is characterized by a ‘‘bouncing" or intermittent type of behavior, is one of the most common rubbing forms in rotating machinery. When the...Intermittent rub-impact, during which the contact between rotor and stator is characterized by a ‘‘bouncing" or intermittent type of behavior, is one of the most common rubbing forms in rotating machinery. When the intermittent rub-impact occurs, the non-smooth constraint, which is the phenomenon that the system stiffness changes with respect to the state of contact and noncontact, will appear. The paper aims at discovering the possible effects of the non-smooth constraint on the flexible rotor's modal characteristics by theoretical and experimental methods. The qualitative description for non-smooth constraint is given for the intermittent rub-impact process, and the dynamic modeling for a rotor system with non-smooth constraint is carried out. Meanwhile, the analysis method is developed by Floquet theory and Hill's method to obtain the rotor's modal characteristics. The results reveal that the non-smooth constraint produced by the intermittent rubimpact will increase the modal frequencies and critical speeds of the rotor system significantly.Due to the time-varying features of the constraint stiffness, the modal frequencies for the intermittent rub-impact rotor present fluctuant changes with the increase of rotation speed, which is different from the general linear rotor system. The non-smooth constraint is possible to lead the rotor's instability, and the rotor's instable regions can be expanded significantly for the increase of average constraint stiffness, constraint amplitude and contact time ratio. Non-smooth constraint could also expand the resonance speed and resonance sideband of the rotor system, which sometimes results in amplitude jump phenomenon.展开更多
One test rig with three blades and two Under-Platform Dampers(UPDs) is established to better understand the dynamical behavior of blades with UPDs. A pre-loaded spring is used to simulate the centrifugal load acting o...One test rig with three blades and two Under-Platform Dampers(UPDs) is established to better understand the dynamical behavior of blades with UPDs. A pre-loaded spring is used to simulate the centrifugal load acting on the damper, thereby achieving continuous adjustment of the pressing load. UPDs with different forms, sizes and materials are carefully designed as experimental control groups. Noncontact measurement via a laser Doppler velocimeter is employed and contact excitation which is performed by an electromagnetic exciter is adopted to directly obtain the magnitude of the excitation load by a force sensor mounted on the excitation rod. Particular attention is paid to the influence of the contact status of the contact surfaces, e.g. the pressure-sensitive paper is used to measure the effective contact area of the UPDs. The experimental variables are selected as the centrifugal force, the amplitude of the excitation force, the damper mass, the effective contact area, and the damper material. The Frequency Response Function(FRF) of the blade under different experimental parameters is obtained by slow frequency sweep under sinusoidal excitation to study the influence of each parameter on the dynamic characteristics of the blade and the mechanism analysis is carried out combined with the experimental results.展开更多
文摘Urbanization has led to the rapid development of the construction industry.However,this has also led to higher requirements for the construction engineering management.Other than the quality monitoring of engineering construction,the energy-saving properties of the building should also be considered.Therefore,a scientific management approach should be adopted to improve green building management.This paper primarily examines the importance of quality management in green building construction,along with the factors influencing it.It also identifies the quality issues present in current green building construction.Finally,it proposes measures for quality management in the green building construction process to facilitate the industry’s healthy development.
文摘The statistics of the number of rapeseed seedlings are very important for breeders and planters to conduct seed quality testing,field crop management and yield estimation.Calculating the number of seedlings is inefficient and cumbersome in the traditional method.In this study,a method was proposed for efficient detection and calculation of rapeseed seedling number based on improved you only look once version 5(YOLOv5)to identify objects and deep-sort to perform object tracking for rapeseed seedling video.Coordinated attention(CA)mechanism was added to the trunk of the improved YOLOv5s,which made the model more effective in identifying shaded,dense and small rapeseed seedlings.Also,the use of the GSConv module replaced the standard convolution at the neck,reduced model parameters and enabled it better able to be equipped for mobile devices.The accuracy and recall rate of using improved YOLOv5s on the test set by 1.9%and 3.7%compared to 96.2%and 93.7%of YOLOv5s,respectively.The experimental results showed that the average error of monitoring the number of seedlings by unmanned aerial vehicles(UAV)video of rapeseed seedlings based on improved YOLOv5s combined with depth-sort method was 4.3%.The presented approach can realize rapid statistics of the number of rapeseed seedlings in the field based on UAV remote sensing,provide a reference for variety selection and precise management of rapeseed.
基金funded by the “Integration of Space and Ground Based Instruments” project of the China National Space Administrationthe National Natural Science Foundation of China (Grant Nos. 11673012, 11533005 and 11733003)
文摘The Chinese HαSolar Explorer(CHASE)is designed to test a newly developed satellite platform and conduct solar observations.The scientific payload of the satellite is an Hαimaging spectrograph(HIS),which can,for the first time,acquire full-disk spectroscopic solar observations in the Hαwaveband.This paper briefly introduces CHASE/HIS including its scientific objectives,technical parameters,scientific application system,etc.The CHASE mission is scheduled to launch in 2021.It will complement the observations by on-orbit solar spacecraft(such as SDO,IRIS,STEREO and PSP),as well as future solar missions of the Solar Orbiter and Advanced Space-based Solar Observatory(ASO-S).
基金supported by the National Natural Science Foundation of China (Grant Nos. 11522328, 11473070, 11427803 and U1731241)the CAS Strategic Pioneer Program on Space Science (Grant Nos. XDA15010600, XDA15052200, XDA15320103 and XDA15320301)the National Key Research and Development Program (2018YFA0404202)
文摘The Lyman-alpha Solar Telescope(LST)is one of the three payloads onboard the Advanced Space-based Solar Observatory(ASO-S)mission.It aims at imaging the Sun from the disk center up to 2.5 R⊙targeting solar eruptions,particularly coronal mass ejections(CMEs),solar flares,prominences/filaments and related phenomena,as well as the fast and slow solar wind.The most prominent speciality of LST is the simultaneous observation of the solar atmosphere in both Lyαand white light(WL)with high temporospatial resolution both on the solar disk and the inner corona.New observations in the Lyαline together with traditional WL observations will provide us with many new insights into solar eruptions and solar wind.LST consists of a Solar Corona Imager(SCI)with a field of view(FOV)of 1.1–2.5 R⊙,a Solar Disk Imager(SDI)and a full-disk White-light Solar Telescope(WST)with an identical FOV up to 1.2 R⊙.SCI has a dual waveband in Lyα(121.6±10 nm)and in WL(700±40 nm),while SDI works in the Lyαwaveband of 121.6±7.5 nm and WST works in the violet narrow-band continuum of 360±2.0 nm.To produce high quality science data,careful ground and in-flight calibrations are required.We present our methods for different calibrations including dark field correction,flat field correction,radiometry,instrumental polarization and optical geometry.Based on the data calibration,definitions of the data levels and processing procedures for the defined levels from raw data are described.Plasma physical diagnostics offer key ingredients to understand ejecta and plasma flows in the inner corona,as well as different features on the solar disk including flares,filaments,etc.Therefore,we are making efforts to develop various tools to detect the different features observed by LST,and then to derive their physical parameters,for example,the electron density and temperature of CMEs,the outflow velocity of the solar wind,and the hydrogen density and mass flows of prominences.Coordinated observations and data analyses with the coronagraphs onboard Solar Orbiter,PROBA-3,and Aditya are also briefly discussed.
基金support from the Anyang Eye Hospitalthe Anyang City government for helping to organize the survey。
文摘AIM:To investigate the prevalence of heterophoria and the relationship between heterophoria and refractive error in a school-based study conducted in central China.METHODS:A total of 23637 th-grade children were recruited into the cross-sectional school-based Anyang Childhood Eye Study(ACES)by cluster sampling method.Heterophoria was examined using alternate cover and cover-uncover testing.The Maddox rod and prism test were conducted at 33 cm and 6 m distance fixation.Uncorrected viual acuity(UCVA)and best-corrected viual acuity(BCVA)were recorded as logarithm of the minimum angle of resolution(logM AR)with cycloplegic autorefraction by administrating of Mydrin-P and 1.0%cyclopentolate.Hyperopia was defined as the spherical equivalent(SE)refraction of+0.50 D or greater,and higher hyperopia was defined as+2.00 D or greater.Emmetropia was defined as the SE refraction in the range of-0.49 to+0.49 D,and myopia was in the SE refraction range from-0.50 D to less.RESULTS:Totally 2260 students in grade 7 were examined.Response rate among eligible children was 95.64%.Totally 486 children,22.66%of the population,were diagnosed with heterophoria in which 479 were diagnosed with exophoria at near distance,and 6 with esophoria.Totally 89(4.15%)children were diagnosed with heterophoria in which 82 had exophoria,and 7 had esophoria at far distance.Exophoria was common at near fixation(22.33%).Myopia was examined to be related to exophoria at near distance(OR 3.03,95%CI 2.33-3.95)and far distance fixation(OR 1.90,95%CI 1.09-3.32).CONCLUSION:Exophoria is a predominant heterophoria for 7 th-grade junior school in central China.Significant associations are discovered between heterophoria and refractive error.Hyperopia is associated with esophoria,and myopia is associated with exophoria.
基金the National Natural Science Foundation of China(Grant Nos.11873095,11903020,11733003 and U1731241)the CAS Strategic Pioneer Program on Space Science(XDA15052200,XDA15320103 and XDA15320301)supported by the CAS Pioneer Talents Program for Young Scientists。
文摘As one of the most violent activities in the solar atmosphere,white-light flares(WLFs)are generally known for their enhanced white-light(or continuum)emission,which primarily originates in the solar lower atmosphere.However,we know little about how white-light emission is produced.In this study,we aim to investigate the response of the continua at 3600Åand 4250Åand also the Hαand Lyαlines during WLFs modeled using radiative hydrodynamic simulations.We take non-thermal electron beams as the energy source for the WLFs in two different initial atmospheres and vary their parameters.Our results show that the model with non-thermal electron beam heating clearly shows enhancements in the continua at 3600Åand 4250Åas well as in the Hαand Lyαlines.A larger electron beam flux,a smaller spectral index,or an initial penumbral atmosphere leads to a stronger emission increase at 3600Å,4250Åand in the Hαline.The Lyαline,however,is more obviously enhanced in a quiet-Sun initial atmosphere with a larger electron beam spectral index.It is also notable that the continua at 3600Åand 4250Åand the Hαline exhibit a dimming at the start of heating and reach their peak emissions after the peak time of the heating function,while the Lyαline does not show such behaviors.These results can serve as a reference for the analysis of future WLF observations.
文摘A theoretical and numerical study has been performed on an air film dumper attached to a plate structure. Combined with the analysis by Fox and Whittorg a damping model of the air fiim damper has been developed. A complex stiffness was introduced to represent the air pressure in the damper cavity. The stain energy and dissipated energy were integrated from the real part and imaginary part of the complex stiffness to determine the stiffness and damping. The response of the plate with the air film damper was considered by treating the air film as multiple discrete damping-stiffness elements using ANSYS.
基金the financial support from the National Natural Science Foundation of China(Nos.52205082 and 52075018)the Science Center for Gas Turbine Project(P2021-A-I-002-002).
文摘Bolted joints play a more and more important role in the structure with lighter weight and heavier load.This paper aims to provide an overview of different experimental approaches for the dynamic behavior of structures in the presence of bolted joints,especially the energy dissipation or damping at frictional interfaces.The comprehension of energy dissipation mechanisms due to friction is provided first,while the key parameters and the measurement techniques,such as the excitation force,the preload of the bolt,or the pressure at the interfaces,are briefly introduced.Secondly,the round-robin systems aim to measure the hysteresis parameters of the frictional joints under tangential loads are reviewed,summarizing the basic theory and the strategies to apply the excitation force or acquire the response in different testing systems.Followed by parameter identification strategies for bolted structures,the test rigs with one or more simplified bolted joints are summarized to give an insight into the understanding of typical characteristics of bolted structures,which are affected by the presence of friction.More complex test rigs hosting real-like or actual engineering structures with bolted lap or flange joints are also introduced to show the identification process of the dynamic characteristics of bolted connections employed in specific applications.Based on the review paper,researchers can get the basic knowledge about the experimental systems of the bolted structures,especially several classical round robin systems,such as the Gaul resonator and widely used Brake-Reußbeam system.Readers can take advantage of this background for more creative and effective future studies,make more progress on the study of assembled structures and understand the influence of bolting frictional connections on the dynamic response better.
基金supported by Ministry of Science and Technology of the People’s Republic of China instrumentation program(No.2020YFF01014502)NNSFC(No.21827810)Beijing Institute of Technology(No.2021CX006)。
文摘Available online Immunoglobulins G(IgGs)are Y-shaped globular proteins,however,their high flexibility and heterogeneity pose great challenges to their structure and conformation determinations.Geometric structure of IgG closely correlates to its biofunctions,such as the antibody escape of human immunodeficiency virus(HIV)could attribute to the distance mismatch between the ends of two Fab arms(antigen-binding sites)and envelope glycoprotein spikes on virion surface.Herein,we report the first use of mobility capillary electrophoresis(MCE)and native mass spectrometry(nMS)to resolve the internal geometric structure and conformation of an IgG(trastuzumab)in solution phase.After proteolysis,the ellipsoid dimensions of IgG and its subunits were measured by MCE-nMS experiments.IgG was then reconstructed,in which the sizes and relative positions of these three subunits in three-dimensional space were characterized.It was found that the two Fab arms have an angle of~102.1°and a distance of~11.0 nm between the two antigen-binding sites under native condition,and the Fc arm was tilted~16.0°towards one of the Fab arms.Fc was not on the plane of Fab-Fab,but has an angle of no larger than 103.1°.Under acidic environment(pH 3.0),each subunit of the IgG would unfold into larger dimensions,and the angles between these subunits also change.With great potential for tumor imaging and therapy,the structure of F(ab')_(2)fragments was also measured and validated by molecular dynamic simulation.It was found that the electrostatic force among these three subunits and steric hindrance stemming from Fc help maintaining the angle between two Fab arms.
基金supported by the National Natural Science Foundation of China(Nos.51575022,11772022 and 51475021).
文摘The dynamic influence of joints in aero-engine rotor systems is investigated in this paper.Firstly,the tangential stiffness and loss factor are obtained from an isolated lap joint setup with dynamic excitation experiments.Also,the influence of the normal contact pressure and the excitation level are examined,which revel the uncertainty in joints.Then,the updated Thin Layer Elements(TLEs)method with fitted parameters based on the experiments is established to simulate the dynamic properties of joints on the interface.The response of the rotor subjected to unbalance excitation is calculated,and the results illustrate the effectiveness of the proposed method.Meanwhile,using the Chebyshev inclusion function and a direct iteration algorithm,a nonlinear interval analysis method is established to consider the uncertainty of parameters in joints.The accuracy is proved by comparison with results obtained using the Monte-Carlo method.Combined with the updated TLEs,the nonlinear Chebyshev method is successfully applied on a finite model of a rotor.The study shows that substantial attention should be paid to the dynamical design for the joint in rotor systems,the dynamic properties of joints under complex loading and the corresponding interval analysis method need to be intensively studied.
基金the support from the National Natural Science Foundation of China(Nos.11772022,51575022 and 51475021)the support by the Academic Excellence Foundation of BUAA for Ph.D.Students。
文摘Substantial unbalance may be caused by fan blade off during the operation period of gas turbine engines,and related dynamic problems are very critical to the safety design of rotor system in aero-engine.This article aims to understand lateral-torsional coupled vibration of the rotor system with substantial unbalance.The governing equation of a modified unbalanced rotor system is established based on Lagrangian approach.Then,a mathematical analytical method is proposed in which a linear approximation is derived and the Floquet theory and Hill’s method are incorporated,from which the modal characteristics of the unbalanced rotor are obtained.The modal characteristics of the unbalanced rotor system are revealed comprehensively for the first time.Furthermore,the relation between the modes and responses of the unbalanced rotor is discussed in detail.The results show that the lateral vibration and torsional vibration of the unbalanced rotor are coupled through the inertial terms in the governing equations.Due to the coupling,veering and lock-in phenomena occur between the frequencies of the forward whirl mode and the torsional mode.Furthermore,lock-in can lead to a kind of principal instability.With regard to the response of the unbalanced rotor,both natural vibration components and enforced vibration components appear in the lateral response,while only natural vibration components appear during torsional vibration.Moreover,natural vibration components play a crucial role in the response within the principal instability region and cause divergence of the vibration amplitudes in the lateral and torsional directions.
基金the financial support from the National Natural Science Foundation of China(Nos.11772022,51575022 and 51475021)
文摘Intermittent rub-impact, during which the contact between rotor and stator is characterized by a ‘‘bouncing" or intermittent type of behavior, is one of the most common rubbing forms in rotating machinery. When the intermittent rub-impact occurs, the non-smooth constraint, which is the phenomenon that the system stiffness changes with respect to the state of contact and noncontact, will appear. The paper aims at discovering the possible effects of the non-smooth constraint on the flexible rotor's modal characteristics by theoretical and experimental methods. The qualitative description for non-smooth constraint is given for the intermittent rub-impact process, and the dynamic modeling for a rotor system with non-smooth constraint is carried out. Meanwhile, the analysis method is developed by Floquet theory and Hill's method to obtain the rotor's modal characteristics. The results reveal that the non-smooth constraint produced by the intermittent rubimpact will increase the modal frequencies and critical speeds of the rotor system significantly.Due to the time-varying features of the constraint stiffness, the modal frequencies for the intermittent rub-impact rotor present fluctuant changes with the increase of rotation speed, which is different from the general linear rotor system. The non-smooth constraint is possible to lead the rotor's instability, and the rotor's instable regions can be expanded significantly for the increase of average constraint stiffness, constraint amplitude and contact time ratio. Non-smooth constraint could also expand the resonance speed and resonance sideband of the rotor system, which sometimes results in amplitude jump phenomenon.
基金the financial support from the National Natural Science Foundation of China (Nos. 11772022, 91860205 and 51475021)the experimental devices provided by Key Laboratory of Vibration and Control of Aero-Propulsion System, Ministry of Education, Northeastern University (VCAME201602)
文摘One test rig with three blades and two Under-Platform Dampers(UPDs) is established to better understand the dynamical behavior of blades with UPDs. A pre-loaded spring is used to simulate the centrifugal load acting on the damper, thereby achieving continuous adjustment of the pressing load. UPDs with different forms, sizes and materials are carefully designed as experimental control groups. Noncontact measurement via a laser Doppler velocimeter is employed and contact excitation which is performed by an electromagnetic exciter is adopted to directly obtain the magnitude of the excitation load by a force sensor mounted on the excitation rod. Particular attention is paid to the influence of the contact status of the contact surfaces, e.g. the pressure-sensitive paper is used to measure the effective contact area of the UPDs. The experimental variables are selected as the centrifugal force, the amplitude of the excitation force, the damper mass, the effective contact area, and the damper material. The Frequency Response Function(FRF) of the blade under different experimental parameters is obtained by slow frequency sweep under sinusoidal excitation to study the influence of each parameter on the dynamic characteristics of the blade and the mechanism analysis is carried out combined with the experimental results.