Durable and efficient bi-functional catalyst,that is capable of both oxygen evolution reaction and hydrogen evolution reaction under acidic condition,are highly desired for the commercialization of proton exchange mem...Durable and efficient bi-functional catalyst,that is capable of both oxygen evolution reaction and hydrogen evolution reaction under acidic condition,are highly desired for the commercialization of proton exchange membrane water electrolysis.Herein,we report a robust L-Ru/HfO_(2)heterostructure constructed via confining crystalline Ru nanodomains by HfO_(2)matrix.When assembled with a proton exchange membrane,the bi-functional L-Ru/HfO_(2)catalyst-based electrolyzer presents a voltage of 1.57 and 1.67 V to reach 100 and 300 mA cm^(-2)current density,prevailing most of previously reported Ru-based materials as well as commercial Pt/C||RuO_(2)electrolyzer.It is revealed that the synergistic effect of HfO_(2)modification and small crystalline domain formation significantly alleviates the over-oxidation of Ru.More importantly,this synergistic effect facilitates a dual-site oxide path during the oxygen evolution procedure via optimization of the binding configurations of oxygenated adsorbates.As a result,the Ru active sites maintain the metallic state along with reduced energy barrier for the rate-determining step(^(*)O→^(*)OOH).Both of water adsorption and dissociation(Volmer step)are strengthened,while a moderate hydrogen binding is achieved to accelerate the hydrogen desorption procedure(Tafel step).Consequently,the activity and stability of acidic overall water splitting are simultaneously enhanced.展开更多
The valence states and coordination structures of doped heterometal atoms in two-dimensional(2D)nanomaterials lack predictable regulation strategies.Hence,a robust method is proposed to form unsaturated heteroatom clu...The valence states and coordination structures of doped heterometal atoms in two-dimensional(2D)nanomaterials lack predictable regulation strategies.Hence,a robust method is proposed to form unsaturated heteroatom clusters via the metal-vacancy restraint mechanism,which can precisely regulate the bonding and valence state of heterometal atoms doped in 2D molybdenum disulfide.The unsaturated valence state of heterometal Pt and Ru cluster atoms form a spatial coordination structure with Pt–S and Ru–O–S as catalytically active sites.Among them,the strong binding energy of negatively charged suspended S and O sites for H+,as well as the weak adsorption of positively charged unsaturated heterometal atoms for H*,reduces the energy barrier of the hydrogen evolution reaction proved by theoretical calculation.Whereupon,the electrocatalytic hydrogen evolution performance is markedly improved by the ensemble effect of unsaturated heterometal atoms and highlighted with an overpotential of 84 mV and Tafel slope of 68.5 mV dec^(−1).In brief,this metal vacancy-induced valence state regulation of heterometal can manipulate the coordination structure and catalytic activity of heterometal atoms doped in the 2D atomic lattice but not limited to 2D nanomaterials.展开更多
Zn-based aqueous batteries(ZABs) are gaining widespread popularity due to their low cost and high safety profile. However, the application of ZABs faces significant challenges, such as dendrite growth and parasitic re...Zn-based aqueous batteries(ZABs) are gaining widespread popularity due to their low cost and high safety profile. However, the application of ZABs faces significant challenges, such as dendrite growth and parasitic reactions of metallic Zn anodes. Therefore, achieving high-energy–density ZABs necessitates addressing the fundamental thermodynamics and kinetics of Zn anodes. Various strategies are available to mitigate these challenges, with electrolyte additive engineering emerging as one of the most efficient and promising approaches. Despite considerable research in this field, a comprehensive understanding of the intrinsic mechanisms behind the high performance of electrolyte additives remains limited. This review aims to provide a detailed introduction to functional electrolyte additives and thoroughly explore their underlying mechanisms. Additionally, it discusses potential directions and perspectives in additive engineering for ZABs, offering insights into future development and guidelines for achieving high-performance ZABs.展开更多
A novel and reactive oxygen species(ROS)responsive astaxanthin phenylboronic acid derivative(AstaDPBA)was constructed by grafting phenylboronic acid(PBA)onto astaxanthin succinate diester(AstaD),and its chemical struc...A novel and reactive oxygen species(ROS)responsive astaxanthin phenylboronic acid derivative(AstaDPBA)was constructed by grafting phenylboronic acid(PBA)onto astaxanthin succinate diester(AstaD),and its chemical structure and physicochemical property were identified.AstaD-PBA could effectively improve the ROS quenching ability in the lipopolysaccharide(LPS)-induced RAW264.7 cell inflammation model.Then,the bioactivity of AstaD-PBA was studied by 4 zebrafish ROS-responsive infl ammatory models induced by LPS,copper(Cu^(2+)),high-fat diet,and dextran sodium sulfate(DSS).The results suggest that AstaD-PBA might have high biosafety and the best effect on ulcerative colitis(UC)induced by DSS.Furtherly,AstaDPBA significantly alleviated and treated weight loss and colonic shrinkage,inhibited infl ammatory cytokines,and maintained microbiota homeostasis to improve UC in C57BL/6J mice.Alistipes and Oscillibacter were expected to be considered UC marker fl ora according to the Metastats analysis and Pearson correlation Mantel test(P<0.01)of 16S rRNA gene sequencing data.In conclusion,AstaD-PBA has been promised to be a functional compound to improve UC and maintain intestinal microbiota homeostasis.展开更多
The evolution process of magnetic domains in response to external fields is crucial for the modern understanding and application of spintronics.In this study,we investigated the domain rotation in stripe domain films ...The evolution process of magnetic domains in response to external fields is crucial for the modern understanding and application of spintronics.In this study,we investigated the domain rotation in stripe domain films of varying thicknesses by examining their response to microwave excitation in four different orientations.The resonance spectra indicate that the rotation field of stripe domain film under an applied magnetic field approaches the field where the resonance mode of sample changes.The saturation field of the stripe domain film corresponds to the field where the resonance mode disappears when measured in the stripe direction parallel to the microwave magnetic field.The results are reproducible and consistent with micromagnetic simulations,providing additional approaches and techniques for comprehending the microscopic mechanisms of magnetic domains and characterizing their rotation.展开更多
Rechargeable Mg batteries(RMBs)have become one of the best subsitutes for lithium-ion batteries due to the high volumetric capacity,abundant resources,and uniform plating behavior of Mg metal anode.However,the safety ...Rechargeable Mg batteries(RMBs)have become one of the best subsitutes for lithium-ion batteries due to the high volumetric capacity,abundant resources,and uniform plating behavior of Mg metal anode.However,the safety hazard induced by the formation of high-modulue Mg dendrites under a high current density(10 mA cm^(-1))was still revealed in recent years.It has forced researchers to re-examine the safety of RMBs.In this review,the intrinsic safety factors of key components in RMBs,such as uneven plating,pitting and flammability of Mg anode,heat release and crystalline water decomposition of cathode,strong corrosion,low oxidition stability and flammability of electrolytes,and soforth,are systematacially summarized.Their origins,formation mechanisms,and possible safety hazards are deeply discussed.To develop high-performance Mg anode,current strategies including designing artificial SEI,three-dimensional substrates,and Mg alloys are summarized.For practical electrolytes,the configurations of boron-centered anions and simple Mg salts and the functionalized solvent with high boiling point and low flammability are suggested to comprehensively design.In addition,the future study should more focus on the investigation on the thermal runaway and decomposition of cathode materials and separa-tors.This review aims to provide fundamental insights into the relationship between electrochemistry and safety,further promoting the sustainable development of RMBs.展开更多
At present,the architecture modeling method of fluvial reservoirs are still developing.Traditional methods usually use grids to characterize architecture interbeds within the reservoir.Due to the thin thickness of thi...At present,the architecture modeling method of fluvial reservoirs are still developing.Traditional methods usually use grids to characterize architecture interbeds within the reservoir.Due to the thin thickness of this type of the interlayers,the number of the model grids must be greatly expanded.The number of grids in the tens of millions often makes an expensive computation;however,upscaling the model will generate a misleading model.The above confusion is the major reason that restricts the largescale industrialization of fluvial reservoir architecture models in oilfield development and production.Therefore,this paper explores an intelligent architecture modeling method for multilevel fluvial reservoirs based on architecture interface and element.Based on the superpositional relationship of different architectural elements within the fluvial reservoir,this method uses a combination of multilevel interface constraints and non-uniform grid techniques to build a high-resolution 3D geological model for reservoir architecture.Through the grid upscaling technology of heterogeneous architecture elements,different upscaling densities are given to the lateral-accretion bedding and lateral-accretion bodies to simplify the model gridding.This new method greatly reduces the number of model grids while ensuring the accuracy of lateral-accretion bedding models,laying a foundation for large-scale numerical simulation of the subsequent industrialization of the architecture model.This method has been validated in A layer of X oilfield with meandering fluvial channel sands as reservoirs and B layer of Y oilfield with braided river sands as reservoirs.The simulation results show that it has a higher accuracy of production history matching and remaining oil distribution forecast of the targeted sand body.The numerical simulation results show that in the actual development process of oilfield,the injected water will not displace oil in a uniform diffusive manner as traditionally assumed,but in a more complex pattern with oil in upper part of sand body being left behind as residual oil due to the influences of different levels of architecture interfaces.This investigation is important to guiding reservoir evaluation,remaining oil analysis,profile control and potential tapping and well pattern adjustment.展开更多
Objective:To observe the analgesic effect of combined spinal and epidural anesthesia on older patients undergoing hip fracture surgery.Method:One hundred and twenty elderly hip fracture surgery patients treated in our...Objective:To observe the analgesic effect of combined spinal and epidural anesthesia on older patients undergoing hip fracture surgery.Method:One hundred and twenty elderly hip fracture surgery patients treated in our hospital from January 2021 to December 2022 were selected and randomly divided into two groups,with 60 cases in the experimental group and 60 in the control group.The experimental group was given combined spinal-epidural anesthesia intervention measures,while the control group was given epidural anesthesia intervention measures.The analgesic effect,tumor necrosis factor-alpha(TNF-α),C-reactive protein(CRP)levels,and other observation indicators were analyzed after anesthesia intervention.Result:After the intervention,the analgesic effect and the evaluation results of the subjects in the experimental group were better than those in the control group(P<0.05);the obtained values of TNF-αand CRP levels in the experimental group were higher than those of the control group(P<0.05).Conclusion:The combined spinal-epidural anesthesia intervention demonstrated positive outcomes.The analgesic effect of patients during surgery and their inflammatory factor levels improved,which makes this intervention worthy of clinical application and promotion.展开更多
The purpose of this article is to extend the theory of circulant matrix to general ideal matrix, and to construct more general NTRU cryptosystem combined with the φ-cyclic code. To understand our construction, ...The purpose of this article is to extend the theory of circulant matrix to general ideal matrix, and to construct more general NTRU cryptosystem combined with the φ-cyclic code. To understand our construction, first we discuss a more general form of the ordinary cyclic code, namely φ-cyclic code, which firstly appeared in [1] and [2], thus we give a more generalized NTRUEncrypt by replacing finite field with real number field R.展开更多
When energy distribution X-ray fluorescence analysis method (EDXRF) is used to measure the pulp grade of iron concentrate, the parameters such as the location of radioactive source, detector, the particle size of the ...When energy distribution X-ray fluorescence analysis method (EDXRF) is used to measure the pulp grade of iron concentrate, the parameters such as the location of radioactive source, detector, the particle size of the iron concentrate, and the concentration of the iron concentrate slurry, etc. have a greater influence on the measurement results. In order to more accurately measure the grade of iron ore pulp, the Monte Carlo method was used to study the different pulp grades of samples of the iron ore concentrate under different conditions such as the location of radioactive source, detector, the particle size of the iron concentrate, and the concentration of the iron concentrate slurry. By studying the relationship between different influencing factors and counting rate, the error of the actual measurement time and the pulp grade of iron concentrate can be reduced. The pulp grade of iron concentrate is improved, and the </span><i style="font-family:"white-space:normal;"><span style="font-family:Verdana;">in</span></i><span style="font-family:Verdana;">-</span><i style="font-family:"white-space:normal;"><span style="font-family:Verdana;">situ</span></i><span style="font-family:Verdana;"> EDXRF analysis of iron concentrate slurry is more in line with the actual grade.展开更多
Prompt gamma neutron activation analysis (PGNAA) is a non-destructive online measurement nuclear analysis method. With its unique advantages, it has been widely used in online analysis of industrial materials such as ...Prompt gamma neutron activation analysis (PGNAA) is a non-destructive online measurement nuclear analysis method. With its unique advantages, it has been widely used in online analysis of industrial materials such as coal, cement, and minerals in recent years. </span><span style="font-family:Verdana;">However, there are many kinds of literature on PGNAA in the field of industrial materials detection, and there are still a few concluding articles. To this end,</span><span style="font-family:Verdana;"> based on the principle of PGNAA online analysis, the status quo and development of the real-time online detection of industrial material components in the field are reviewed and discussed by consulting a large number of domestic and foreign PGNAA related literature and data, to facilitate the reference of relevant scientific researchers.展开更多
In this paper, we conclude five kinds of methods for construction of the regular low-density parity matrix H and three kinds of methods for the construction of irregular low-density parity-check matrix H. Through the ...In this paper, we conclude five kinds of methods for construction of the regular low-density parity matrix H and three kinds of methods for the construction of irregular low-density parity-check matrix H. Through the analysis of the code rate and parameters of these eight kinds of structures, we find that the construction of low-density parity-check matrix tends to be more flexible and the parameter variability is enhanced. We propose that the current development cost should be lower with the progress of electronic technology and we need research on more practical Low-Density Parity-Check Codes (LDPC). Combined with the application of the quantum distribution key, we urgently need to explore the research direction of relevant theories and technologies of LDPC codes in other fields of quantum information in the future.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.22279162,22261142664)Natural Science Fund for Colleges and Universities in Anhui Province(2022AH030057)CAS Project for Young Scientists in Basic Research(No.YSBR-094).
文摘Durable and efficient bi-functional catalyst,that is capable of both oxygen evolution reaction and hydrogen evolution reaction under acidic condition,are highly desired for the commercialization of proton exchange membrane water electrolysis.Herein,we report a robust L-Ru/HfO_(2)heterostructure constructed via confining crystalline Ru nanodomains by HfO_(2)matrix.When assembled with a proton exchange membrane,the bi-functional L-Ru/HfO_(2)catalyst-based electrolyzer presents a voltage of 1.57 and 1.67 V to reach 100 and 300 mA cm^(-2)current density,prevailing most of previously reported Ru-based materials as well as commercial Pt/C||RuO_(2)electrolyzer.It is revealed that the synergistic effect of HfO_(2)modification and small crystalline domain formation significantly alleviates the over-oxidation of Ru.More importantly,this synergistic effect facilitates a dual-site oxide path during the oxygen evolution procedure via optimization of the binding configurations of oxygenated adsorbates.As a result,the Ru active sites maintain the metallic state along with reduced energy barrier for the rate-determining step(^(*)O→^(*)OOH).Both of water adsorption and dissociation(Volmer step)are strengthened,while a moderate hydrogen binding is achieved to accelerate the hydrogen desorption procedure(Tafel step).Consequently,the activity and stability of acidic overall water splitting are simultaneously enhanced.
基金supported by the National Natural Science Foundation of China(22205209,52202373 and U21A200972)China Postdoctoral Science Foundation(2022M722867)Key Research Project of Higher Education Institutions in Henan Province(23A530001)。
文摘The valence states and coordination structures of doped heterometal atoms in two-dimensional(2D)nanomaterials lack predictable regulation strategies.Hence,a robust method is proposed to form unsaturated heteroatom clusters via the metal-vacancy restraint mechanism,which can precisely regulate the bonding and valence state of heterometal atoms doped in 2D molybdenum disulfide.The unsaturated valence state of heterometal Pt and Ru cluster atoms form a spatial coordination structure with Pt–S and Ru–O–S as catalytically active sites.Among them,the strong binding energy of negatively charged suspended S and O sites for H+,as well as the weak adsorption of positively charged unsaturated heterometal atoms for H*,reduces the energy barrier of the hydrogen evolution reaction proved by theoretical calculation.Whereupon,the electrocatalytic hydrogen evolution performance is markedly improved by the ensemble effect of unsaturated heterometal atoms and highlighted with an overpotential of 84 mV and Tafel slope of 68.5 mV dec^(−1).In brief,this metal vacancy-induced valence state regulation of heterometal can manipulate the coordination structure and catalytic activity of heterometal atoms doped in the 2D atomic lattice but not limited to 2D nanomaterials.
基金financially National Natural Science Foundation of China (22309165)Excellent Youth Foundation of Henan Province (242300421126)+6 种基金Talent Development Funding Project of Shanghai (2021030)Joint Fund of Science and Technology R&D Plan of Henan Province (232301420053)Postdoctoral Science Foundation of China (2023M743170)Key Research Projects of Higher Education Institutions of Henan Province (24A530010, and 23A530002)Key Laboratory of Adv. Mater. of Ministry of Education (Adv Mat2023-17)State Key Laboratory of Inorganic Synthesis & Preparative Chemistry Jilin University (2024-34)Frontier Exploration Projects of Longmen Laboratory of Henan (LMQYTSKT021)。
文摘Zn-based aqueous batteries(ZABs) are gaining widespread popularity due to their low cost and high safety profile. However, the application of ZABs faces significant challenges, such as dendrite growth and parasitic reactions of metallic Zn anodes. Therefore, achieving high-energy–density ZABs necessitates addressing the fundamental thermodynamics and kinetics of Zn anodes. Various strategies are available to mitigate these challenges, with electrolyte additive engineering emerging as one of the most efficient and promising approaches. Despite considerable research in this field, a comprehensive understanding of the intrinsic mechanisms behind the high performance of electrolyte additives remains limited. This review aims to provide a detailed introduction to functional electrolyte additives and thoroughly explore their underlying mechanisms. Additionally, it discusses potential directions and perspectives in additive engineering for ZABs, offering insights into future development and guidelines for achieving high-performance ZABs.
基金provided by the National Key R&D Program of China(2018YFC0311206)the Fundamental Research Funds for the Central Universities of China(202012018).
文摘A novel and reactive oxygen species(ROS)responsive astaxanthin phenylboronic acid derivative(AstaDPBA)was constructed by grafting phenylboronic acid(PBA)onto astaxanthin succinate diester(AstaD),and its chemical structure and physicochemical property were identified.AstaD-PBA could effectively improve the ROS quenching ability in the lipopolysaccharide(LPS)-induced RAW264.7 cell inflammation model.Then,the bioactivity of AstaD-PBA was studied by 4 zebrafish ROS-responsive infl ammatory models induced by LPS,copper(Cu^(2+)),high-fat diet,and dextran sodium sulfate(DSS).The results suggest that AstaD-PBA might have high biosafety and the best effect on ulcerative colitis(UC)induced by DSS.Furtherly,AstaDPBA significantly alleviated and treated weight loss and colonic shrinkage,inhibited infl ammatory cytokines,and maintained microbiota homeostasis to improve UC in C57BL/6J mice.Alistipes and Oscillibacter were expected to be considered UC marker fl ora according to the Metastats analysis and Pearson correlation Mantel test(P<0.01)of 16S rRNA gene sequencing data.In conclusion,AstaD-PBA has been promised to be a functional compound to improve UC and maintain intestinal microbiota homeostasis.
基金the Natural Science Foundation of Shandong Province(Grant No.ZR2022MA053),the National Natural Science Foundation of China(Grant Nos.11704211,11847233,52301255,12205157,and 12205093)the Funda-mental Research Funds for the Central Universities(Grant No.lzujbky-2022-kb01)+2 种基金China and Germany Postdoctoral Exchange Program(Helmholtz-OCPC)China Postdoctoral Science Foundation(Grant No.2018M632608)Applied Basic Research Project of Qingdao(Grant No.18-2-2-16-jcb).
文摘The evolution process of magnetic domains in response to external fields is crucial for the modern understanding and application of spintronics.In this study,we investigated the domain rotation in stripe domain films of varying thicknesses by examining their response to microwave excitation in four different orientations.The resonance spectra indicate that the rotation field of stripe domain film under an applied magnetic field approaches the field where the resonance mode of sample changes.The saturation field of the stripe domain film corresponds to the field where the resonance mode disappears when measured in the stripe direction parallel to the microwave magnetic field.The results are reproducible and consistent with micromagnetic simulations,providing additional approaches and techniques for comprehending the microscopic mechanisms of magnetic domains and characterizing their rotation.
基金supported by the National Key R&D Program of China(No.2023YFB3809500)the National Natural Science Foundation of China(No.U23A20555,52202211)+1 种基金the Ninth Young Elite Scientists Sponsorship Program by CAST(2023QNRC001)the Chongqing Technology Innovation and Application Development Project(No.CSTB2022TIAD-KPX0028).
文摘Rechargeable Mg batteries(RMBs)have become one of the best subsitutes for lithium-ion batteries due to the high volumetric capacity,abundant resources,and uniform plating behavior of Mg metal anode.However,the safety hazard induced by the formation of high-modulue Mg dendrites under a high current density(10 mA cm^(-1))was still revealed in recent years.It has forced researchers to re-examine the safety of RMBs.In this review,the intrinsic safety factors of key components in RMBs,such as uneven plating,pitting and flammability of Mg anode,heat release and crystalline water decomposition of cathode,strong corrosion,low oxidition stability and flammability of electrolytes,and soforth,are systematacially summarized.Their origins,formation mechanisms,and possible safety hazards are deeply discussed.To develop high-performance Mg anode,current strategies including designing artificial SEI,three-dimensional substrates,and Mg alloys are summarized.For practical electrolytes,the configurations of boron-centered anions and simple Mg salts and the functionalized solvent with high boiling point and low flammability are suggested to comprehensively design.In addition,the future study should more focus on the investigation on the thermal runaway and decomposition of cathode materials and separa-tors.This review aims to provide fundamental insights into the relationship between electrochemistry and safety,further promoting the sustainable development of RMBs.
文摘At present,the architecture modeling method of fluvial reservoirs are still developing.Traditional methods usually use grids to characterize architecture interbeds within the reservoir.Due to the thin thickness of this type of the interlayers,the number of the model grids must be greatly expanded.The number of grids in the tens of millions often makes an expensive computation;however,upscaling the model will generate a misleading model.The above confusion is the major reason that restricts the largescale industrialization of fluvial reservoir architecture models in oilfield development and production.Therefore,this paper explores an intelligent architecture modeling method for multilevel fluvial reservoirs based on architecture interface and element.Based on the superpositional relationship of different architectural elements within the fluvial reservoir,this method uses a combination of multilevel interface constraints and non-uniform grid techniques to build a high-resolution 3D geological model for reservoir architecture.Through the grid upscaling technology of heterogeneous architecture elements,different upscaling densities are given to the lateral-accretion bedding and lateral-accretion bodies to simplify the model gridding.This new method greatly reduces the number of model grids while ensuring the accuracy of lateral-accretion bedding models,laying a foundation for large-scale numerical simulation of the subsequent industrialization of the architecture model.This method has been validated in A layer of X oilfield with meandering fluvial channel sands as reservoirs and B layer of Y oilfield with braided river sands as reservoirs.The simulation results show that it has a higher accuracy of production history matching and remaining oil distribution forecast of the targeted sand body.The numerical simulation results show that in the actual development process of oilfield,the injected water will not displace oil in a uniform diffusive manner as traditionally assumed,but in a more complex pattern with oil in upper part of sand body being left behind as residual oil due to the influences of different levels of architecture interfaces.This investigation is important to guiding reservoir evaluation,remaining oil analysis,profile control and potential tapping and well pattern adjustment.
基金Weifang Municipal Science and Technology Bureau(Medical)Project“Effects and Mechanisms of Oxycodone and Alfentanil on IgFs in Mouse Ovarian Granulosa Cells”(2021YX035)。
文摘Objective:To observe the analgesic effect of combined spinal and epidural anesthesia on older patients undergoing hip fracture surgery.Method:One hundred and twenty elderly hip fracture surgery patients treated in our hospital from January 2021 to December 2022 were selected and randomly divided into two groups,with 60 cases in the experimental group and 60 in the control group.The experimental group was given combined spinal-epidural anesthesia intervention measures,while the control group was given epidural anesthesia intervention measures.The analgesic effect,tumor necrosis factor-alpha(TNF-α),C-reactive protein(CRP)levels,and other observation indicators were analyzed after anesthesia intervention.Result:After the intervention,the analgesic effect and the evaluation results of the subjects in the experimental group were better than those in the control group(P<0.05);the obtained values of TNF-αand CRP levels in the experimental group were higher than those of the control group(P<0.05).Conclusion:The combined spinal-epidural anesthesia intervention demonstrated positive outcomes.The analgesic effect of patients during surgery and their inflammatory factor levels improved,which makes this intervention worthy of clinical application and promotion.
文摘The purpose of this article is to extend the theory of circulant matrix to general ideal matrix, and to construct more general NTRU cryptosystem combined with the φ-cyclic code. To understand our construction, first we discuss a more general form of the ordinary cyclic code, namely φ-cyclic code, which firstly appeared in [1] and [2], thus we give a more generalized NTRUEncrypt by replacing finite field with real number field R.
文摘When energy distribution X-ray fluorescence analysis method (EDXRF) is used to measure the pulp grade of iron concentrate, the parameters such as the location of radioactive source, detector, the particle size of the iron concentrate, and the concentration of the iron concentrate slurry, etc. have a greater influence on the measurement results. In order to more accurately measure the grade of iron ore pulp, the Monte Carlo method was used to study the different pulp grades of samples of the iron ore concentrate under different conditions such as the location of radioactive source, detector, the particle size of the iron concentrate, and the concentration of the iron concentrate slurry. By studying the relationship between different influencing factors and counting rate, the error of the actual measurement time and the pulp grade of iron concentrate can be reduced. The pulp grade of iron concentrate is improved, and the </span><i style="font-family:"white-space:normal;"><span style="font-family:Verdana;">in</span></i><span style="font-family:Verdana;">-</span><i style="font-family:"white-space:normal;"><span style="font-family:Verdana;">situ</span></i><span style="font-family:Verdana;"> EDXRF analysis of iron concentrate slurry is more in line with the actual grade.
文摘Prompt gamma neutron activation analysis (PGNAA) is a non-destructive online measurement nuclear analysis method. With its unique advantages, it has been widely used in online analysis of industrial materials such as coal, cement, and minerals in recent years. </span><span style="font-family:Verdana;">However, there are many kinds of literature on PGNAA in the field of industrial materials detection, and there are still a few concluding articles. To this end,</span><span style="font-family:Verdana;"> based on the principle of PGNAA online analysis, the status quo and development of the real-time online detection of industrial material components in the field are reviewed and discussed by consulting a large number of domestic and foreign PGNAA related literature and data, to facilitate the reference of relevant scientific researchers.
文摘In this paper, we conclude five kinds of methods for construction of the regular low-density parity matrix H and three kinds of methods for the construction of irregular low-density parity-check matrix H. Through the analysis of the code rate and parameters of these eight kinds of structures, we find that the construction of low-density parity-check matrix tends to be more flexible and the parameter variability is enhanced. We propose that the current development cost should be lower with the progress of electronic technology and we need research on more practical Low-Density Parity-Check Codes (LDPC). Combined with the application of the quantum distribution key, we urgently need to explore the research direction of relevant theories and technologies of LDPC codes in other fields of quantum information in the future.
基金partly supported by the Natural Science Foundation of Liaoning Province(20170540642)the General Project of Scientific Research of the Education Department of Liaoning Province(L2015359)the Key Project of the Qinghai Qilian Mountain Nature Reserve Administration(QHTX-2021-006)。