Planar Na ion micro-supercapacitors(NIMSCs) that offer both high energy density and power density are deemed to a promising class of miniaturized power sources for wearable and portable microelectron-ics. Nevertheless...Planar Na ion micro-supercapacitors(NIMSCs) that offer both high energy density and power density are deemed to a promising class of miniaturized power sources for wearable and portable microelectron-ics. Nevertheless, the development of NIMSCs are hugely impeded by the low capacity and sluggish Na ion kinetics in the negative electrode.Herein, we demonstrate a novel carbon-coated Nb_(2)O_5 microflower with a hierarchical structure composed of vertically intercrossed and porous nanosheets, boosting Na ion storage performance. The unique structural merits, including uniform carbon coating, ultrathin nanosheets and abun-dant pores, endow the Nb_(2)O_5 microflower with highly reversible Na ion storage capacity of 245 mAh g^(-1) at 0.25 C and excellent rate capability.Benefiting from high capacity and fast charging of Nb_(2)O_5 microflower, the planar NIMSCs consisted of Nb_(2)O_5 negative electrode and activated car-bon positive electrode deliver high areal energy density of 60.7 μWh cm^(-2),considerable voltage window of 3.5 V and extraordinary cyclability. Therefore, this work exploits a structural design strategy towards electrode materials for application in NIMSCs, holding great promise for flexible microelectronics.展开更多
The popularization of portable,implantable and wearable microelectronics has greatly stimulated the rapid development of high-power planar micro-supercapacitors(PMSCs).Particularly,the introduction of new functionalit...The popularization of portable,implantable and wearable microelectronics has greatly stimulated the rapid development of high-power planar micro-supercapacitors(PMSCs).Particularly,the introduction of new functionalities(e.g.,high voltage,flexibility,stretchability,self-healing,electrochromism and photo/thermal response)to PMSCs is essential for building multifunctional PMSCs and their smart selfpowered integrated microsystems.In this review,we summarized the latest advances in PMSCs from various functional microdevices to their smart integrated microsystems.Primarily,the functionalities of PMSCs are characterized by three major factors to emphasize their electrochemical behavior and unique scope of application.These include but are not limited to high-voltage outputs(realized through asymmetric configuration,novel electrolyte and modular integration),mechanical resilience that includes various feats of flexibility or stretchability,and response to stimuli(self-healing,electrochromic,photo-responsive,or thermal-responsive properties).Furthermore,three representative integrated microsystems including energy harvester-PMSC,PMSC-energy consumption,and all-in-one selfpowered microsystems are elaborately overviewed to understand the emerging intelligent interaction models.Finally,the key perspectives,challenges and opportunities of PMSCs for powering smart microelectronics are proposed in brief.展开更多
Lithium sulfur(Li-S)batteries hold great promising for high-energy-density batteries,but appear rapid capacity fading due to the lack of overall and elaborated design of both sulfur host and interlayer.Herein,we devel...Lithium sulfur(Li-S)batteries hold great promising for high-energy-density batteries,but appear rapid capacity fading due to the lack of overall and elaborated design of both sulfur host and interlayer.Herein,we developed a novel two-dimensional(2D)hierarchical yolk-shell heterostructure,constructed by a graphene yolk,2D void and outer shell of vertically aligned carbon-mediated MoS2 nanosheets(G@void@MoS2/C),as advanced host-interlayer integrated electrode for Li-S batteries.Notably,the 2D void,with a typical thickness of^80 nm,provided suitable space for loading and confining nano sulfur,and vertically aligned ultrathin MoS2 nanosheets guaranteed enriched catalytically active sites to effectively promote the transition of soluble polysulfides.The conductive graphene yolk and carbon mediated shell sufficiently accelerated electron transport.Therefore,the integrated electrode of G@void@MoS2/C not only exceptionally confined the sulfur/polysulfides in 2D yolk-shell heterostructures,but also achieved catalytic transition of the residual polysulfides dissolved in electrolyte to solid Li2S2/Li2S,both of which synergistically achieved an extremely low capacity fading rate of 0.05%per cycle over 1000 times at 2C,outperforming most reported Mo based cathodes and interlayers for Li-S batteries.2D hierarchical yolkshell heterostructures developed here may shed new insight on elaborated design of integrated electrodes for Li-S batteries.展开更多
Lithium-selenium(Li-Se)batteries have attracted considerable attentions for next-generation energy storage systems owing to high volumetric capacity of 3265 m Ah cm^(-3) and excellent electronic conductivity(~10^(-5)S...Lithium-selenium(Li-Se)batteries have attracted considerable attentions for next-generation energy storage systems owing to high volumetric capacity of 3265 m Ah cm^(-3) and excellent electronic conductivity(~10^(-5)S cm^(-1))of selenium.However,the shuttling effect and capacity fading prevent their wide applications.Herein we report a low-cost strategy for scalable fabrication of lignin derived hierarchical porous carbon(LHPC)as a new high-loading Se host for high-capacity and long-term cycling Li-Se batteries in carbonate electrolyte.The resulting LHPC exhibits three-dimensional(3D)hierarchically porous structure,high specific surface area of 1696 m^(2) g^(-1),and hetero-atom doping(O,S),which can effectively confine the Se particles into the micropores,and meanwhile,offer effective chemical binding sites for selenides from hetero-atoms(O,S).As a result,our Li-Se batteries based on Se@LHPC demonstrate high capacity of 450 m Ah g^(-1) at 0.5 C after 500 cycles,with a low capacity fading rate of only 0.027%.The theoretical simulation confirmed the strong affinity of selenides on the O and S sites of LHPC effectively mitigating the Se losing.Therefore,our strategy of using lignin as the low-cost precursor of hierarchically porous carbon for high-loading Se host offers new opportunities for high-capacity and long-life Li-Se batteries.展开更多
Two-dimensional MXenes are key high-capacitance electrode materials for micro-supercapacitors(MSCs)catering to integrated microsystems.However,the narrow electrochemical voltage windows of conventional aqueous electro...Two-dimensional MXenes are key high-capacitance electrode materials for micro-supercapacitors(MSCs)catering to integrated microsystems.However,the narrow electrochemical voltage windows of conventional aqueous electrolytes(≤1.23 V)and symmetric MXene MSCs(typically≤0.6 V)substantially limit their output voltage and energy density.Highly concentrated aqueous electrolytes exhibit lower water molecule activity,which inhibits water splitting and consequently widens the operating voltage window.Herein,we report ultrahigh-voltage aqueous planar asymmetric MSCs(AMSCs)based on a highly concentrated LiCl-gel quasi-solid-state electrolyte with MXene(Ti3C2Tx)as the negative electrode and MnO_(2) nanosheets as the positive electrode(MXene//MnO_(2)-AMSCs).The MXene//MnO_(2)-AMSCs exhibit a high voltage of up to 2.4 V,attaining an ultrahigh volumetric energy density of 53 mWh cm−3.Furthermore,the in-plane geometry and the quasi-solid-state electrolyte enabled excellent mechanical flexibility and performance uniformity in the serially/parallel connected packs of our AMSCs.Notably,the MXene//MnO_(2)-AMSC-based integrated microsystem,in conjunction with solar cells and consumer electronics,could efficiently realize simultaneous energy harvesting,storage,and conversion.The findings of this study provide insights for constructing high-voltage aqueous MXene-based AMSCs as safe and self-sufficient micropower sources in smart integrated microsystems.展开更多
Two-dimensional(2D)mesoporous pseudocapacitive polymer/graphene heterostructures combine the advanced merits of 2D materials and mesoporous materials,possessing unique nanosheet structure,large specific surface area(S...Two-dimensional(2D)mesoporous pseudocapacitive polymer/graphene heterostructures combine the advanced merits of 2D materials and mesoporous materials,possessing unique nanosheet structure,large specific surface area(SSA),abundant oxygen/nitrogen-containing groups,desirable electrical conductivity and admirable electrochemical redox activity,and hold great potential for constructing high-performance planar micro-supercapacitors(MSCs).Herein,we demonstrate the interfacial assembly of 2D mesoporous polydopamine/graphene(mPDG)heterostructures with well-defined mesopore structure(12 nm)and adjustable thickness(7.5–14.1 nm)for planar high-energy pseudocapacitive MSCs.Attributed to medium thickness,exposed mesopore of 12 nm and large SSA of 108 m^(2)/g,the m PDG with 10.8 nm thickness reveals prominent mass capacitance of 419 F/g and impressive cycling stability with~96%capacitance retention after 5000 cycles.Furthermore,the symmetric mPDG-based MSCs with“water-in-salt”gel electrolyte present wide voltage window of 1.6 V,superior volumetric energy density of 11.5 mWh/cm^(3),outstanding flexibility and self-integration ability.Therefore,this work offers a new platform of controllably synthesizing 2D mesoporous heterostructures for high-performance MSCs.展开更多
Two-dimensional(2D)mesoporous materials(2DMMs),defined as 2D nanosheets with randomly dispersed or orderly aligned mesopores of 2–50 nm,can synergistically combine the fascinating merits of 2D materials and mesoporou...Two-dimensional(2D)mesoporous materials(2DMMs),defined as 2D nanosheets with randomly dispersed or orderly aligned mesopores of 2–50 nm,can synergistically combine the fascinating merits of 2D materials and mesoporous mate-rials,while overcoming their intrinsic shortcomings,e.g.,easy self-stacking of 2D materials and long ion transport paths in bulk mesoporous materials.These unique features enable fast ion diffusion,large specific surface area,and enriched adsorption/reaction sites,thus offering a promising solution for designing high-performance electrode/catalyst materials for next-generation energy storage and conversion devices(ESCDs).Herein,we review recent advances of state-of-the-art 2DMMs for high-efficiency ESCDs,focusing on two different configurations of in-plane mesoporous nanosheets and sandwich-like mesoporous heterostructures.Firstly,a brief introduction is given to highlighting the structural advantages(e.g.,tailored chemical composition,sheet configuration,and mesopore geometry)and key roles(e.g.,active materials and functional additives)of 2DMMs for high-performance ESCDs.Secondly,the chemical synthesis strategies of 2DMMs are summarized,including template-free,2D-template,mesopore-template,and 2D mesopore dual-template methods.Thirdly,the wide applications of 2DMMs in advanced supercapacitors,rechargeable batteries,and electrocatalysis are discussed,enlightening their intrinsic structure–property relationships.Finally,the future challenges and perspectives of 2DMMs in energy-related fields are presented.展开更多
All-solid-state micro-supercapacitors are acknowledged as a very promising class of microscale energy storage devices for directly integrating portable and wearable electronics. However, the improvement of electrochem...All-solid-state micro-supercapacitors are acknowledged as a very promising class of microscale energy storage devices for directly integrating portable and wearable electronics. However, the improvement of electrochemical performance from materials to devices still remains tremendous challenges. Here, we demonstrate a novel and universal mask-assisted filtration technology for the simplified fabrication of all-solid-state planar micro-supercapacitors(MSCs) based on interdigital patterns of 2D pseudocapacitive MnO2 nanosheets and electrochemically exfoliated graphene film as both electrode and current collector, and polyvinyl alcohol/Li Cl gel as electrolyte. Remarkably, the resulting MSCs exhibit outstanding areal capacitance of ~355 m F/cm^2, which is among the highest values reported in the state-of-the-art MSCs. Meanwhile, MSCs possess exceptionally mechanical flexibility as high as ~92% of initial capacitance even at a highly bending angle of 180°, excellent cyclability with a capacitance retention of 95% after 3000 cycles, and impressive serial or parallel integration for modulating the voltage or capacitance. Therefore, our proposed strategy of simplified construction of MSCs will pave the ways for utilizing graphene and analogous pseudocapactive nanosheets in high-performance MSCs.展开更多
基金financially supported by the National Natural Science Foundation of China (Grants. 22075279, 22279137, 22125903, 22109040)National Key R&D Program of China (Grant 2022YFA1504100)+2 种基金Dalian Innovation Support Plan for High Level Talents (2019RT09)Dalian National Labo- ratory For Clean Energy (DNL), CAS, DNL Cooperation Fund, CAS (DNL202016, DNL202019), DICP (DICP I2020032)the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy (YLU-DNL Fund 2021002, YLU- DNL Fund 2021009)。
文摘Planar Na ion micro-supercapacitors(NIMSCs) that offer both high energy density and power density are deemed to a promising class of miniaturized power sources for wearable and portable microelectron-ics. Nevertheless, the development of NIMSCs are hugely impeded by the low capacity and sluggish Na ion kinetics in the negative electrode.Herein, we demonstrate a novel carbon-coated Nb_(2)O_5 microflower with a hierarchical structure composed of vertically intercrossed and porous nanosheets, boosting Na ion storage performance. The unique structural merits, including uniform carbon coating, ultrathin nanosheets and abun-dant pores, endow the Nb_(2)O_5 microflower with highly reversible Na ion storage capacity of 245 mAh g^(-1) at 0.25 C and excellent rate capability.Benefiting from high capacity and fast charging of Nb_(2)O_5 microflower, the planar NIMSCs consisted of Nb_(2)O_5 negative electrode and activated car-bon positive electrode deliver high areal energy density of 60.7 μWh cm^(-2),considerable voltage window of 3.5 V and extraordinary cyclability. Therefore, this work exploits a structural design strategy towards electrode materials for application in NIMSCs, holding great promise for flexible microelectronics.
基金the National Natural Science Foundation of China,China (Grant Nos.22125903,51872283,22109040)the“Transformational Technologies for Clean Energy and Demonstration”Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDA21000000)+4 种基金the Dalian Innovation Support Plan for High Level Talents,China (2019RT09)DICP,China (DICP I202032)the Dalian National Laboratory For Clean Energy (DNL),CAS,DNL Cooperation Fund,CAS,China (DNL202016,DNL202019)the Top-Notch Talent Program of Henan Agricultural University,China (30500947)the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy,China (YLU-DNL Fund 2021002,YLU-DNL Fund 2021009)。
文摘The popularization of portable,implantable and wearable microelectronics has greatly stimulated the rapid development of high-power planar micro-supercapacitors(PMSCs).Particularly,the introduction of new functionalities(e.g.,high voltage,flexibility,stretchability,self-healing,electrochromism and photo/thermal response)to PMSCs is essential for building multifunctional PMSCs and their smart selfpowered integrated microsystems.In this review,we summarized the latest advances in PMSCs from various functional microdevices to their smart integrated microsystems.Primarily,the functionalities of PMSCs are characterized by three major factors to emphasize their electrochemical behavior and unique scope of application.These include but are not limited to high-voltage outputs(realized through asymmetric configuration,novel electrolyte and modular integration),mechanical resilience that includes various feats of flexibility or stretchability,and response to stimuli(self-healing,electrochromic,photo-responsive,or thermal-responsive properties).Furthermore,three representative integrated microsystems including energy harvester-PMSC,PMSC-energy consumption,and all-in-one selfpowered microsystems are elaborately overviewed to understand the emerging intelligent interaction models.Finally,the key perspectives,challenges and opportunities of PMSCs for powering smart microelectronics are proposed in brief.
基金financially supported by the National Key R@D Program of China (Grants 2016YBF0100100 and 2016YFA0200200)the National Natural Science Foundation of China (Grants 51572259 and 51872283)+5 种基金LiaoNing Revitalization Talents Program (Grant XLYC1807153)the Natural Science Foundation of Liaoning Province (Grant 20180510038)DICP (DICP ZZBS201708, DICP ZZBS201802)DICP&QIBEBT (Grant DICP&QIBEBT UN201702)Dalian National Laboratory For Clean Energy (DNL), CAS, DNL Cooperation Fund, CAS (DNL180310, DNL180308)the Fundamental Research Funds for the Central Universities of China (Grant N180503012 and N172410002-16)
文摘Lithium sulfur(Li-S)batteries hold great promising for high-energy-density batteries,but appear rapid capacity fading due to the lack of overall and elaborated design of both sulfur host and interlayer.Herein,we developed a novel two-dimensional(2D)hierarchical yolk-shell heterostructure,constructed by a graphene yolk,2D void and outer shell of vertically aligned carbon-mediated MoS2 nanosheets(G@void@MoS2/C),as advanced host-interlayer integrated electrode for Li-S batteries.Notably,the 2D void,with a typical thickness of^80 nm,provided suitable space for loading and confining nano sulfur,and vertically aligned ultrathin MoS2 nanosheets guaranteed enriched catalytically active sites to effectively promote the transition of soluble polysulfides.The conductive graphene yolk and carbon mediated shell sufficiently accelerated electron transport.Therefore,the integrated electrode of G@void@MoS2/C not only exceptionally confined the sulfur/polysulfides in 2D yolk-shell heterostructures,but also achieved catalytic transition of the residual polysulfides dissolved in electrolyte to solid Li2S2/Li2S,both of which synergistically achieved an extremely low capacity fading rate of 0.05%per cycle over 1000 times at 2C,outperforming most reported Mo based cathodes and interlayers for Li-S batteries.2D hierarchical yolkshell heterostructures developed here may shed new insight on elaborated design of integrated electrodes for Li-S batteries.
基金financially supported by the National Key R&D Program of China(Grants 2016YBF0100100,2016YFA0200200)the National Natural Science Foundation of China(Grants 51872283,21805273)+1 种基金the Liaoning Bai Qian Wan Talents Program,Natural Science Foundation of Liaoning Province,Joint Research Fund Liaoning-Shenyang National Laboratory for Materials Science(Grant 20180510038)the Liao Ning Revitalization Talents Program(Grant XLYC1807153),DICP(DICP ZZBS201708,DICP ZZBS201802,DICP I202032),DNL Cooperation Fund,CAS(DNL180310,DNL180308,DNL201912,and DNL201915),DICP&QIBEBT(Grant DICP&QIBEBT UN201702)。
文摘Lithium-selenium(Li-Se)batteries have attracted considerable attentions for next-generation energy storage systems owing to high volumetric capacity of 3265 m Ah cm^(-3) and excellent electronic conductivity(~10^(-5)S cm^(-1))of selenium.However,the shuttling effect and capacity fading prevent their wide applications.Herein we report a low-cost strategy for scalable fabrication of lignin derived hierarchical porous carbon(LHPC)as a new high-loading Se host for high-capacity and long-term cycling Li-Se batteries in carbonate electrolyte.The resulting LHPC exhibits three-dimensional(3D)hierarchically porous structure,high specific surface area of 1696 m^(2) g^(-1),and hetero-atom doping(O,S),which can effectively confine the Se particles into the micropores,and meanwhile,offer effective chemical binding sites for selenides from hetero-atoms(O,S).As a result,our Li-Se batteries based on Se@LHPC demonstrate high capacity of 450 m Ah g^(-1) at 0.5 C after 500 cycles,with a low capacity fading rate of only 0.027%.The theoretical simulation confirmed the strong affinity of selenides on the O and S sites of LHPC effectively mitigating the Se losing.Therefore,our strategy of using lignin as the low-cost precursor of hierarchically porous carbon for high-loading Se host offers new opportunities for high-capacity and long-life Li-Se batteries.
基金supported by the National Natural Science Foundation of China(22005297,22125903,and 51872283)the“Transformational Technologies for Clean Energy and Demonstration”Strategic Priority Research Program of the Chinese Academy of Sciences(XDA21000000)+4 种基金the Dalian Innovation Support Plan for High Level Talents(2019RT09)the Dalian National Laboratory for Clean Energy(DNL),Chinese Academy of Sciences(CAS),DNL Cooperation Fund,CAS(DNL201912,DNL201915,DNL202016,and DNL202019)DICP(DICP ZZBS201802 and DICP I2020032)the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy(YLU-DNL Fund 2021002 and YLU-DNL Fund 2021009)the China Postdoctoral Science Foundation(2020M680995).
文摘Two-dimensional MXenes are key high-capacitance electrode materials for micro-supercapacitors(MSCs)catering to integrated microsystems.However,the narrow electrochemical voltage windows of conventional aqueous electrolytes(≤1.23 V)and symmetric MXene MSCs(typically≤0.6 V)substantially limit their output voltage and energy density.Highly concentrated aqueous electrolytes exhibit lower water molecule activity,which inhibits water splitting and consequently widens the operating voltage window.Herein,we report ultrahigh-voltage aqueous planar asymmetric MSCs(AMSCs)based on a highly concentrated LiCl-gel quasi-solid-state electrolyte with MXene(Ti3C2Tx)as the negative electrode and MnO_(2) nanosheets as the positive electrode(MXene//MnO_(2)-AMSCs).The MXene//MnO_(2)-AMSCs exhibit a high voltage of up to 2.4 V,attaining an ultrahigh volumetric energy density of 53 mWh cm−3.Furthermore,the in-plane geometry and the quasi-solid-state electrolyte enabled excellent mechanical flexibility and performance uniformity in the serially/parallel connected packs of our AMSCs.Notably,the MXene//MnO_(2)-AMSC-based integrated microsystem,in conjunction with solar cells and consumer electronics,could efficiently realize simultaneous energy harvesting,storage,and conversion.The findings of this study provide insights for constructing high-voltage aqueous MXene-based AMSCs as safe and self-sufficient micropower sources in smart integrated microsystems.
基金supported by the National Natural Science Foundation of China(Nos.22109040,22125903,22279137)Top-Notch Talent Program of Henan Agricultural University(No.30500947)+5 种基金the“Transformational Technologies for Clean Energy and Demonstration”Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDA21000000)DICP(No.DICP I202032)Dalian National Laboratory for Clean Energy(DNL),CAS,DNL Cooperation Fund,CAS(Nos.DNL202016,DNL202019)International Postdoctoral Exchange Fellowship Program(Talent-Introduction Program)(No.YJ20210311)China Postdoctoral Science Foundation(No.2021M703145)the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy(Nos.YLU-DNL Fund 2021002,YLU-DNL Fund 2021009)。
文摘Two-dimensional(2D)mesoporous pseudocapacitive polymer/graphene heterostructures combine the advanced merits of 2D materials and mesoporous materials,possessing unique nanosheet structure,large specific surface area(SSA),abundant oxygen/nitrogen-containing groups,desirable electrical conductivity and admirable electrochemical redox activity,and hold great potential for constructing high-performance planar micro-supercapacitors(MSCs).Herein,we demonstrate the interfacial assembly of 2D mesoporous polydopamine/graphene(mPDG)heterostructures with well-defined mesopore structure(12 nm)and adjustable thickness(7.5–14.1 nm)for planar high-energy pseudocapacitive MSCs.Attributed to medium thickness,exposed mesopore of 12 nm and large SSA of 108 m^(2)/g,the m PDG with 10.8 nm thickness reveals prominent mass capacitance of 419 F/g and impressive cycling stability with~96%capacitance retention after 5000 cycles.Furthermore,the symmetric mPDG-based MSCs with“water-in-salt”gel electrolyte present wide voltage window of 1.6 V,superior volumetric energy density of 11.5 mWh/cm^(3),outstanding flexibility and self-integration ability.Therefore,this work offers a new platform of controllably synthesizing 2D mesoporous heterostructures for high-performance MSCs.
基金Jieqiong Qin,Zhi Yang,and Feifei Xing contributed equally to this work.The authors acknowledge the National Natural Science Foundation of China(Nos.22125903,51872283,22109040)Dalian Innovation Support Plan for High Level Talents(2019RT09)+3 种基金DICP(ZZBS201802 and I202032)Dalian National Laboratory For Clean Energy(DNL),CAS,DNL Cooperation Fund,CAS(DNL201912,DNL201915,DNL202016,DNL202019)Top-Notch Talent Program of Henan Agricultural University(30500947)the Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy(YLU-DNL Fund 2021002,2021009).
文摘Two-dimensional(2D)mesoporous materials(2DMMs),defined as 2D nanosheets with randomly dispersed or orderly aligned mesopores of 2–50 nm,can synergistically combine the fascinating merits of 2D materials and mesoporous mate-rials,while overcoming their intrinsic shortcomings,e.g.,easy self-stacking of 2D materials and long ion transport paths in bulk mesoporous materials.These unique features enable fast ion diffusion,large specific surface area,and enriched adsorption/reaction sites,thus offering a promising solution for designing high-performance electrode/catalyst materials for next-generation energy storage and conversion devices(ESCDs).Herein,we review recent advances of state-of-the-art 2DMMs for high-efficiency ESCDs,focusing on two different configurations of in-plane mesoporous nanosheets and sandwich-like mesoporous heterostructures.Firstly,a brief introduction is given to highlighting the structural advantages(e.g.,tailored chemical composition,sheet configuration,and mesopore geometry)and key roles(e.g.,active materials and functional additives)of 2DMMs for high-performance ESCDs.Secondly,the chemical synthesis strategies of 2DMMs are summarized,including template-free,2D-template,mesopore-template,and 2D mesopore dual-template methods.Thirdly,the wide applications of 2DMMs in advanced supercapacitors,rechargeable batteries,and electrocatalysis are discussed,enlightening their intrinsic structure–property relationships.Finally,the future challenges and perspectives of 2DMMs in energy-related fields are presented.
基金the financial support from the National Natural Science Foundation of China(No.51572259)National Key R&D Program of China(Nos.2016YBF0100100 and2016YFA0200200)+2 种基金Thousand Youth Talents Plan of China,Natural Science Foundation of Liaoning Province(No.201602737)DICP(No.Y5610121T3)China Postdoctoral Science Foundation(Nos.2016M601348 and 2016M601349)
文摘All-solid-state micro-supercapacitors are acknowledged as a very promising class of microscale energy storage devices for directly integrating portable and wearable electronics. However, the improvement of electrochemical performance from materials to devices still remains tremendous challenges. Here, we demonstrate a novel and universal mask-assisted filtration technology for the simplified fabrication of all-solid-state planar micro-supercapacitors(MSCs) based on interdigital patterns of 2D pseudocapacitive MnO2 nanosheets and electrochemically exfoliated graphene film as both electrode and current collector, and polyvinyl alcohol/Li Cl gel as electrolyte. Remarkably, the resulting MSCs exhibit outstanding areal capacitance of ~355 m F/cm^2, which is among the highest values reported in the state-of-the-art MSCs. Meanwhile, MSCs possess exceptionally mechanical flexibility as high as ~92% of initial capacitance even at a highly bending angle of 180°, excellent cyclability with a capacitance retention of 95% after 3000 cycles, and impressive serial or parallel integration for modulating the voltage or capacitance. Therefore, our proposed strategy of simplified construction of MSCs will pave the ways for utilizing graphene and analogous pseudocapactive nanosheets in high-performance MSCs.