期刊文献+
共找到35篇文章
< 1 2 >
每页显示 20 50 100
A robust & weak-nucleophilicity electrocatalyst with an inert response for chlorine ion oxidation in large-current seawater electrolysis 被引量:1
1
作者 Junting Dong Chang Yu +5 位作者 Hui Wang Lin Chen Hongling Huang Yingnan Han Qianbing Wei jieshan qiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第3期486-495,I0011,共11页
Seawater splitting into hydrogen,a promising technology,is seriously limited by the durability and tolerance of electrocatalysts for chlorine ions in seawater at large current densities due to chloride oxidation and c... Seawater splitting into hydrogen,a promising technology,is seriously limited by the durability and tolerance of electrocatalysts for chlorine ions in seawater at large current densities due to chloride oxidation and corrosion.Here,we present a robust and weak-nucleophilicity nickel-iron hydroxide electrocatalyst with excellent selectivity for oxygen evolution and an inert response for chlorine ion oxidation which are key and highly desired for efficient seawater electrolysis.Such a weak-nucleophilicity electrocatalyst can well match with strong-nucleophilicity OH-compared with the weak-nucleophilicity Cl^(-),resultantly,the oxidation of OH-in electrolyte can be more easily achieved relative to chlorine ion oxidation,confirmed by ethylenediaminetetraacetic acid disodium probing test.Further,no strongly corrosive hypochlorite is produced when the operating voltage reaches about 2.1 V vs.RHE,a potential that is far beyond the thermodynamic potential of chlorine ion oxidatio n.This concept and approach to reasonably designing weaknucleophilicity electrocatalysts that can greatly avoid chlorine ion oxidation under alkaline seawater environments can push forward the seawater electrolysis technology and also accelerate the development of green hydrogen technique. 展开更多
关键词 Nickel-iron hydroxide electrocatalysts Highly selective seawater electrolysis Weak nucleophilicity Oxygen evolution reaction Hydrogen
下载PDF
Electrostatic Interaction-directed Construction of Hierarchical Nanostructured Carbon Composite with Dual Electrical Conductive Networks for Zinc-ion Hybrid Capacitors with Ultrastability 被引量:1
2
作者 Changyu Leng Zongbin Zhao +5 位作者 Xuzhen Wang Yuliya V.Fedoseeva Lyubov G.Bulusheva Alexander V.Okotrub Jian Xiao jieshan qiu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第1期184-192,共9页
Metal-organic framework(MOF)-derived carbon composites have been considered as the promising materials for energy storage.However,the construction of MOF-based composites with highly controllable mode via the liquid-l... Metal-organic framework(MOF)-derived carbon composites have been considered as the promising materials for energy storage.However,the construction of MOF-based composites with highly controllable mode via the liquid-liquid synthesis method has a great challenge because of the simultaneous heterogeneous nucleation on substrates and the self-nucleation of individual MOF nanocrystals in the liquid phase.Herein,we report a bidirectional electrostatic generated self-assembly strategy to achieve the precisely controlled coatings of single-layer nanoscale MOFs on a range of substrates,including carbon nanotubes(CNTs),graphene oxide(GO),MXene,layered double hydroxides(LDHs),MOFs,and SiO_(2).The obtained MOF-based nanostructured carbon composite exhibits the hierarchical porosity(V_(meso)/V_(micro)∶2.4),ultrahigh N content of 12.4 at.%and"dual electrical conductive networks."The assembled aqueous zinc-ion hybrid capacitor(ZIC)with the prepared nanocarbon composite as a cathode shows a high specific capacitance of 236 F g^(-1)at 0.5 A g^(-1),great rate performance of 98 F g^(-1)at 100 A g^(-1),and especially,an ultralong cycling stability up to 230000 cycles with the capacitance retention of 90.1%.This work develops a repeatable and general method for the controlled construction of MOF coatings on various functional substrates and further fabricates carbon composites for ZICs with ultrastability. 展开更多
关键词 carbon composite electrostatic interaction metal-organic framework coating SELF-ASSEMBLY zinc-ion hybrid capacitor
下载PDF
Solar-driven salt-free deposition evaporation for simultaneous desalination and electricity generation based on tip-effect and siphon-effect
3
作者 Wan Xue Zongbin Zhao +4 位作者 Guanyu Zhao Honghui Bi Huijun Zhu Xuzhen Wang jieshan qiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期364-373,共10页
Solar-driven desalination is a promising way to alleviate the freshwater shortage,while is facing challenges posed by low evaporation rates and severe salt accumulation.Herein,a high-performance twodimensional(2D) sol... Solar-driven desalination is a promising way to alleviate the freshwater shortage,while is facing challenges posed by low evaporation rates and severe salt accumulation.Herein,a high-performance twodimensional(2D) solar absorber with Co_(3)O_(4) nanoneedle arrays(Co_(3)O_(4)-NN) grown on the surface of reduced graphene oxide-coated pyrolyzed silk cloth(Co_(3)O_(4)-NN/rGO/PSC) was prepared,and a salt-free evaporator system was assembled based on the composite material and siphonage-the flowing water delivery.It is revealed that the evaporation enthalpy of water can be reduced over the 2D solar absorber grown with Co_(3)O_(4)-NN_T enabling an evaporation rate of up to 2.35 kg m^(-2) h^(-1) in DI water under one solar irradiation.The desalination process can be carried out continuously even with salt concentration up to 20 wt%,due to the timely removal of concentrated brine from the interface with the assistance of directed flowing water.Moreover,the 2D structure and the flowing water also provide an opportunity to convert waste solar heat into electricity in the evaporator based on the seebeck effect,ensuring simultaneous freshwater production and power generation.It is believed that this work provides insights into designing hybrid systems with high evaporation rate,salt resistance,and electricity generation. 展开更多
关键词 Co_(3)O_(4)nanoneedle arrays Solar water evaporation Evaporation enthalpy Salt free Siphon effect Power generation
下载PDF
Intrinsic pentagon defect engineering in multiple spatial-scale carbon frameworks for efficient triiodide reduction
4
作者 Siyi Hou Xuedan Song +6 位作者 Chang Yu Jiangwei Chang Yiwang Ding Yingbin Liu Xiubo Zhang Weizhe Liu jieshan qiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期20-28,I0002,共10页
Intrinsic topological defect engineering has been proven as a promising strategy to elevate the electrocatalytic activity of carbon materials.However,the controllable construction of high-density and specific topologi... Intrinsic topological defect engineering has been proven as a promising strategy to elevate the electrocatalytic activity of carbon materials.However,the controllable construction of high-density and specific topological defects in carbon frameworks to reveal the relationship between reactivity and defect structure remains a challenging task.Herein,the intrinsic pentagon carbon sites that can favor electron overflow and enhance their binding affinity towards the intermediates of catalytic reaction are firstly presented by the work function and the p-band center calculations.To experimentally verify this,the cage-opening reaction of fullerene is proposed and utilized for synthesizing carbon quantum dots with specific pentagon configuration(CQDs-P),subsequently utilizing CQDs-P to modulate the micro-scale defect density of three-dimensional reduced graphene oxide(rGO)viaπ-πinteractions.The multiple spatial-scale rGO-conjugated CQDs-P structure simultaneously possesses abundant pentagon and edge defects as catalytic active sites and long-range-orderedπelectron delocalization system as conductive network.The defects-rich CQDs-P/rGO-4 all-carbon-based catalyst exhibits superb catalytic activity for triiodide reduction reaction with a high photoelectric conversion efficiency of 8.40%,superior to the Pt reference(7.97%).Theoretical calculations suggest that pentagon defects in the carbon frameworks can promote charge transfer and modulate the adsorption/dissociation behavior of the reaction intermediates,thus enhancing the electrocatalytic activity of the catalyst.This work confirms the role of intrinsic pentagon defects in catalytic reactions and provides a new insight into the synthesis of defects-rich carbon catalysts. 展开更多
关键词 Defect engineering Pentagon carbon Carbon quantum dots Electrocatalytic activity Triiodide reduction
下载PDF
Enhancing Green Ammonia Electrosynthesis Through Tuning Sn Vacancies in Sn‑Based MXene/ MAX Hybrids
5
作者 Xinyu Dai Zhen‑Yi Du +10 位作者 Ying Sun Ping Chen Xiaoguang Duan Junjun Zhang Hui Li Yang Fu Baohua Jia Lei Zhang Wenhui Fang jieshan qiu Tianyi Ma 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期154-168,共15页
Renewable energy driven N_(2) electroreduction with air as nitrogen source holds great promise for realizing scalable green ammonia production.However,relevant out-lab research is still in its infancy.Herein,a novel S... Renewable energy driven N_(2) electroreduction with air as nitrogen source holds great promise for realizing scalable green ammonia production.However,relevant out-lab research is still in its infancy.Herein,a novel Sn-based MXene/MAX hybrid with abundant Sn vacancies,Sn@Ti_(2)CTX/Ti_(2)SnC–V,was synthesized by controlled etching Sn@Ti_(2)SnC MAX phase and demonstrated as an efficient electrocatalyst for electrocatalytic N2 reduction.Due to the synergistic effect of MXene/MAX heterostructure,the existence of Sn vacancies and the highly dispersed Sn active sites,the obtained Sn@Ti2CTX/Ti_(2)SnC–V exhibits an optimal NH_(3) yield of 28.4μg h^(−1) mg_(cat)^(−1) with an excellent FE of 15.57% at−0.4 V versus reversible hydrogen electrode in 0.1 M Na_(2)SO_(4),as well as an ultra-long durability.Noticeably,this catalyst represents a satisfactory NH3 yield rate of 10.53μg h^(−1) mg^(−1) in the home-made simulation device,where commercial electrochemical photovoltaic cell was employed as power source,air and ultrapure water as feed stock.The as-proposed strategy represents great potential toward ammonia production in terms of financial cost according to the systematic technical economic analysis.This work is of significance for large-scale green ammonia production. 展开更多
关键词 Green ammonia synthesis N2 electroreduction Renewable energy SN MXene/MAX hybrid
下载PDF
Dynamic in situ reconstruction of NiSe_(2) promoted by interfacial Ce_(2)(CO_(3))_(2)O for enhanced water oxidation
6
作者 Fengli Wei Jinghao Shen +6 位作者 Jiayin Xie Zuyang Luo Luyan Shi Tayirjan Taylor Isimjan Xiulin Yang jieshan qiu Bin Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第11期472-480,共9页
Understanding and manipulating the structural evolution of water oxidation electrocatalysts lays the foundation to finetune their catalytic activity.Herein,we present a synthesis of NiSe_(2)-Ce_(2)(CO_(3))_(2)O hetero... Understanding and manipulating the structural evolution of water oxidation electrocatalysts lays the foundation to finetune their catalytic activity.Herein,we present a synthesis of NiSe_(2)-Ce_(2)(CO_(3))_(2)O heterostructure and demonstrate the efficacy of interfacial Ce_(2)(CO_(3))2O in promoting the formation of catalytically active centers to improve oxygen evolution activity.In-situ Raman spectroscopy shows that incorporation of Ce_(2)(CO_(3))2O into NiSe_(2) causes a cathodic shift of the Ni^(2+)→Ni~(3+) transition potential.Operando electrochemical impedance spectroscopy reveals that strong electronic coupling at heterogeneous interface accelerates charge transfer process.Furthermore,density functional theory calculations suggest that actual catalytic active species of NiOOH transformed from NiSe_(2),which is coupled with Ce_(2)(CO_(3))_(2)O,can optimize electronic structure and decrease the free energy barriers toward fast oxygen evolution reaction(OER) kinetics.Consequently,the resultant NiSe_(2)-Ce_(2)(CO_(3))_(2)O electrode exhibits remarkable electrocatalytic performance with low overpotentials(268/304 mV@50/100 mA cm^(-2)) and excellent stability(50 mA cm^(-2) for 120 h) in the alkaline electrolyte.This work emphasizes the significance of modulating the dynamic changes in developing efficient electrocatalyst. 展开更多
关键词 Dynamic reconstruction Oxygen evolution reaction HETEROSTRUCTURE In situ characterization Density functional theory
下载PDF
An effective'salt in dimethyl sulfoxide/water'electrolyte enables high-voltage supercapacitor operated at-50℃
7
作者 Yingbin Liu Chang Yu +5 位作者 Xuedan Song Siyi Hou Shuqin Lan Jinhe Yu Yuanyang Xie jieshan qiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期361-367,I0009,共8页
Compared with organic electrolytes,aqueous electrolytes exhibit significantly higher ionic conductivity and possess inherent safety features,showcasing unique advantages in supercapacitors.However,challenges remain fo... Compared with organic electrolytes,aqueous electrolytes exhibit significantly higher ionic conductivity and possess inherent safety features,showcasing unique advantages in supercapacitors.However,challenges remain for low-salt aqueous electrolytes operating at high voltage and low temperature.Herein,we report a low-salt(0.87 m,m means mol kg^(-1))'salt in dimethyl sulfoxide/water'hybrid electrolyte with non-flammability via hybridizing aqueous electrolyte with an organic co-solvent of dimethyl sulfoxide(hydrogen bond acceptor).As a result,the 0.87 m hybrid electrolyte exhibits enhanced electrochemical stability,a freezing temperature below-50℃,and an outstanding ionic conductivity of 0.52mS cm~(-1)at-50℃.Dimethyl sulfoxide can anchor water molecules through intermolecular hydrogen bond interaction,effectively reinforcing the stability of water in the hybrid electrolyte.Furthermore,the interaction between dimethyl sulfoxide and water molecules diminishes the involvement of water in the generation of ordered ice crystals,finally facilitating the low-temperature performance of the hybrid electrolyte.When paired with the 0.87 m'salt in dimethyl sulfoxide/water'hybrid electrolyte,the symmetric supercapacitor presents a 2.0 V high operating voltage at 25℃,and can operate stably at-50℃.Importantly,the suppressed electrochemical reaction of water at-50℃further leads to the symmetric supercapacitor operated at a higher voltage of 2.6 V.This modification strategy opens an effective avenue to develop low-salt electrolytes for high-voltage and low-temperature aqueous supercapacitors. 展开更多
关键词 Dimethyl sulfoxide CO-SOLVENT High voltage Low temperature SUPERCAPACITORS
下载PDF
Harnessing overlapped temperature-salinity gradient in solar-driven interfacial seawater evaporation for efficient steam and electricity generation
8
作者 Peida Li Dongtong He +2 位作者 Jingchang Sun jieshan qiu Zhiyu Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期694-700,I0015,共8页
Solar-driven interfacial water evaporation(SIWE)offers a superb way to leverage concentrated solar heat to minimize energy dissipation during seawater desalination.It also engenders overlapped temperaturesalinity grad... Solar-driven interfacial water evaporation(SIWE)offers a superb way to leverage concentrated solar heat to minimize energy dissipation during seawater desalination.It also engenders overlapped temperaturesalinity gradient(TSG)between water-air interface and adjacent seawater,affording opportunities of harnessing electricity.However,the efficiency of conventional SIWE technologies is limited by significant challenges,including salt passivation to hinder evaporation and difficulties in exploiting overlapped TSG simultaneously.Herein,we report self-sustaining hybrid SIWE for not only sustainable seawater desalination but also efficient electricity generation from TSG.It enables spontaneous circulation of salt flux upon seawater evaporation,inducing a self-cleaning evaporative interface without salt passivation for stable steam generation.Meanwhile,this design enables spatial separation and simultaneous utilization of overlapped TSG to enhance electricity generation.These benefits render a remarkable efficiency of90.8%in solar energy utilization,manifesting in co-generation of solar steam at a fast rate of 2.01 kg m^(-2)-h^(-1)and electricity power of 1.91 W m^(-2)with high voltage.Directly interfacing the hybrid SIWE with seawater electrolyzer constructs a system for water-electricity-hydrogen co-generation without external electricity supply.It produces hydrogen at a rapid rate of 1.29 L h^(-1)m^(-2)and freshwater with 22 times lower Na+concentration than the World Health Organization(WHO)threshold. 展开更多
关键词 Solar-driven interfacial water evaporation Steam generation Electricity generation Seawater
下载PDF
Integration of Desulfurization and Lithium-Sulfur Batteries Enabled by Amino-Functionalized Porous Carbon Nanofibers 被引量:2
9
作者 Minghui Sun Xuzhen Wang +2 位作者 Yong Li Zongbin Zhao jieshan qiu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第2期334-343,共10页
Hydrogen sulfide(H_(2)S)is an industrial exhausted gas that is highly toxic to humans and the environment.Combining desulfurization and fabrication of cathode materials for lithium-sulfur batteries(LSBs)can solve this... Hydrogen sulfide(H_(2)S)is an industrial exhausted gas that is highly toxic to humans and the environment.Combining desulfurization and fabrication of cathode materials for lithium-sulfur batteries(LSBs)can solve this issue with a double benefit.Herein,the amino-functionalized lotus root-like carbon nanofibers(NH_(2)-PLCNFs)are prepared by the amination of electrospinning carbon nanofibers under dielectric barrier discharge plasma.Selective catalytic oxidation of H_(2)S to elemental sulfur(S)is achieved over the metalfree NH_(2)-PLCNFs catalyst,and the obtained composite S@NH_(2)-PLCNFs is further used as cathode in LSBs.NH_(2)-PLCNFs enable efficient desulfurization(removal capacity as high as 3.46 g H_(2)S g^(−1) catalyst)and strongly covalent stabilization of S on modified carbon nanofibers.LSBs equipped with S@NH_(2)-PLCNFs deliver a high specific capacity of 705.8 mA h g^(−1) at 1 C after 1000 cycles based on the spatial confinement and the covalent stabilization of electroactive materials on amino-functionalized porous carbon matrix.It is revealed that S@NH_(2)-PLCNFs obtained by this kind of chemical vapor deposition leads to a more homogeneous S distribution and superior electrochemical performance to the sample S/NH_(2)-PLCNF-M prepared by the traditional molten infusion.This work opens a new avenue for the combination of environment protection and energy storage. 展开更多
关键词 AMINO-FUNCTIONALIZATION DESULFURIZATION lithium-sulfur batteries porous carbon nanofiber sulfur immobilization
下载PDF
Enhanced Anion-Derived Inorganic-Dominated Solid Electrolyte Interphases for High-Rate and Stable Sodium Storage 被引量:1
10
作者 Jinhe Yu Weicheng Ren +3 位作者 Chang Yu Zhao Wang Yuanyang Xie jieshan qiu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第4期179-186,共8页
It is highly desirable for the promising sodium storage possessing high rate and long stable capability,which are mainly hindered by the unstable yet conventional solvent-derived organic-rich solid electrolyte interph... It is highly desirable for the promising sodium storage possessing high rate and long stable capability,which are mainly hindered by the unstable yet conventional solvent-derived organic-rich solid electrolyte interphases.Herein,an electrolyte solvation chemistry is elaborately manipulated to produce an enhanced anion-derived and inorganic components-dominated solid electrolyte interphases by introducing a low permittivity(4.33)bis(2,2,2-trifluoroethyl)ether diluent into the sodium bis(trifluoromethylsulfonyl)imidedimethoxyethane-based high concentration electrolyte to obtain a localized high concentration electrolyte.The bis(2,2,2-trifluoroethyl)ether breaks the balance of original cation solvation structure and tends to interact with Na^(+)-coordinated dimethoxyethane solvent rather than Na^(+)in high concentration electrolyte,leaving an enhanced Coulombic interaction between Na^(+)and(FSO_(2))_(2)N^(-),and more(FSO_(2))_(2)N^(-)can enter the Na^(+)solvation shell,forming a further increased number of Na^(+)-(FSO_(2))_(2)N^(-)-dimethoxyethane clusters(from 82.0%for high concentration electrolyte to 94.3%for localized high concentration electrolyte)at a low salt dosage.The preferential reduction of this(FSO_(2))_(2)N^(-)-enriched clusters rather than the dimethoxyethane-dominated Na^(+)solvation structure produces an enhanced anion-derived and inorganic components-dominated solid electrolyte interphases.The reversible charge storage process of Na is decoupled by operando Raman along with a shift of D and G peaks.Benefiting from the enhanced anion-derived electrode-electrolyte interface,the commercial hard carbon anode in localized high concentration electrolyte shows a well rate capability(5 A g^(−1),70 mAh g^(−1)),cycle performance and stability(85%of initial capacity after 700 cycles)in comparison to that of high concentration electrolyte(68%)and low concentration electrolyte(only 5%after 400 cycles),indicative of uniqueness and superiorities towards stable Na storage. 展开更多
关键词 anion-derived inorganic-dominated SEI electrolyte solvation chemistry high rate and stability sodium storage
下载PDF
3D N,O-Codoped Egg-Box-Like Carbons with Tuned Channels for High Areal Capacitance Supercapacitors 被引量:14
11
作者 Feng Wei Xiaojun He +3 位作者 Lianbo Ma Hanfang Zhang Nan Xiao jieshan qiu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2020年第7期1-12,共12页
Functional carbonaceous materials for supercapacitors(SCs)without using acid for post-treatment remain a substantial challenge.In this paper,we present a less harmful strategy for preparing three-dimensional(3D)N,O-co... Functional carbonaceous materials for supercapacitors(SCs)without using acid for post-treatment remain a substantial challenge.In this paper,we present a less harmful strategy for preparing three-dimensional(3D)N,O-codoped egg-box-like carbons(EBCs).The as-prepared EBCs with opened pores provide plentiful channels for ion fast transport,ensure the e ective contact of EBCs electrodes and electrolytes,and enhance the electron conduction.The nitrogen and oxygen atoms doped in EBCs improve the surface wettability of EBC electrodes and provide the pseudocapacitance.Consequently,the EBCs display a prominent areal capacitance of 39.8μF cm-2(340 F g-1)at 0.106 m A cm-2 in 6 M KOH electrolyte.The EBC-based symmetric SC manifests a high areal capacitance to 27.6μF cm-2(236 F g-1)at 0.1075 m A cm-2,a good rate capability of 18.8μF cm-2(160 F g-1)at 215 m A cm-2 and a long-term cycle stability with only 1.9%decay after 50,000 cycles in aqueous electrolyte.Impressively,even in all-solid-state SC,EBC electrode shows a high areal capacitance of 25.0μF cm-2(214 F g-1)and energy density of 0.0233 m Wh cm-2.This work provides an acid-free process to prepare electrode materials from industrial by-products for advanced energy storage devices. 展开更多
关键词 Egg-box-like carbon Opened pores in pores Areal CAPACITANCE All-solid-state supercapacitor
下载PDF
Boosting redox activity on MXene-induced multifunctional collaborative interface in high Li2S loading cathode for high-energy Li-S and metallic Li-free rechargeable batteries 被引量:8
12
作者 Zhiyu Wang Nan Zhang +3 位作者 Mingliang Yu Junshan Liu Song Wang jieshan qiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第10期183-191,共9页
Use of metallic Li anode raises serious concerns on the safety and operational performance of Li-S batteries due to uncontrolled hazard of Li dendrite formation, which is difficultly eliminated as long as the metallic... Use of metallic Li anode raises serious concerns on the safety and operational performance of Li-S batteries due to uncontrolled hazard of Li dendrite formation, which is difficultly eliminated as long as the metallic Li exists in the cells. Pairing lithium sulfide (Li2S) cathode with currently available metallic Lifree high-capacity anodes offers an alternative solution to this challenge. However, the performance of Li2S cathode is primarily restricted by high activation barrier upon initial charge, low active mass utilization and sluggish redox kinetics. Herein, a MXene-induced multifunctional collaborative interface is proposed to afford superb activity towards redox solid-liquid/liquid-liquid phase transformation, strong chemisorption, high conductivity and fast ionic/charge transport in high Li2S loading cathode. Applying collaborative interface effectively reduces initial voltage barrier of Li2S activation and regulates the kinetic behavior of redox polysulfide conversion. Therefore, stable operation of additive-free Li2S cathode with high areal capacities at high Li2S loading up to 9 mg cm^-2 can be achieved with less sacrifice of high capacity and rate capability in Li-S batteries. Rechargeable metallic Li-free batteries are successfully constructed by pairing this high-performance Li2S cathode with high-capacity metal oxide anodes, which delivers superior energy density to current Li-ion batteries. 展开更多
关键词 Lithium SULFIDE HIGH-CAPACITY CATHODE INTERFACE MXene Li-S batteries
下载PDF
Interconnected carbon nanocapsules with high N/S co-doping as stable and high-capacity potassium-ion battery anode 被引量:6
13
作者 Honghui Bi Xiaojun He +3 位作者 Lei Yang Hongqiang Li Biyu Jin jieshan qiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第3期195-204,I0007,共11页
Carbonaceous materials have drawn much attention in potassium-ion batteries (PIBs) due to their low price and superior physicochemical properties. However, the application of carbonaceous materials in PIB anodes is hi... Carbonaceous materials have drawn much attention in potassium-ion batteries (PIBs) due to their low price and superior physicochemical properties. However, the application of carbonaceous materials in PIB anodes is hindered by sluggish kinetics and large volume expansion. Herein, N/S co-doped carbon nanocapsule (NSCN) is constructed for superior K+ storage. The NSCN possesses 3D nanocapsule framework with abundant meso/macropores, which guarantees structural robustness and accelerates ions/electrons transportation. The high-level N/S co-doping in carbon matrix not only generates ample defects and active sites for K+ adsorption, but also expands interlayer distance for facile K+ intercalation/deintercalation. As a result, the NSCN electrode delivers a high reversible capacity (408 mAh g^(−1) at 0.05 A g^(−1)), outstanding rate capability (149 mAh g^(−1) at 5 A g^(−1)) and favorable cycle stability (150m Ah g^(−1) at 2 A g^(−1) after 2000 cycles). Ex situ TEM, Raman and XPS measurements demonstrate the excellent stability and reversibility of NSCN electrode during potassiation/depotassiation process. This work provides inspiration for the optimization of energy storage materials by structure and doping engineering. 展开更多
关键词 3D Carbon nanocapsules N/S co-doping Carbon anode Potassium-ion battery
下载PDF
Recent research advances of self-discharge in supercapacitors:Mechanisms and suppressing strategies 被引量:7
14
作者 Kunlun Liu Chang Yu +6 位作者 Wei Guo Lin Ni Jinhe Yu Yuanyang Xie Zhao Wang Yongwen Ren jieshan qiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第7期94-109,共16页
Supercapacitors are one of the most promising energy storage devices in the fields of vehicle transportation,flexible electronic devices,aerospace,etc.However,the existed self-discharge that is the spontaneous voltage... Supercapacitors are one of the most promising energy storage devices in the fields of vehicle transportation,flexible electronic devices,aerospace,etc.However,the existed self-discharge that is the spontaneous voltage decay after supercapacitors are fully charged,brings about the wide gap between experimental studies and practical utilization of supercapacitors.Although eliminating the selfdischarge completely is not reachable,suppressing the self-discharge rate to the lowest point is possible and feasible.So far,the significant endeavors have been devoted to achieve this goal.Herein,we summary and discuss the possible mechanisms for the self-discharge and the underlying influence factors.Moreover,the strategies to suppress the self-discharge are systemically summed up by three independent but unified aspects:modifying the electrode,modulating the electrolyte and tuning the separator.Finally,the major challenges to suppress the self-discharge of supercapacitors are concluded and the promising strategies are also pointed out and discussed.This review is presented with the view of serving as a guideline to suppress the self-discharge of supercapacitors and to across-the-board facilitate their widespread application. 展开更多
关键词 SUPERCAPACITORS SELF-DISCHARGE MECHANISM Suppressing strategy
下载PDF
3D Carbon Frameworks for Ultrafast Charge/Discharge Rate Supercapacitors with High Energy‑Power Density 被引量:3
15
作者 Changyu Leng Zongbin Zhao +6 位作者 Yinzhou Song Lulu Sun Zhuangjun Fan Yongzhen Yang Xuguang Liu Xuzhen Wang jieshan qiu 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第1期112-122,共11页
Carbon-based electric double layer capacitors(EDLCs)hold tremendous potentials due to their high-power performance and excellent cycle stability.However,the practical use of EDLCs is limited by the low energy density ... Carbon-based electric double layer capacitors(EDLCs)hold tremendous potentials due to their high-power performance and excellent cycle stability.However,the practical use of EDLCs is limited by the low energy density in aqueous electrolyte and sluggish diffusion kinetics in organic or/and ionic liquids electrolyte.Herein,3D carbon frameworks(3DCFs)constructed by interconnected nanocages(10-20 nm)with an ultrathin wall of ca.2 nm have been fabricated,which possess high specific surface area,hierarchical porosity and good conductive network.After deoxidization,the deoxidized 3DCF(3DCFDO)exhibits a record low IR drop of 0.064 V at 100 A g^−1 and ultrafast charge/discharge rate up to 10 V s^−1.The related device can be charged up to 77.4%of its maximum capacitance in 0.65 s at 100 A g^−1 in 6 M KOH.It has been found that the 3DCF-DO has a great affinity to EMIMBF4,resulting in a high specific capacitance of 174 F g^−1 at 1 A g^−1,and a high energy density of 34 Wh kg^−1 at an ultrahigh power density of 150 kW kg^−1 at 4 V after a fast charge in 1.11 s.This work provides a facile fabrication of novel 3D carbon frameworks for supercapacitors with ultrafast charge/discharge rate and high energy-power density. 展开更多
关键词 3D carbon frameworks NANOCAGES Ultrafast charge/discharge rate High energy-power density SUPERCAPACITORS
下载PDF
Nitrogen-doped hierarchical porous carbon derived from metal–organic aerogel for high performance lithium–sulfur batteries 被引量:3
16
作者 Han Zhang Zongbin Zhao +5 位作者 Yang Liu Jingjing Liang Yanan Hou Zhichao Zhang Xuzhen Wang jieshan qiu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第6期1282-1290,共9页
Nitrogen-doped three-dimensional(3 D) porous carbon materials have numerous applications due to their highly porous structures, abundant structural nitrogen heteroatom decoration and low densities. Herein,nitrogen dop... Nitrogen-doped three-dimensional(3 D) porous carbon materials have numerous applications due to their highly porous structures, abundant structural nitrogen heteroatom decoration and low densities. Herein,nitrogen doped hierarchical 3 D porous carbons(NHPC) were prepared via a novel metal–organic aerogel(MOA), using hexamethylenetetramine(HMT), 1,3,5-benzenetricarboxylic acid and copper(II) as starting materials. The morphology, porous structure of the building blocks in the NHPC can be tuned readily using different amount of HMT, which makes elongation of the pristine octahedron of HKUST-1 to give rise to different aspect ratio rod-like structures. The as-prepared NHPC with rod-like carbons exhibit high performance in lithium sulfur battery due to the rational ion transfer pathways, high N-doped doping and hierarchical porous structures. As a result, the initial specific capacity of 1341 m A h/g at rate of 0.5 C(1 C = 1675 m A h/g) and high-rate capability of 354 m A h/g at 5 C was achieved. The decay over 500 cycles is 0.08% per cycle at 1 C, highlighting the long-cycle Li–S batteries. 展开更多
关键词 Metal–organic aerogel N-doped porous carbon Lithium–sulfur batteries
下载PDF
Electrolyte/Structure‑Dependent Cocktail Mediation Enabling High‑Rate/Low‑Plateau Metal Sulfide Anodes for Sodium Storage 被引量:2
17
作者 Yongchao Tang Yue Wei +10 位作者 Anthony F.Hollenkamp Mustafa Musameh Aaron Seeber Tao Jin Xin Pan Han Zhang Yanan Hou Zongbin Zhao Xiaojuan Hao jieshan qiu Chunyi Zhi 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第11期280-293,共14页
As promising anodes for sodium-ion batteries,metal sulfides ubiquitously suffer from low-rate and high-plateau issues,greatly hindering their application in full-cells.Herein,exemplifying carbon nanotubes(CNTs)-string... As promising anodes for sodium-ion batteries,metal sulfides ubiquitously suffer from low-rate and high-plateau issues,greatly hindering their application in full-cells.Herein,exemplifying carbon nanotubes(CNTs)-stringed metal sulfides superstructure(CSC)assembled by nano-dispersed SnS_(2) and CoS_(2) phases,cocktail mediation effect similar to that of high-entropy materials is initially studied in ether-based electrolyte to solve the challenges.The high nano-dispersity of metal sulfides in CSC anode underlies the cocktail-like mediation effect,enabling the circumvention of intrinsic drawbacks of different metal sulfides.By utilizing ether-based electrolyte,the reversibility of metal sulfides is greatly improved,sustaining a long-life effectivity of cocktail-like mediation.As such,CSC effectively overcomes low-rate flaw of SnS_(2) and highplateau demerit of CoS_(2),simultaneously realizes a high rate and a low plateau.In half-cells,CSC delivers an ultrahigh-rate capability of 327.6 mAh g^(−1) anode at 20 A g^(−1),far outperforming those of monometallic sulfides(SnS_(2),CoS_(2))and their mixtures.Compared with CoS_(2) phase and SnS_(2)/CoS_(2) mixture,CSC shows remarkably lowered average charge voltage up to ca.0.62 V.As-assembled CSC//Na1.5VPO4.8F0.7 full-cell shows a good rate capability(0.05~1.0 A g^(−1),120.3 mAh g^(−1) electrode at 0.05 A g^(−1))and a high average discharge voltage up to 2.57 V,comparable to full-cells with alloy-type anodes.Kinetics analysis verifies that the cocktail-like mediation effect largely boosts the charge transfer and ionic diffusion in CSC,compared with single phase and mixed phases.Further mechanism study reveals that alternative and complementary electrochemical processes between nano-dispersed SnS_(2) and CoS_(2) phases are responsible for the lowered charge voltage of CSC.This electrolyte/structure-dependent cocktail-like mediation effect effectively enhances the practicability of metal sulfide anodes,which will boost the development of high-rate/-voltage sodium-ion full batteries. 展开更多
关键词 Metal sulfide anode Rate capability Voltage plateau Cocktail mediation effect Sodium-ion batteries
下载PDF
States of Carbon Nanotube Supported Mo-Based HDS Catalysts 被引量:2
18
作者 Hongyan Shang Chenguang Liu +2 位作者 Yongqiang Xu jieshan qiu Fei Wei 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2006年第3期203-210,共8页
The dispersion of the active phase and loading capacity of the Mo species on carbon nanotube (CNT) was studied by the XRD technique. The reducibility properties of Co-Mo catalysts in the oxide state over CNTs were i... The dispersion of the active phase and loading capacity of the Mo species on carbon nanotube (CNT) was studied by the XRD technique. The reducibility properties of Co-Mo catalysts in the oxide state over CNTs were investigated by TPR, while the sulfided Co-Mo/CNT catalysts were characterized by means of the XRD and LRS techniques. The activity and selectivity with respect to the hydrodesulfurization (HDS) performances on carbon nanotube supported Co-Mo catalysts were evaluated. It was found that the main active molybdenum species in the oxide state MoO3/CNT catalysts were MoO2, but not MoO3, as generally expected. The maximum loading before the formation of the bulk phase was lower than 6% (percent by mass, based on MoO3). TPR studies revealed that the active species in the oxide state Co-Mo/CNT catalysts were reduced more easily at relatively lower temperatures in comparison to those of the Co-Mo/γ-Al2O3 catalysts, indicating that the CNT support promoted or favored the reduction of the active species. The active species of a Co-Mo-0.7/CNT catalyst were more easily reduced than those of the Co-Mo/CNT catalysts with Co/Mo atomic ratios of 0.2, 0.35, and 0.5, respectively, suggesting that the Co/Mo atomic ratio has a great effect on the reducibility of the active species. It was found that the incorporation of cobalt improved the dispersion of the molybdenum species on the support, and a phenomenon of mobilization and re-dispersion had occurred during the sulfurization process, resulting in low valence state Mo3S4 and Co-MoS2.17 active phases. HDS measurements showed that the Co-Mo/CNT catalysts were more active than the Co-Mo/γ-Al2O3 ones for the desulfurization of DBT, and the hydrogenolysis/hydrogenation selectivity of the Co-Mo/CNT catalysts was also much higher than those of the Co-Mo/γ-Al2O3. The Co-Mo/CNT catalyst with a Co/Mo atomic ratio of 0.7 showed the highest activity, whereas the catalyst with a Co/Mo atomic ratio of 0.35 had the highest selectivity. 展开更多
关键词 carbon nanotubes XRD TPR HDS LRS
下载PDF
Single-atom Pt promoted Mo_(2)C for electrochemical hydrogen evolution reaction 被引量:2
19
作者 Shanshan Niu Ji Yang +5 位作者 Haifeng Qi Yang Su Zhiyu Wang jieshan qiu Aiqin Wang Tao Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第6期371-377,I0009,共8页
Hydrogen generation from electrochemical water splitting powered by renewable energy is important to the sustainable society,but the prohibitive cost of current Pt electrocatalyst has impeded the large-scale productio... Hydrogen generation from electrochemical water splitting powered by renewable energy is important to the sustainable society,but the prohibitive cost of current Pt electrocatalyst has impeded the large-scale production of hydrogen by water electrolysis.In this contribution,a new low-Pt electrocatalyst for hydrogen evolution reaction(HER) has been fabricated by a facile one-pot synthesis approach,in which Pt^(2+)cations and phosphomolybdic acid confined in the metal-organic frameworks(MOFs) were submitted to pyrolysis to yield Pt single atoms dispersed into Mo_(2)C nanocrystals in 3 D porous carbon matrix.The as-synthesized Pt_(1)-Mo_(2)C-C catalyst with Pt content of only 0.7 wt% exhibited remarkably enhanced activity for HER in 1 M KOH,with overpotential at 10 mA/cm^(2) lowered from 211 mV to 155 mV and 7-fold higher mass activity(7.14 A/mgpt) than the benchmark 20 wt% Pt/C.The promoted activity can be attributed to the electronic interaction between Pt single atoms and Mo2C surface,which not only improved water activation but also strengthened hydrogen adsorption,as indicated by FTIR and microcalorimetric characterizations. 展开更多
关键词 Metal carbide Pt single atom MOF Hydrogen evolution reaction
下载PDF
Glutamic acid-assisted hydrothermal recrystallization to configure bamboo-like carbon nanotubes for improved triiodide reduction 被引量:1
20
作者 Chun Yao Jiangwei Chang +2 位作者 Yiwang Ding Chang Yu jieshan qiu 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2021年第9期159-167,共9页
Carbon nanotubes(CNTs)have been far and wide employed as the counter electrodes(CEs)in dyesensitized solar cells because of their individual physical and chemical properties.However,the techniques available now,such a... Carbon nanotubes(CNTs)have been far and wide employed as the counter electrodes(CEs)in dyesensitized solar cells because of their individual physical and chemical properties.However,the techniques available now,such as chemical vapor deposition,arc discharge and laser ablation for synthesizing CNTs,commonly suffer from rigorous operations and complicated steps,which make the process difficult to be controlled.Herein,we present a simple and facile glutamic acid-assisted hydrothermal recrystallization strategy to construct bamboo-like CNTs(GHP-BC-x).Generally,the conventional organic dye3,4,9,10-perylene tetracarboxylic dianhydride(PTCDA)is used as a precursor and glutamic acid efficiently promotes the recrystallization of the perylene cores'planarπ-conjugated system in PTCDA under hydrothermal conditions and then self-assembles into one-dimensio nal nano rods with improved crystallization degree,finally resulting in the morphology of bamboo-like CNTs after carbonization.When applied as the counter electrodes,the GHP-BC-3 displays a remarkable power conversion efficiency of8.25%,benefiting from the superb electrical conductivity and mass transfer dynamics,superior to that of Pt CE(7.62%). 展开更多
关键词 Hydrothermal recrystallization Bamboo-like carbon nanotubes Counter electrodes ELECTROCATALYSIS Triiodide reduction
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部