期刊文献+
共找到23篇文章
< 1 2 >
每页显示 20 50 100
自牺牲型金属有机框架衍生In_(2)S_(3)多级孔结构纳米材料强化光催化性能 被引量:1
1
作者 杨婷婷 王彬 +2 位作者 朱剑豪 夏杰祥 李华明 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第4期204-213,共10页
半导体基光催化是减少对化石燃料的依赖和解决环境污染问题的有前景的策略之一.在光催化有机污染物降解领域,硫化物材料备受关注.其中,In_(2)S_(3)催化剂因展现较好的催化活性及经济可行性,而被认为是光催化降解的理想催化剂之一.然而,... 半导体基光催化是减少对化石燃料的依赖和解决环境污染问题的有前景的策略之一.在光催化有机污染物降解领域,硫化物材料备受关注.其中,In_(2)S_(3)催化剂因展现较好的催化活性及经济可行性,而被认为是光催化降解的理想催化剂之一.然而,采用传统煅烧法制备的In_(2)S_(3)催化剂由于比表面积小,暴露的活性位点有限,进而限制了其催化活性的进一步提升.因此,制备具有较大比表面积和多活性位点的In_(2)S_(3)基催化剂,对于推动光催化降解有机污染物领域的发展具有重要的意义.本文通过构建分级多孔结构的光催化剂,以增强材料的光吸收性能并优化光生载流子的迁移和分离,从而提升光催化降解有机污染物的性能.利用In基金属有机骨架(MOFs)作为自我牺牲模板,通过硫化制备了包括空心纳米管、微管、中空球和十二面体在内的多种分级In_(2)S_(3)光催化剂.分级多孔结构不仅增强了入射光的多次折射和反射,还提供了更大的表面积,从而提高了光生载流子的光利用率和相分离效率.实验结果表明,这些材料的光催化效率远高于块状和商用In_(2)S_(3).通过X射线光电子能谱、X射线衍射等手段验证了不同形貌分级多孔In_(2)S_(3)材料的成功制备.紫外-可见漫反射光谱结果表明,所有催化剂均可吸收部分可见光,结合莫特肖特基曲线和XPS价带谱结果,说明催化剂的导带、价带位置均满足光催化降解有机污染物的要求.光致发光光谱、光电流强度曲线和电化学阻抗曲线等研究表明,分级多孔结构有效促进了光生载流子的分离和迁移.光催化降解罗丹明B(RhB)和四环素(TC)性能评价结果表明,与块状和商用In_(2)S_(3)相比,具有分级多孔结构的In_(2)S_(3)材料表现出更好的光催化降解活性.其中,空心In_(2)S_(3)纳米管(HNTs)具有最佳的光催化性能,在光照1.5和2 h后,In_(2)S_(3)-HNT可以去除约50%的TC和95%的RhB,其RhB的降解速率分别是块状和商业In_(2)S_(3)的135.6倍和446.9倍,TC的降解速率分别是块状和商业级In_(2)S_(3)的7.8倍和36.5倍.电子顺磁共振和自由基捕获实验结果表明,在光催化降解过程中,空穴、超氧自由基以及单线态氧是主要的活性物种.特别是,当In_(2)S_(3)-HNT受到光照时,其独特的分级多孔结构使得光生电子和空穴对能够有效分离,这使得In_(2)S_(3)-HNT可以积累更多的活性氧自由基,从而显著提升了其光催化降解有机污染物的性能.综上,本文采用新型自牺牲模板法,制备了金属有机框架衍生In_(2)S_(3)多级孔结构纳米材料.通过精准调控In_(2)S_(3)催化剂的形貌,有效提升了光催化降解有机污染物性能.该方法在高效光催化剂的制备上展现了显著潜力,为设计高性能的光催化降解材料提供参考. 展开更多
关键词 硫化铟 金属有机框架 形貌调控 光催化 污染物降解
下载PDF
构筑Bi纳米粒子负载BiOCl纳米片欧姆结用于光催化CO_(2)还原
2
作者 刘高鹏 李利娜 +7 位作者 王彬 单宁杰 董金涛 季梦夏 朱文帅 朱剑豪 夏杰祥 李华明 《物理化学学报》 SCIE CAS CSCD 北大核心 2024年第7期54-57,共4页
煤炭、石油和天然气等能源的不断增长消耗,不仅导致不可再生能源逐渐枯竭,还使大气中的CO_(2)浓度显著上升,引发严重的能源危机和气候问题。因此,我们必须开发清洁、可持续的能源转换技术,以应对不断增长的能源需求和日益严重的环境危... 煤炭、石油和天然气等能源的不断增长消耗,不仅导致不可再生能源逐渐枯竭,还使大气中的CO_(2)浓度显著上升,引发严重的能源危机和气候问题。因此,我们必须开发清洁、可持续的能源转换技术,以应对不断增长的能源需求和日益严重的环境危机。受到自然界光合作用的启发,光催化CO_(2)转化利用太阳能驱动,可以将CO_(2)和水转化为高附加值的化学品。经过多年的发展,人工光合作用已被认为是一种绿色、经济、可持续的方法,有望助力实现国家的碳中和发展目标。然而,现有的光催化剂存在着载流子分离效率低和活性位点不足的问题,从而导致CO_(2)光还原效率较低。为了应对这些科学问题,研究人员发现将金属纳米粒子负载到半导体材料上形成欧姆结,可以产生内建电场,有助于光生电子和空穴的分离。因此,本研究通过溶剂热法在BiOCl纳米片表面负载Bi纳米粒子,构建了Bi/BiOCl欧姆结光催化剂。通过X射线衍射(XRD)、X射线光电子能谱(XPS)和透射电子显微镜(TEM)分析了光催化剂的成分和微观结构。利用紫外-可见漫反射光谱(UV-Vis DRS)研究了催化剂的光吸收性能。通过瞬态光电流响应测试、电化学阻抗谱(EIS)和电子自旋共振谱(ESR)研究了光生电子和空穴的分离能力。由于Bi纳米粒子与BiOCl的功函数不同,二者形成的欧姆结具有优异的电荷转移特性,可以显著提高光生载流子的利用效率。此外,Bi纳米粒子还可以作为助催化剂,促进惰性CO_(2)分子的活化。光催化测试结果显示,经过300 W氙灯照射4 h后,具有最佳活性的复合材料(Bi/BiOCl-2)将CO_(2)还原为CO(34.31μmol·g^(-1))和CH_(4)(1.57μmol·g^(-1))的速率分别是BiOCl纳米片的2.55倍和4.76倍。同位素示踪实验证实,产物是CO_(2)和水分子经过光催化反应得到的。此外,根据原位傅里叶变换红外光谱(in situ FTIR)结果,发现在CO_(2)还原过程中形成了^(*)CHO、^(*)CH_(3)O、b-CO_(3)^(2-)、m-CO_(3)^(2-)、HCO_(3)^(-)、HCOOH、^(*)COOH和HCOO^(-)等中间体,并进一步提出了可能的光催化CO_(2)还原机制。经过25 h的CO_(2)光还,原反应后,CO和CH_(4)产量持续增加,同时结合XRD、XPS和TEM结果表明,制备的Bi/BiOCl-2材料具有良好的结构稳定性。这项研究为高效CO_(2)光还原催化剂的构建提供了有益的参考。 展开更多
关键词 BiOCl纳米片 Bi纳米粒子 CO_(2)光还原 欧姆结 电子传输
下载PDF
Engineering of oxygen vacancy and bismuth cluster assisted ultrathin Bi_(12)O_(17)Cl_(2)nanosheets with efficient and selective photoreduction of CO_(2)to CO 被引量:1
3
作者 Meili Guan Ni Lu +7 位作者 Xuan Zhang Qiuwan Wang Jian Bao Guiye Chen Hao Yu Huaming Li jiexiang xia Xuezhong Gong 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期1-11,共11页
The photocatalytic conversion of CO_(2)into solar‐powered fuels is viewed as a forward‐looking strategy to address energy scarcity and global warming.This work demonstrated the selective photoreduction of CO_(2)to C... The photocatalytic conversion of CO_(2)into solar‐powered fuels is viewed as a forward‐looking strategy to address energy scarcity and global warming.This work demonstrated the selective photoreduction of CO_(2)to CO using ultrathin Bi_(12)O_(17)Cl_(2)nanosheets decorated with hydrothermally synthesized bismuth clusters and oxygen vacancies(OVs).The characterizations revealed that the coexistences of OVs and Bi clusters generated in situ contributed to the high efficiency of CO_(2)–CO conversion(64.3μmol g^(−1)h^(−1))and perfect selectivity.The OVs on the facet(001)of the ultrathin Bi_(12)O_(17)Cl_(2)nanosheets serve as sites for CO_(2)adsorption and activation sites,capturing photoexcited electrons and prolonging light absorption due to defect states.In addition,the Bi‐cluster generated in situ offers the ability to trap holes and the surface plasmonic resonance effect.This study offers great potential for the construction of semiconductor hybrids as multiphotocatalysts,capable of being used for the elimination and conversion of CO_(2)in terms of energy and environment. 展开更多
关键词 Bi cluster Bi_(12)O_(17)Cl_(2)nanosheet oxygen vacancy photocatalytic CO_(2)reduction
下载PDF
Strain‑Induced Surface Interface Dual Polarization Constructs PML‑Cu/Bi_(12)O_(17)Br_(2) High‑Density Active Sites for CO_(2) Photoreduction
4
作者 Yi Zhang Fangyu Guo +6 位作者 Jun Di Keke Wang Molly Meng‑Jung Li Jiayu Dai Yuanbin She jiexiang xia Huaming Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第5期169-183,共15页
The insufficient active sites and slow interfacial charge trans-fer of photocatalysts restrict the efficiency of CO_(2) photoreduction.The synchronized modulation of the above key issues is demanding and chal-lenging.... The insufficient active sites and slow interfacial charge trans-fer of photocatalysts restrict the efficiency of CO_(2) photoreduction.The synchronized modulation of the above key issues is demanding and chal-lenging.Herein,strain-induced strategy is developed to construct the Bi–O-bonded interface in Cu porphyrin-based monoatomic layer(PML-Cu)and Bi_(12)O_(17)Br_(2)(BOB),which triggers the surface interface dual polarization of PML-Cu/BOB(PBOB).In this multi-step polarization,the built-in electric field formed between the interfaces induces the electron transfer from con-duction band(CB)of BOB to CB of PML-Cu and suppresses its reverse migration.Moreover,the surface polarization of PML-Cu further promotes the electron converge in Cu atoms.The introduction of PML-Cu endows a high density of dispersed Cu active sites on the surface of PBOB,significantly promoting the adsorption and activation of CO_(2) and CO desorption.The conversion rate of CO_(2) photoreduction to CO for PBOB can reach 584.3μmol g-1,which is 7.83 times higher than BOB and 20.01 times than PML-Cu.This work offers valuable insights into multi-step polarization regulation and active site design for catalysts. 展开更多
关键词 Bi_(12)O_(17)Br_(2) Porphyrin CO_(2)photoreduction Polarization Active sites
下载PDF
Layer-Contacted Graphene-Like BN/Ultrathin Bi_(3)O_(4)Br Stacking for Boosting Photocatalytic Molecular Oxygen Activation 被引量:1
5
作者 Jun Di Yan Li +5 位作者 Yi Zhang Yiling Liu Suwei Wang Yao Wu Huaming Li jiexiang xia 《Transactions of Tianjin University》 EI CAS 2023年第3期235-245,共11页
Novel graphene-like boron nitride(BN)/Bi_(3)O_(4)Br photocatalysts have been controllably synthesized through a facile solvothermal method for the first time. Layer contact stacking between graphene-like BN and ultrat... Novel graphene-like boron nitride(BN)/Bi_(3)O_(4)Br photocatalysts have been controllably synthesized through a facile solvothermal method for the first time. Layer contact stacking between graphene-like BN and ultrathin Bi_(3)O_(4)Br was achieved with strong interaction. Dehalogenation is designed to harvest more visible light, and the ultrathin structure of Bi_(3)O_(4)Br is designed to accelerate charge transfer from inside to the surface. After graphene-like BN was engineered, photocatalytic performance greatly improved under visible light irradiation. Graphene-like BN can act as a surface electron-withdrawing center and adsorption center, facilitating molecular oxygen activation. O_(2)^(·-)was determined to be the main active species during the degradation process through analyses of electron spin resonance and XPS valence band spectra. 展开更多
关键词 Graphene-like boron nitride(BN) Bi_(3)O_(4)Br PHOTOCATALYTIC Molecular oxygen activation
下载PDF
Oxygen defect modulating the charge behavior in titanium dioxide for boosting photocatalytic nitrogen fixation performance 被引量:1
6
作者 Mengxia Ji Nianhua Liu +6 位作者 Kai Li Qing Xu Gaopeng Liu Bin Wang Jun Di Huaming Li jiexiang xia 《Materials Reports(Energy)》 EI 2023年第4期46-51,共6页
Extremely high-temperature and high-pressure requirement of Haber-Bosch process motivates the search for a sustainable ammonia synthesis approach under mild conditions.Photocatalytic technology is a potential solution... Extremely high-temperature and high-pressure requirement of Haber-Bosch process motivates the search for a sustainable ammonia synthesis approach under mild conditions.Photocatalytic technology is a potential solution to convert N2 to ammonia.However,the poor light absorption and low charge carrier separation efficiency in conventional semiconductors are bottlenecks for the application of this technology.Herein,a facile synthesis of anatase TiO_(2)nanosheets with an abundance of surface oxygen vacancies(TiO_(2)-OV)via the calcination treatment was reported.Photocatalytic experiments of the prepared anatase TiO_(2)samples showed that TiO_(2)-OV nanosheets exhibited remarkably increased ammonia yield for solar-driven N2 fixation in pure water,without adding any sacrificial agents.EPR,XPS,XRD,UV-Vis DRS,TEM,Raman,and PL techniques were employed to systematically explore the possible enhanced mechanism.Studies revealed that the introduced surface oxygen vacancies significantly extended the light absorption capability in the visible region,decreased the adsorption and activation barriers of inert N2,and improved the separation and transfer efficiency of the photogenerated electronhole pairs.Thus,a high rate of ammonia evolution in TiO_(2)-OV was realized.This work offers a promising and sustainable approach for the efficient artificial photosynthesis of ammonia. 展开更多
关键词 Titanium dioxide Oxygen vacancies Artificial photosynthesis Nitrogen fixation Charge separation
下载PDF
Cu^2+改性g-C3N4光催化剂的光催化性能 被引量:13
7
作者 李小为 王彬 +4 位作者 尹文轩 狄俊 夏杰祥 朱文帅 李华明 《物理化学学报》 SCIE CAS CSCD 北大核心 2020年第3期123-132,共10页
本文通过将Cu^2+掺入g-C3N4结构中成功制备了Cu/g-C3N4光催化剂,并进一步优化其光催化性能。同时,采用多种表征方法对Cu/g-C3N4光催化剂的结构、形貌、光学和光电性能进行了分析。X射线衍射(XRD)和X射线光电子能谱(XPS)结果表明制备的... 本文通过将Cu^2+掺入g-C3N4结构中成功制备了Cu/g-C3N4光催化剂,并进一步优化其光催化性能。同时,采用多种表征方法对Cu/g-C3N4光催化剂的结构、形貌、光学和光电性能进行了分析。X射线衍射(XRD)和X射线光电子能谱(XPS)结果表明制备的光催化剂为Cu/g-C3N4,且Cu的价态为+2。在可见光照射下,研究了不同铜含量的Cu/g-C3N4和gC3N4光催化剂的光催化活性。实验结果表明,Cu/g-C3N4光催化剂的降解能力显著高于纯相的g-C3N4。N2吸附-解吸等温线表明,Cu^2+的引入对g-C3N4的微观结构影响不大,说明光催化活性的提高可能与光生载流子的有效分离有关。因此,Cu/g-C3N4光催化降解RhB和CIP性能的提升可能是由于Cu^2+可以作为电子捕获陷阱从而降低了载流子的复合速率。通过光电测试表明,在g-C3N4中掺入Cu^2+可以降低g-C3N4的电子空穴复合速率,加速电子空穴对的分离,从而提高了其光催化活性。自由基捕获实验和电子自旋共振(ESR)结果表明,超氧自由基(O2·-)、羟基自由基(·OH)和空穴的协同作用提高了Cu/g-C3N4光催化剂的光催化活性。 展开更多
关键词 Cu/g-C3N4 光催化 可见光 活性物种 RHB CIP
下载PDF
Construction of NH2-MIL-125(Ti)/Bi2WO6 composites with accelerated charge separation for degradation of organic contaminants under visible light irradiation 被引量:7
8
作者 Sheng Yin Yong Chen +6 位作者 Ming Li Qingsong Hu Yi Ding Yifan Shao Jun Di jiexiang xia Huaming Li 《Green Energy & Environment》 SCIE CSCD 2020年第2期203-213,共11页
Photocatalysis is considered as an ideal strategy for water pollution treatment.However,it remains challenging to design a highly efficient photo-catalytic system through regulating the charge flow via a precise appro... Photocatalysis is considered as an ideal strategy for water pollution treatment.However,it remains challenging to design a highly efficient photo-catalytic system through regulating the charge flow via a precise approach.In this work,a novel NH2-MIL-125(Ti)/Bi2WO6 composite was constructed via self-assembly growing Bi2WO6 nanosheets on NH2-MIL-125(Ti)material.The characterization results demonstrated that NH2-MIL-125(Ti)was successfully incorporated into Bi2WO6 and the photoexcited carriers could be efficiently separated and transferred between the two components.NH2-MIL-125(Ti)/Bi2WO6 composites displayed enhanced photocatalytic activity for the removal of rhodamine B(RhB)and tetracycline(TC)under visible light irradiation,and the optimal weight ratio of NH2-MIL-125(Ti)was determined to be 7 wt%.The introduction of NH2-MIL-125(Ti)into Bi2WO6 could raise the absorption of visible light,accelerate the separation and transfer of charge carriers,and boost photocatalytic activity.This research presents a wide range of possibilities for the further development of novel composites in the field of environment purification. 展开更多
关键词 NH2-MIL-125(Ti) Bi2WO6 nanosheets Charge separation PHOTOCATALYSIS Visible light
下载PDF
Boosting photocatalytic degradation of RhB via interfacial electronic effects between Fe-based ionic liquid and g-C_3N_4 被引量:5
9
作者 xiaowei Li Bin Wang +4 位作者 Yuhong Huang Jun Di jiexiang xia Wenshuai Zhu Huaming Li 《Green Energy & Environment》 SCIE CSCD 2019年第2期198-206,共9页
The Fe-based ionic liquid doped g-C_3N_4(Fee CN) photocatalyst was firstly prepared base on ultrathin g-C_3N_4 obtained by multiple calcination method with a metal-based reactive ionic liquid [Omim]FeCl_4 for the degr... The Fe-based ionic liquid doped g-C_3N_4(Fee CN) photocatalyst was firstly prepared base on ultrathin g-C_3N_4 obtained by multiple calcination method with a metal-based reactive ionic liquid [Omim]FeCl_4 for the degradation of Rhodamine B(RhB). Experimental results revealed that Fe3+species were doped into the framework of g-C_3N_4. The effect of the amount of Fe-doping on the catalytic activity was performed. The result showed that the Fee CN could effectively degrade RhB under the condition of visible light irradiation. The photocurrent analysis showed that the incorporation of Fe^(3+)into g-C_3N_4 material could accelerate the separation of the photogenerated carriers significantly.At the same time, the reactive species generated during the photodegradation process were tested by radicals trapping experiments and electron spin resonance(ESR). It was proposed that the synergistic effect of■ and ·OH contributed to degrade RhB efficiently. 展开更多
关键词 g-C3N4 [Omim]FeCl4 Photocatalytic Visible light Active species
下载PDF
Construction of nitrogen and phosphorus co-doped graphene quantum dots/Bi5O7I composites for accelerated charge separation and enhanced photocatalytic degradation performance 被引量:4
10
作者 Kai Li Mengxia Ji +3 位作者 Rong Chen Qi Jiang jiexiang xia Huaming Li 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第8期1230-1239,共10页
Nitrogen and phosphorus co-doped graphene quantum dot-modified Bi5O7 I(NPG/Bi5O7 I)nanorods were fabricated via a simple solvothermal method.The morphology,structure,and optical properties of the as-prepared samples w... Nitrogen and phosphorus co-doped graphene quantum dot-modified Bi5O7 I(NPG/Bi5O7 I)nanorods were fabricated via a simple solvothermal method.The morphology,structure,and optical properties of the as-prepared samples were investigated by X-ray diffraction,scanning electron microscopy,high-resolution transmission electron microscopy,X-ray photoelectron spectroscopy(XPS),and diffused reflectance spectroscopy.The photocatalytic performance was estimated by degrading the broad-spectrum antibiotics tetracycline and enrofloxacin under visible light irradiation.The photodegradation activity of Bi5O7 I improved after its surface was modified with NPGs,which was attributed to an increase in the photogenerated charge transport rate and a decrease in the electron-hole pair recombination efficiency.From the electron spin resonance spectra,XPS valence band data,and free radical trapping experiment results,the main active substances involved in the photocatalytic degradation process were determined to be photogenerated holes and superoxide radicals.A possible photocatalytic degradation mechanism for NPG/Bi5O7 I nanorods was proposed. 展开更多
关键词 Bi5O7I N P co-doped graphene quantum dots PHOTOCATALYSIS Ionic liquid Charge separation
下载PDF
Paper-derived cobalt and nitrogen co-doped carbon nanotube@porous carbon as a nonprecious metal electrocatalyst for the oxygen reduction reaction 被引量:3
11
作者 Gaopeng Liu Bin Wang +5 位作者 Li Xu Penghui Ding Pengfei Zhang jiexiang xia Huaming Li Junchao Qian 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第4期790-799,共10页
The oxygen reduction reaction(ORR)is a vitally important process in fuel cells.The development of high‐performance and low‐cost ORR electrocatalysts with outstanding stability is essential for the commercialization ... The oxygen reduction reaction(ORR)is a vitally important process in fuel cells.The development of high‐performance and low‐cost ORR electrocatalysts with outstanding stability is essential for the commercialization of the electrochemical energy technology.Herein,we report a facile synthesis of cobalt(Co)and nitrogen(N)co‐doped carbon nanotube@porous carbon(Co/N/CNT@PC‐800)electrocatalyst through a one‐step pyrolysis of waste paper,dicyandiamide,and cobalt(II)acetylacetonate.The surface of the hierarchical porous carbon supported a large number of carbon nanotubes(CNTs),which were derived from dicyandiamide through the catalysis of Co.The addition of Co resulted in the formation of a hierarchical micro/mesoporous structure,which was beneficial for the exposure of active sites and rapid transportation of ORR‐relevant species(O2,H+,OH?,and H2O).The doped N and Co formed more active sites to enhance the ORR activity of the electrocatalyst.The Co/N/CNT@PC‐800 material exhibited optimal ORR performance with an onset potential of 0.005 V vs.Ag/AgCl and a half‐wave potential of?0.173 V vs.Ag/AgCl.Meanwhile,the electrocatalyst showed an excellent methanol tolerance and a long‐term operational durability than that of Pt/C,as well as a quasi‐four‐electron reaction pathway.The low‐cost and simple synthesis approach makes the Co/N/CNT@PC‐800 a prospective electrocatalyst for the ORR.Furthermore,this work provides an alternative approach for exploring the use of biomass‐derived electrocatalysts for renewable energy applications. 展开更多
关键词 Oxygen reduction reaction Waste paper BIOMASS Porous carbon COBALT
下载PDF
Facile microwave-assisted ionic liquid synthesis of sphere-like BiOBr hollow and porous nanostructures with enhanced photocatalytic performance 被引量:5
12
作者 Zhigang Chen Jie Zeng +4 位作者 Jun Di Dexiang Zhao Mengxia Ji jiexiang xia Huaming Li 《Green Energy & Environment》 SCIE 2017年第2期124-133,共10页
In this work, two kinds of self-assembled hierarchical BiOBr microcrystals were rapidly synthesized through a simple microwave-assisted route in the presence of reactable ionic liquid 1-hexadecyl-3-methylimidazolium b... In this work, two kinds of self-assembled hierarchical BiOBr microcrystals were rapidly synthesized through a simple microwave-assisted route in the presence of reactable ionic liquid 1-hexadecyl-3-methylimidazolium bromide([C_(16)mim]Br). These porous and hollow BiOBr microspheres were obtained via a facile solvothermal method with or without polyvinyl pyrrolidone(PVP), respectively. During the synthetic process, ionic liquid [C_(16)mim]Br played as solvent, reactant and template at the same time. Moreover, the BiOBr hollow and porous microspheres exhibited outstanding photocatalytic activities for the degradation of rhodamine B(RhB) under visible light irradiation. A possible photocatalytic mechanism was also discussed in detail. It can be assumed that the higher photocatalytic activities of BiOBr porous microspheres materials could be ascribed to the novel structure, larger specific surface area, narrower band gap structure and smaller particle size. 展开更多
关键词 BiOBr PHOTOCATALYTIC Ionic liquid Microwave
下载PDF
Improved visible light photocatalytic activity of mesoporous FeVO_4 nanorods synthesized using a reactable ionic liquid 被引量:3
13
作者 Hanxiang Chen Jie Zeng +5 位作者 Mindong Chen Zhigang Chen Mengxia Ji Junze Zhao jiexiang xia Huaming Li 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第5期744-754,共11页
Mesoporous FeVO4 nanorods were successfully synthesized by calcining the precursor Fe- VO4·1.1H2O nanorods, which were obtained via a simple hydrothermal method in the presence of a reactable metal-ion-containing... Mesoporous FeVO4 nanorods were successfully synthesized by calcining the precursor Fe- VO4·1.1H2O nanorods, which were obtained via a simple hydrothermal method in the presence of a reactable metal-ion-containing ionic liquid, 1-octyl-3-methylimidazolium tetrachloride ferrate(III)([Omim]FeCl4). The structure and morphology of the prepared samples were examined using various characterization techniques. During the synthetic process,[Omim]FeCl4 acted as the solvent, reactant, and capping agent simultaneously. Moreover, the porous FeVO4 nanorods as the heterogeneous photo-Fenton-like semiconductor catalyst for the degradation of tetracycline and rhodamine B under visible light irradiation exhibited excellent photocatalytic activity. This excellent photocatalytic activity of the porous FeVO4 nanorods can be attributed to the synergistic effect of their high electron-hole pair separation rate, suitable band gap structure, and large specific surface area. The possible photocatalytic degradation mechanism of FeVO4/H2O2 photocatalytic systems was also discussed in detail. 展开更多
关键词 FEVO4 Visible light PHOTODEGRADATION Ionic liquid
下载PDF
MOFs derived FeNi_(3) nanoparticles decorated hollow N-doped carbon rod for high-performance oxygen evolution reaction 被引量:1
14
作者 Gaopeng Liu Bin Wang +6 位作者 Lin Wang Wenxian Wei Yu Quan Chongtai Wang Wenshuai Zhu Huaming Li jiexiang xia 《Green Energy & Environment》 SCIE EI CSCD 2022年第3期423-431,共9页
The sluggish electrochemical oxygen evolution reaction(OER) is a crucial process for clean energy conversion technology.The preparation of non-precious electrocatalysts with high performance for OER is still a main ch... The sluggish electrochemical oxygen evolution reaction(OER) is a crucial process for clean energy conversion technology.The preparation of non-precious electrocatalysts with high performance for OER is still a main challenge.Herein,we report a FeNi_(3) nanoparticles incorporated on N-doped hollow carbon rod with extraordinary performance toward OER by in situ annealing the Ni-doped Fe based metal-organic frameworks(MOFs) precursors.Meanwhile,the pristine N atoms of MOFs doped into carbon frameworks can enhance the electrical conductivity,boost electron mass transport and electron transfer,and construct more active sites.Furthermore,constructing the Fe-Ni alloy structure can facilitate the formation of O-O bond,optimize the free energy for intermediate adsorption and improve OER performance.The as-prepared Fe-Ni bimetal decorated hollow N-doped nanocarbon hybrid structure possesses superior OER performance,which is surpass commercial IrO_(2) at a overpotential of only 340 mV to achieve the current density of 10 mA cm^(-2),as well as a small Tafel slope of 86.67 mV dec^(-1) in alkaline electrolyte.The Fe-Ni alloy/hollow N-doped nanocarbon hybrid structure shining the bright future for obtaining earth-abundant and superior efficient anode OER electrocatalyst. 展开更多
关键词 alloy performance carbon
下载PDF
“Electron collector”Bi_(19)S_(27)Br_(3)nanorod‐enclosed BiOBr nanosheet for efficient CO_(2) photoconversion
15
作者 Junze Zhao Min Xue +6 位作者 Mengxia Ji Bin Wang Yu Wang Yingjie Li Ziran Chen Huaming Li jiexiang xia 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第5期1324-1330,共7页
Although CO_(2)photoreduction is a promising method for solar‐to‐fuel conversion,it suffers from low charge transfer efficiency of the photocatalysts.To improve the CO_(2)photoreduction performance,introduction of e... Although CO_(2)photoreduction is a promising method for solar‐to‐fuel conversion,it suffers from low charge transfer efficiency of the photocatalysts.To improve the CO_(2)photoreduction performance,introduction of electron‐accumulated materials on the photocatalyst surface is considered an effective method.In this study,the Bi_(19)S_(27)Br_(3)/BiOBr composites were designed and synthesized.The Bi19S27Br3 nanorod in this photocatalytic system acts as an electron‐accumulated active site for extracting the photogenerated electrons on the BiOBr surface and for effectively activating the CO2 molecules.As a result,Bi_(19)S_(27)Br_(3)/BiOBr composites exhibit the higher charge carrier transfer efficiency and further improves the CO_(2)photoreduction performance relative to that of pure Bi_(19)S_(27)Br_(3)and BiOBr.The rate of CO formation using Bi_(19)S_(27)Br_(3)/BiOBr‐5 is about 8.74 and 2.40 times that using Bi_(19)S_(27)Br_(3)and BiOBr,respectively.This work provides new insights for the application of Bi_(19)S_(27)Br_(3)as an electron‐accumulating site for achieving high photocatalytic CO2 reduction performance in the future. 展开更多
关键词 Bi_(19)S_(27)Br_(3) BiOBr CO_(2)photoreduction Electron‐accumulated material Charge transfer
下载PDF
In-situ embedded ultrafine Bi_(12)O_(17)Br_(2)nanotubes in MOF-derived hierarchical porous carbon for enhanced photocatalytic CO_(2)conversion to CO
16
作者 Xing Sun Mengxia Ji +7 位作者 Yi Zhang Qingzeng Xing Zihan Liu Nianhua Liu Emmanuel Nkudede Huaming Li Sheng Yin jiexiang xia 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2024年第4期47-53,共7页
Increasing the utilization efficiency of photogenerated electrons is highly recognized as one of the ef-ficient approaches to boost the photocatalytic CO_(2)conversion efficiency.Herein,ZIF-67-derived porous carbon(PC... Increasing the utilization efficiency of photogenerated electrons is highly recognized as one of the ef-ficient approaches to boost the photocatalytic CO_(2)conversion efficiency.Herein,ZIF-67-derived porous carbon(PC)material was employed for the construction of PC@ultrafine Bi_(12)O_(17)Br_(2)nanotubes(PC@BOB NTs)composites through a facile solvothermal synthesis in order to optimize the use of excited elec-trons in the BOB NTs.Photoelectrochemical characterization results revealed that the introduction of PC material achieved a faster charge separation rate in the PC@BOB composites,ensuring more photogener-ated electrons participate in the CO_(2)adsorption and activation process.Moreover,the pore structures of ZIF-67-derived PC material provided abundant confined spaces for the enrichment of CO_(2)molecules.Af-ter 5 h of Xenon lamp irradiation,PC@BOB composites exhibited obviously increased photocatalytic CO_(2)reduction activity in the pure water.When the addition amount of PC was 5 wt%,the PC@BOB-2 com-posite showed the highest CO evolution rate of 359.70μmol/g,which was 2.95 times higher than that of the pure BOB NTs.This work provides some independent insights into the applications of Metal-Organic Framework(MOF)-derived hierarchical porous structures to strengthen the CO_(2)enrichment,as well as the excited charge utilization efficiency,thus achieving a high solar-to-fuel conversion efficiency. 展开更多
关键词 Bi_(12)O_(17)Br_(2)nanotubes Hierarchical porous structure CO_(2)enrichment Charge separation CO_(2)photoreduction
原文传递
Synchronous activation of Ag nanoparticles and BiOBr for boosting solar-driven CO_(2)reduction 被引量:3
17
作者 Gaopeng Liu Lin Wang +6 位作者 Bin Wang Xingwang Zhu Jinman Yang Pengjun Liu Wenshuai Zhu Ziran Chen jiexiang xia 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第6期252-255,共4页
Artificial photosynthesis of valuable chemicals from CO_(2)is a potential way to achieve sustainable carbon cycle.The CO_(2)conversion activity is still inhibited by the sluggish charge kinetics and poor CO_(2)activat... Artificial photosynthesis of valuable chemicals from CO_(2)is a potential way to achieve sustainable carbon cycle.The CO_(2)conversion activity is still inhibited by the sluggish charge kinetics and poor CO_(2)activation.Herein,Ag nanoparticles coupled Bi OBr have been constructed by in-situ photoreduction strategy.The crafting of interface between Ag nanoparticles and Bi OBr nanosheets,achieving an ultra-fast charge transfer.The Bi OBr semiconductor excited electrons and plasmonic Ag nanoparticles generated high-energy hot electrons synchronous accelerates the C=O double bond activation.Thus,the optimized Ag/BiOBr-2 heterostructure shows excellent CO_(2)photoreduction activity with CO production of 133.75 and 6.83μmol/g under 5 h of 300 W Xe lamp and visible light(λ>400 nm)irradiation,which is 1.51 and 2.81 folds versus the pristine Bi OBr,respectively.The mechanism of CO_(2)photoreduction was in-depth understood through in-situ FT-IR spectrum and density functional theory calculations.This study provides some new perspectives into efficient photocatalytic CO_(2)reduction. 展开更多
关键词 Ag nanoparticles BiOBr Hot electrons Charge transfer CO_(2)photoreduction
原文传递
Lower oxygen vacancy concentration in BiPO_(4)with unexpected higher photocatalytic activity
18
作者 Jun Xiong Haoxue Huang +2 位作者 Bo Lin jiexiang xia Jun Di 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第5期369-373,共5页
Defect engineering has been demonstrated to be an appealing strategy to boost the photocatalytic activity of materials.However,can higher defect concentration bring about higher photocatalytic activity?This is an open... Defect engineering has been demonstrated to be an appealing strategy to boost the photocatalytic activity of materials.However,can higher defect concentration bring about higher photocatalytic activity?This is an open question.In this work,BiPO_(4)photocatalysts with controllable oxygen vacancy concentrations were successfully synthesized.The photocatalytic activity of the obtained BiPO_(4)photocatalysts was determined by the removal of ciprofloxacin and 4-chlorophenol,as well as CO_(2)photoreduction.The BiPO4materials with lower oxygen vacancy concentration could display unexpected higher photocatalytic efficiency.Through the investigation of different factors which may affect the photocatalytic performance,such as crystal structure,morphology,specific surface area,defect,and energy band structure,it can be found that the energy band structure difference was responsible for the enhanced photocatalytic activity. 展开更多
关键词 BiPO_(4) PHOTOCATALYTIC Oxygen vacancy CIPROFLOXACIN Energy band structure
原文传递
Enhanced photocatalytic performance of carbon quantum dots/Bi OBr composite and mechanism investigation 被引量:2
19
作者 Mengxia Ji Zhiyong Zhang +6 位作者 jiexiang xia Jun Di Yiling Liu Rong Chen Sheng Yin Sen Zhang Huaming Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2018年第6期805-810,共6页
Novel carbon quantum dots(CQDs)/Bi OBr composite photocatalysts have been constructed through a facile hydrothermal synthesis in the presence of ionic liquid 1-hexadecyl-3-methylimidazolium bromide([C16 mim]Br). S... Novel carbon quantum dots(CQDs)/Bi OBr composite photocatalysts have been constructed through a facile hydrothermal synthesis in the presence of ionic liquid 1-hexadecyl-3-methylimidazolium bromide([C16 mim]Br). Series of characterizations have been performed to confirm the uniform distribution of CQDs in Bi OBr nanosheets and the synergistic effect for photocatalytic degradation organic pollutants between CQDs and Bi OBr. The results show that 3.1 wt% CQDs/Bi OBr photocatalyst possesses the best photocatalytic activity for the degradation of colorless antibiotic tetracycline(TC), endocrine disrupter bisphenol A(BPA) and dye rhodamine B(Rh B), under visible light irradiation, which exhibited the highest photocatalytic performance. The enhanced photocatalytic performance for CQDs/Bi OBr composites could be attributed to the wider optical absorption range and fast separation of photogenerated charge carriers after the introduction of CQDs. The key roles of CQDs for the enhanced photocatalytic activity of Bi OBr have been discussed. A possible mechanism of CQDs/Bi OBr on the enhancement of visible light performance was proposed. 展开更多
关键词 PHOTOCATALYSIS Ionic liquid BiOBr CQDs Organic pollutants
原文传递
Crafting of plasmonic Au nanoparticles coupled ultrathin BiOBr nanosheets heterostructure: steering charge transfer for efficient CO_(2) photoreduction 被引量:2
20
作者 Gaopeng Liu Lin Wang +7 位作者 Xin Chen Xingwang Zhu Bin Wang Xinyuan Xu Ziran Chen Wenshuai Zhu Huaming Li jiexiang xia 《Green Chemical Engineering》 2022年第2期157-164,共8页
Integrating semiconductor photocatalysts with outstanding visible light absorption and fast surface/interface charge transfer kinetics is still an enormous challenge for efficient CO_(2)photoreduction.In this work,the... Integrating semiconductor photocatalysts with outstanding visible light absorption and fast surface/interface charge transfer kinetics is still an enormous challenge for efficient CO_(2)photoreduction.In this work,the Au nanoparticles have been coupled with ultrathin BiOBr nanosheets,the formed heterostructure(Au/BiOBr)pos-sesses a localized surface plasmon resonance(LSPR)and enhances the visible light absorption ability,as well as forms a fast charge transport channel on the interface between Au and BiOBr.Thus,the heterostructure photo-catalyst exhibits higher photocatalytic CO_(2)to CO performance(135.3/16.43μmol g^(-1))than that of BiOBr(89.0/6.46μmol g^(-1))under 300 W Xe lamp and visible light(λ>400 nm)irradiation for 5 h,respectively.Finally,the in situ FT-IR spectroscopy revealed CO_(2)photoreduction process and found that the*COOH is the key intermediate for CO_(2)to CO.This work provides an effective method to construct multielectron transfer scheme for efficient photocatalytic CO_(2)reduction. 展开更多
关键词 Au nanoparticles BiOBr Localized surface plasmon resonance Charge transfer CO_(2)photoreduction
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部