With a growing sample of fast radio bursts(FRBs),we investigate the energy budget of different power sources within the framework of magnetar starquake triggering mechanism.During a starquake,the energy can be release...With a growing sample of fast radio bursts(FRBs),we investigate the energy budget of different power sources within the framework of magnetar starquake triggering mechanism.During a starquake,the energy can be released in any form through strain,magnetic,rotational,and gravitational energies.The strain energy can be converted from three other kinds of energy during starquakes.The following findings are revealed:(1)The crust can store free magnetic energy of~10^(46)erg by existing toroidal fields,sustaining 10^(6)bursts with frequent starquakes occurring due to crustal instability.(2)The strain energy develops as a rigid object spins down,which can be released during a global starquake accompanied by a glitch.However,it takes a long time to accumulate enough strain energy via spindown.(3)The rotational energy of a magnetar with P■0.1 s can match the energy and luminosity budget of FRBs.(4)The budget of the total gravitational energy is high,but the mechanism and efficiency of converting this energy to radiation deserve further exploration.展开更多
This article mainly introduces the innovative internship and training model of vocational colleges,including five aspects such as“four-party collaboration,three-stage progression,four-way integration,value-added eval...This article mainly introduces the innovative internship and training model of vocational colleges,including five aspects such as“four-party collaboration,three-stage progression,four-way integration,value-added evaluation,and double selection and promotion.”The model aims to improve students’practical skills and professional quality to better adapt to market demand and social development.The article also presents the prospects of the future internship and training model,including strengthening cooperation and communication with industry enterprises,focusing on students’personalized development and practical skill cultivation,and establishing a scientific and objective evaluation and feedback mechanism.展开更多
In the wake of climate warming, the water level of Lake Qinghai has been continuously and rapidly declining during the past decades, causing the regional government and citizens to worry about its future as a water re...In the wake of climate warming, the water level of Lake Qinghai has been continuously and rapidly declining during the past decades, causing the regional government and citizens to worry about its future as a water resource. To understand the lake evolution process, the hydro-chemical characteristics of Lake Qinghai were investigated in August of 2008. The results show that Na<sup>+</sup> and Cl<sup>-</sup> are the dominant cations and anions in the lake water, respectively, and hydrochemistry type is Cl<sup>-</sup>- Na<sup>+</sup> with an obvious characteristic of a saline lake. The Gibbs plot illuminates that evaporation/crystallization is responsible for the chemical composition of the lake water. The variation in hydro-chemical regime might be attributed to the reduced lake levels between 1960s and 2000s. The lake level significantly correlated with the precipitation and evaporation in the Lake Qinghai catchment. In addition, changes of the lake level in the future are simulated according to climate warming scenarios from the IPCC report. The simulated results suggest that the lake level could rise again in the following decades due to the increased precipitation under the climate warming conditions, which is already a trend in the lake level observation data.展开更多
It is expected that ongoing and future space-borne planet survey missions including Transiting Exoplanet Survey Satellite(TESS),PLATO and Earth 2.0 will detect thousands of small to medium-sized planets via the transi...It is expected that ongoing and future space-borne planet survey missions including Transiting Exoplanet Survey Satellite(TESS),PLATO and Earth 2.0 will detect thousands of small to medium-sized planets via the transit technique,including over a hundred habitable terrestrial rocky planets.To conduct a detailed study of these terrestrial planets,particularly the cool ones with wide orbits,the exoplanet community has proposed various follow-up missions.The currently proposed European Space Agency mission Ariel is the first step for this purpose,and it is capable of characterization of planets down to warm super-Earths mainly using transmission spectroscopy.The NASA Large Ultraviolet/Optical/Infrared Surveyor mission proposed in the Astro2020 Decadal Survey white paper will endeavor to further identify habitable rocky planets,and is expected to launch around 2045.In the meanwhile,China is funding a concept study of a 6 m class space telescope named Tianlin(a UV/Opt/NIR large aperture space telescope)that aims to start its operation within the next 10–15 yr and last for 5+yr.Tianlin will be primarily aimed at the discovery and characterization of rocky planets in the habitable zones around nearby stars and to search for potential biosignatures mainly using the direct imaging method.Transmission and emission spectroscopy at moderate to high resolution will be carried out as well on a population of exoplanets to strengthen the understanding of the formation and evolution of exoplanets.It will also be utilized to perform in-depth studies of the cosmic web and early galaxies,and constrain the nature of dark matter and dark energy.We describe briefly the primary scientific motivations and main technical considerations based on our preliminary simulation results.We find that a monolithic off-axis space telescope with primary mirror diameter larger than 6 m equipped with a high contrast coronagraph can identify water in the atmosphere of a habitable-zone Earth-like planet around a Sunlike star.More simulations for the detectability of other key biosignatures including O_(3),O_(2),CH_(4)and chlorophyll are coming.展开更多
Magnetars form a special population of neutron stars with strong magnetic fields and long spin periods. About 30 magnetars and magnetar candidates known currently are probably isolated, but the possibility that magnet...Magnetars form a special population of neutron stars with strong magnetic fields and long spin periods. About 30 magnetars and magnetar candidates known currently are probably isolated, but the possibility that magnetars are in binaries has not been excluded. In this work, we perform spin evolution of neutron stars with different magnetic fields in wind-fed high-mass X-ray binaries and compare the spin period distribution with observations, aiming to find magnetars in binaries. Our simulation shows that some of the neutron stars, which have long spin periods or are in widely-separated systems, need strong magnetic fields to explain their spin evolution. This implies that there are probably magnetars in high-mass X-ray binaries. Moreover, this can further provide a theoretical basis for some unclear astronomical phenomena, such as the possible origin of periodic fast radio bursts from magnetars in binary systems.展开更多
Silicon photonics for synergistic electronic-photonic integration has achieved remarkable progress in the past two decades. Active photonic devices, including lasers, modulators, and photodetectors, are the key chal- ...Silicon photonics for synergistic electronic-photonic integration has achieved remarkable progress in the past two decades. Active photonic devices, including lasers, modulators, and photodetectors, are the key chal- lenges for Si photonics to meet the requirement of high bandwidth and low power consumption in photonic datalinks. Here we review recent efforts and progress in high-performance active photonic devices on Si, focusing on emerging technologies beyond conventional foundry-ready Si photonics devices. For emerging laser sources, we will discuss recent progress towards efficient monolithic Ge lasers, mid-infrared GeSn lasers, and high-per- formance InAs quantum dot lasers on Si for data center applications in the near future. We will then review novel modulator materials and devices beyond the free carrier plasma dispersion effect in Si, including GeSi and graphene electro-absorption modulators and plasmonic-organic electro-optical modulators, to achieve ultralow power and high speed modulation. Finally, we discuss emerging photodetectors beyond epitaxial Ge p-i-n photo- diodes, including GeSn mid-infrared photodetectors, all-Si plasmonic Schottky infrared photodetectors, and Si quanta image sensors for non-avalanche, low noise single photon detection and photon counting. These emerging technologies, though still under development, could make a significant impact on the future of large-scale electron- icSilicon photonics for synergistic electronic-photonic integration has achieved remarkable progress in the past two decades. Active photonic devices, including lasers, modulators, and photodetectors, are the key challenges for Si photonics to meet the requirement of high bandwidth and low power consumption in photonic datalinks. Here we review recent efforts and progress in high-performance active photonic devices on Si, focusing on emerging tech- nologies beyond conventional foundry-ready Si photonics devices. For emerging laser sources, we will discuss re- cent progress towards efficient monolithic Ge lasers, mid-infrared GeSn lasers, and high-performance InAs quantum dot lasers on Si for data center applications in the near future. We will then review novel modulator ma- terials and devices beyond the free carrier plasma dispersion effect in Si, including GeSi and graphene electro-ab- sorption modulators and plasmonic-organic electro-optical modulators, to achieve ultralow power and high speed modulation. Finally, we discuss emerging photodetectors beyond epitaxial Ge p-i-n photodiodes, including GeSn mid-infrared photodetectors, all-Si plasmonic Schottky infrared photodetectors, and Si quanta image sensors for non-avalanche, low noise single photon detection and photon counting. These emerging technologies, though still under development, could make a significant impact on the future of large-scale electronic-photonic integration with performance inaccessible from conventional Si photonics technologies-photonic integration with perform- ance inaccessible from conventional Si photonics technologies.展开更多
The Large Sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST),also known as the Guoshoujing Telescope,is a major national scientific facility for astronomical research located in Xinglong,China.Beginning with ...The Large Sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST),also known as the Guoshoujing Telescope,is a major national scientific facility for astronomical research located in Xinglong,China.Beginning with a pilot survey in 2011,LAMOST has been surveying the night sky for more than 10 years.The LAMOST survey covers various objects in the Universe,from normal stars to peculiar ones.展开更多
Two new compounds, jiadifenlactone acid monomethyl ester (1) and jiadifenin (3), and five known compounds were isolated from the fruits of I. jiadifengpi. Their structures were determined using spectroscopic techn...Two new compounds, jiadifenlactone acid monomethyl ester (1) and jiadifenin (3), and five known compounds were isolated from the fruits of I. jiadifengpi. Their structures were determined using spectroscopic techniques, in- cluding 1D, 2D NMR and HR-ESI-MS experiments. The relative stereochemistry ofjiadifenlactone acid monome- theyl ester (1) was further confirmed by X-ray crystallographic data. All isolates were evaluated for their effects on nerve growth factor (NGF)-mediated neurite outgrowth in pheochromocytoma (PC12) cells and two compounds showed promoting effects.展开更多
Fast radio bursts(FRBs) are millisecond-duration signals that are highly dispersed at distant galaxies. However, the physical origin of FRBs is still unknown. Coherent curvature emission by bunches, e.g., powered by s...Fast radio bursts(FRBs) are millisecond-duration signals that are highly dispersed at distant galaxies. However, the physical origin of FRBs is still unknown. Coherent curvature emission by bunches, e.g., powered by starquakes, has already been proposed for repeating FRBs. It has the nature of understanding narrowband radiation exhibiting time-frequency drifting. Recently, a highly active FRB source, i.e., FRB 20201124A, was reported to enter a newly active episode and emit at least some highly circular-polarized bursts. In this study, we revisit the polarized FRB emission, particularly investigating the production mechanisms of a highly circular polarization(CP) by deriving the intrinsic mechanism and propagative effect. The intrinsic mechanisms of invoking charged bunches are approached with radiative coherence. Consequently, a highly CP could naturally be explained by the coherent summation of outcome waves, generated or scattered by bunches, with different phases and electric vectors. Different kinds of evolutionary trajectories are found on the Poincaré sphere for the bunch-coherent polarization, and this behavior could be tested through future observations. Cyclotron resonance can result in the absorption of R-mode photons at a low altitude region of the magnetosphere, and an FRB should then be emitted from a high-altitude region if the waves have strong linear polarization. Circularly polarized components could be produced from Faraday conversion exhibiting a λ-oscillation, but the average CP fraction depends only on the income wave, indicating a possibility of a highly circular-polarized income wave. The analysis could be welcome if extremely high(e.g., almost 100%) CP from repeating FRBs is detected in the future. Finally, the production of a bulk of energetic bunches in the pulsar-like magnetosphere is discussed, which is relevant to the nature of the FRB central engine.展开更多
The optical conductivity of single layer graphene (SLG) can be significantly and reversibly modified when the Fermi level is tuned by electrical gating. However, so far this interesting property has rarely been applie...The optical conductivity of single layer graphene (SLG) can be significantly and reversibly modified when the Fermi level is tuned by electrical gating. However, so far this interesting property has rarely been applied to free-space two-dimensional (2D) photonic devices because the surface-incident absolute absorption of SLG is limited to 1%–2%. No significant change in either reflectance or transmittance would be observed even if SLG is made transparent upon gating. To achieve significantly enhanced surface-incident optical absorption in SLG in a device structure that also allows gating, here we embed SLG in an optical slot-antenna-coupled cavity (SAC) framework, simultaneously enhancing SLG absorption by up to 20 times and potentially enabling electrical gating of SLG as a step towards tunable 2D photonic surfaces. This framework synergistically integrates near-field enhancement induced by ultrahigh refractive index semimetal slot-antenna with broadband resonances in visible and infrared regimes, ~ 3 times more effective than a vertical cavity structure alone. An example of this framework consists of self-assembled, close-packed Sn nanodots separated by ~ 10 nm nanogaps on a SLG/SiO2/Al stack, which dramatically increases SLG optical absorption to 10%-25% at λ = 600–1,900 nm. The enhanced SLG absorption spectrum can also be controlled by the insulator thickness. For example, SLG embedded in this framework with a 150 nm-thick SiO2 insulating layer displays a distinctive red color in contrast to its surrounding regions without SLG on the same sample under white light illumination. This opens a potential path towards gate-tunable spectral reflectors. Overall, this work initiates a new approach towards tunable 2D photonic surfaces.展开更多
In order to solve to the technical bottleneck that powder is easy to reunite and without refining in the vibration ultrafine grinding(UFG)technology,the energy field of medium flow was studied by analyzing crushing en...In order to solve to the technical bottleneck that powder is easy to reunite and without refining in the vibration ultrafine grinding(UFG)technology,the energy field of medium flow was studied by analyzing crushing energy and energy transfer.The numerical simulation model of medium flow based on Particle Flow Code(PFC)was established.By setting four kinds of working conditions of amplitude and frequency,the dynamic graphics and curves of the energy field(such as kinetic energy,strain energy,velocity field,force chain and so on)were obtained.In the situation of mid-frequency with large amplitude,the average speed of front medium flow was 1.3–5.03 times that of others and the low-energy region was decreased by 6%to 10%.The largest kinetic energy and strain energy were 3.25 and 2.94 times the average value of others,respectively.The diamond UFG was analyzed in new vibration mills under the conditions of low frequency with large amplitude and mid-frequency with large amplitude.Utilizing a laser particle size analyzer,it was discovered that the particle sizes d(50)in these two models were 3.840µm and 0.260µm and bandwidths were 9.940µm and 3.825µm.This highlights the effect of mid-frequency with large amplitude in particle refining and bandwidth narrowing,which is of great importance in the fields of ultra-hard particle refining research and energy utilization.展开更多
To the Editor:Hepatocellular carcinoma(HCC)is the sixth most common tumor and the third leading cause of cancer death globally in 2020.[1]The lack of early diagnosis and high intratumoral heterogeneity in HCC are impo...To the Editor:Hepatocellular carcinoma(HCC)is the sixth most common tumor and the third leading cause of cancer death globally in 2020.[1]The lack of early diagnosis and high intratumoral heterogeneity in HCC are important reasons for its high mortality.Genetic susceptibility and environmental stimuli lead to a tumor mass consisting of mixed tumor cells with different differentiation characteristics.Thus,intratumoral heterogeneity is the inevitable product of the differentiation of tumor stem cells.[2]展开更多
The near-Earth(within~100 pc)supernova explosions in the past several million years can cause the global deposition of radioactive elements(e.g.,60Fe)on Earth.The remnants of such supernovae are too old to be easily i...The near-Earth(within~100 pc)supernova explosions in the past several million years can cause the global deposition of radioactive elements(e.g.,60Fe)on Earth.The remnants of such supernovae are too old to be easily identified.It is therefore of great interest to search for million-year-old near-Earth neutron stars or black holes,the products of supernovae.However,neutron stars and black holes are challenging to find even in our Solar neighbourhood if they are not radio pulsars or X-ray/γ-ray emitters.Here we report the discovery of one of the nearest(127.7±0.3 pc)neutron star candidates in a detached single-lined spectroscopic binary LAMOST J235456.73+335625.9(hereafter J2354).Utilizing the time-resolved ground-based spectroscopy and space photometry,we find that J2354 hosts an unseen compact object with M_(inv)being 1.4-1.6 M_(⊙).The follow-up Swift ultraviolet(UV)and X-ray observations suggest that the UV and X-ray emission is produced by the visible star rather than the compact object.Hence,J2354 probably harbours a neutron star rather than a hot ultramassive white dwarf.Two-hour exceptionally sensitive radio follow-up observations with Five-hundred-meter Aperture Spherical radio Telescope fail to reveal any pulsating radio signals at the 6σflux upper limit of 12.5μJy.Therefore,the neutron star candidate in J2354 can only be revealed via our time-resolved observations.Interestingly,the distance between J2354 and our Earth can be as close as~50 pc around 2.5 million years(Myrs)ago,as revealed by the Gaia kinematics.Our discovery demonstrates a promising way to unveil the hidden near-Earth neutron stars in binaries by exploring the optical time domain,thereby facilitating understanding of the metal-enrichment history in our Solar neighbourhood.展开更多
People gained limited progress on refinement of super-hard powder using the vibration mill for many years.According to various amplitude–frequency combination working conditions of vibration mill prototype,simulation...People gained limited progress on refinement of super-hard powder using the vibration mill for many years.According to various amplitude–frequency combination working conditions of vibration mill prototype,simulation research on dynamic characteristic of grinding medium flow field based on PFC is proposed in the paper,and a dynamics model of grinding medium flow field in barrel is established.Furthermore,trajectory image of medium flow,kinetic energy and strain energy and collision frequency can be obtained.The simulation analysis shows that collision between media as well as between media and the barrel can cause the changes of kinetic energy and strain energy of grinding medium flow under various amplitude–frequency combination conditions,and an energy-lacking region exists in the barrel.Contrast experiments under various working conditions show that kinetic energy and strain energy of grinding medium flow have large increment and energy-lacking regions become smaller,and then energy consumption decreases on working condition of high-amplitude and middle-frequency.The conclusion has practical value to refine powder by high-intensity vibration mill with certain frequency.展开更多
GeSn lasers enable the monolithic integration of lasers on the Si platform using all-group-Ⅳ direct-bandgap material.The GeSn laser study recently moved from optical pumping into electrical injection.In this work,we ...GeSn lasers enable the monolithic integration of lasers on the Si platform using all-group-Ⅳ direct-bandgap material.The GeSn laser study recently moved from optical pumping into electrical injection.In this work,we present explorative investigations of GeSn heterostructure laser diodes with various layer thicknesses and material compositions.Cap layer material was studied by using Si_(0.03)Ge_(0.89)Sn_(0.08) and Ge_(0.95)Sn_(0.05),and cap layer total thickness was also compared.The 190 nm SiGeSn-cap device had threshold of 0.6 kA/cm^(2) at 10 K and a maximum operating temperature(T_(max)) of 100 K,compared to 1.4 kA/cm^(2) and 50 K from 150 nm SiGeSn-cap device,respectively.Furthermore,the 220 nm GeSn-cap device had 10 K threshold at 2.4 kA/cm^(2) and T_(max) at 90 K,i.e.,higher threshold and lower maximal operation temperature compared to the SiGeSn cap layer,indicating that enhanced electron confinement using SiGeSn can reduce the threshold considerably.The study of the active region material showed that device gain region using Ge_(0.87)Sn_(0.13) had a higher threshold and lower T_(max),compared to Ge_(0.89)Sn_(0.11).The performance was affected by the metal absorption,free carrier absorption,and possibly defect density level.The maximum peak wavelength was measured as 2682 nm at 90 K by using Ge_(0.87)Sn_(0.13) in gain regions.The investigations provide directions to the future GeSn laser diode designs toward the full integration of group-Ⅳ photonics on a Si platform.展开更多
VX is a highly toxic organophosphorus nerve agent that the Chemical Weapons Convention classifies as a Schedule 1. In our previous study, we developed a method for detecting organophosphorus compounds using peptide se...VX is a highly toxic organophosphorus nerve agent that the Chemical Weapons Convention classifies as a Schedule 1. In our previous study, we developed a method for detecting organophosphorus compounds using peptide self-assembly. Nevertheless, the self-assembly mechanisms of peptides that bind organophosphorus and the roles of each peptide residue remain elusive, restricting the design and application of peptide materials. Here, we use a multi-scale computational combined with experimental approach to illustrate the self-assembly mechanism of peptide-bound VX and the roles played by residues in different peptide sequences. We calculated that the self-assembly of peptides was accelerated after adding VX, and the final size of assembled nanofibers was larger than the original one, aligning with experimental findings. The atomic scale details offered by our approach enabled us to clarify the connection between the peptide sequences and nanostructures formation, as well as the contribution of various residues in binding VX and assembly process. Our investigation revealed a tight correlation between the number of Tyrosine residues and morphology of the assembly. These results indicate a self-assembly mechanism of peptide and VX, which can be used to design functional peptides for binding and hydrolyzing other organophosphorus nerve agents for detoxification and biomedical applications.展开更多
基金supported by the National SKA Program of China(No.2020SKA0120100)the Strategic Priority Research Program of the CAS(No.XDB0550300)+1 种基金support from the National Natural Science Foundation of China(NSFC,Grant Nos.11988101 and 11933004)from the New Cornerstone Science Foundation through the New Cornerstone Investigator Program and the XPLORER PRIZE。
文摘With a growing sample of fast radio bursts(FRBs),we investigate the energy budget of different power sources within the framework of magnetar starquake triggering mechanism.During a starquake,the energy can be released in any form through strain,magnetic,rotational,and gravitational energies.The strain energy can be converted from three other kinds of energy during starquakes.The following findings are revealed:(1)The crust can store free magnetic energy of~10^(46)erg by existing toroidal fields,sustaining 10^(6)bursts with frequent starquakes occurring due to crustal instability.(2)The strain energy develops as a rigid object spins down,which can be released during a global starquake accompanied by a glitch.However,it takes a long time to accumulate enough strain energy via spindown.(3)The rotational energy of a magnetar with P■0.1 s can match the energy and luminosity budget of FRBs.(4)The budget of the total gravitational energy is high,but the mechanism and efficiency of converting this energy to radiation deserve further exploration.
基金Special Project for Research on Vocational Education and Industrial Talent in Shandong Province in 2023:General Fund Project“Innovative Research on the‘Four-Way Integration,Three-Stage Progression,Four-Way Progression,Value-Added Evaluation,Double Selection and Promotion’Internship Training Mode Under the Reform of the Modern Vocational Education System Construction”(Project number:2023ZX058)。
文摘This article mainly introduces the innovative internship and training model of vocational colleges,including five aspects such as“four-party collaboration,three-stage progression,four-way integration,value-added evaluation,and double selection and promotion.”The model aims to improve students’practical skills and professional quality to better adapt to market demand and social development.The article also presents the prospects of the future internship and training model,including strengthening cooperation and communication with industry enterprises,focusing on students’personalized development and practical skill cultivation,and establishing a scientific and objective evaluation and feedback mechanism.
文摘In the wake of climate warming, the water level of Lake Qinghai has been continuously and rapidly declining during the past decades, causing the regional government and citizens to worry about its future as a water resource. To understand the lake evolution process, the hydro-chemical characteristics of Lake Qinghai were investigated in August of 2008. The results show that Na<sup>+</sup> and Cl<sup>-</sup> are the dominant cations and anions in the lake water, respectively, and hydrochemistry type is Cl<sup>-</sup>- Na<sup>+</sup> with an obvious characteristic of a saline lake. The Gibbs plot illuminates that evaporation/crystallization is responsible for the chemical composition of the lake water. The variation in hydro-chemical regime might be attributed to the reduced lake levels between 1960s and 2000s. The lake level significantly correlated with the precipitation and evaporation in the Lake Qinghai catchment. In addition, changes of the lake level in the future are simulated according to climate warming scenarios from the IPCC report. The simulated results suggest that the lake level could rise again in the following decades due to the increased precipitation under the climate warming conditions, which is already a trend in the lake level observation data.
基金supported by the National Natural Science Foundation of China(NSFC,grants Nos.62127901,11988101,42075123 and 42005098)the National Key R&D Program of China No.2019YFA0405102+2 种基金the Strategic Priority Research Program of Chinese Academy of Sciences(CAS),grant Nos.XDA15016200 and XDA15072113supported by the Chinese Academy of Sciences(CAS),through a grant to the CAS South America Center for Astronomy(CASSACA)in Santiago,Chilethe science research grants from the China Manned Space Project with No.CMS-CSST-2021-B12.
文摘It is expected that ongoing and future space-borne planet survey missions including Transiting Exoplanet Survey Satellite(TESS),PLATO and Earth 2.0 will detect thousands of small to medium-sized planets via the transit technique,including over a hundred habitable terrestrial rocky planets.To conduct a detailed study of these terrestrial planets,particularly the cool ones with wide orbits,the exoplanet community has proposed various follow-up missions.The currently proposed European Space Agency mission Ariel is the first step for this purpose,and it is capable of characterization of planets down to warm super-Earths mainly using transmission spectroscopy.The NASA Large Ultraviolet/Optical/Infrared Surveyor mission proposed in the Astro2020 Decadal Survey white paper will endeavor to further identify habitable rocky planets,and is expected to launch around 2045.In the meanwhile,China is funding a concept study of a 6 m class space telescope named Tianlin(a UV/Opt/NIR large aperture space telescope)that aims to start its operation within the next 10–15 yr and last for 5+yr.Tianlin will be primarily aimed at the discovery and characterization of rocky planets in the habitable zones around nearby stars and to search for potential biosignatures mainly using the direct imaging method.Transmission and emission spectroscopy at moderate to high resolution will be carried out as well on a population of exoplanets to strengthen the understanding of the formation and evolution of exoplanets.It will also be utilized to perform in-depth studies of the cosmic web and early galaxies,and constrain the nature of dark matter and dark energy.We describe briefly the primary scientific motivations and main technical considerations based on our preliminary simulation results.We find that a monolithic off-axis space telescope with primary mirror diameter larger than 6 m equipped with a high contrast coronagraph can identify water in the atmosphere of a habitable-zone Earth-like planet around a Sunlike star.More simulations for the detectability of other key biosignatures including O_(3),O_(2),CH_(4)and chlorophyll are coming.
基金Supported by the National Natural Science Foundation of China。
文摘Magnetars form a special population of neutron stars with strong magnetic fields and long spin periods. About 30 magnetars and magnetar candidates known currently are probably isolated, but the possibility that magnetars are in binaries has not been excluded. In this work, we perform spin evolution of neutron stars with different magnetic fields in wind-fed high-mass X-ray binaries and compare the spin period distribution with observations, aiming to find magnetars in binaries. Our simulation shows that some of the neutron stars, which have long spin periods or are in widely-separated systems, need strong magnetic fields to explain their spin evolution. This implies that there are probably magnetars in high-mass X-ray binaries. Moreover, this can further provide a theoretical basis for some unclear astronomical phenomena, such as the possible origin of periodic fast radio bursts from magnetars in binary systems.
文摘Silicon photonics for synergistic electronic-photonic integration has achieved remarkable progress in the past two decades. Active photonic devices, including lasers, modulators, and photodetectors, are the key chal- lenges for Si photonics to meet the requirement of high bandwidth and low power consumption in photonic datalinks. Here we review recent efforts and progress in high-performance active photonic devices on Si, focusing on emerging technologies beyond conventional foundry-ready Si photonics devices. For emerging laser sources, we will discuss recent progress towards efficient monolithic Ge lasers, mid-infrared GeSn lasers, and high-per- formance InAs quantum dot lasers on Si for data center applications in the near future. We will then review novel modulator materials and devices beyond the free carrier plasma dispersion effect in Si, including GeSi and graphene electro-absorption modulators and plasmonic-organic electro-optical modulators, to achieve ultralow power and high speed modulation. Finally, we discuss emerging photodetectors beyond epitaxial Ge p-i-n photo- diodes, including GeSn mid-infrared photodetectors, all-Si plasmonic Schottky infrared photodetectors, and Si quanta image sensors for non-avalanche, low noise single photon detection and photon counting. These emerging technologies, though still under development, could make a significant impact on the future of large-scale electron- icSilicon photonics for synergistic electronic-photonic integration has achieved remarkable progress in the past two decades. Active photonic devices, including lasers, modulators, and photodetectors, are the key challenges for Si photonics to meet the requirement of high bandwidth and low power consumption in photonic datalinks. Here we review recent efforts and progress in high-performance active photonic devices on Si, focusing on emerging tech- nologies beyond conventional foundry-ready Si photonics devices. For emerging laser sources, we will discuss re- cent progress towards efficient monolithic Ge lasers, mid-infrared GeSn lasers, and high-performance InAs quantum dot lasers on Si for data center applications in the near future. We will then review novel modulator ma- terials and devices beyond the free carrier plasma dispersion effect in Si, including GeSi and graphene electro-ab- sorption modulators and plasmonic-organic electro-optical modulators, to achieve ultralow power and high speed modulation. Finally, we discuss emerging photodetectors beyond epitaxial Ge p-i-n photodiodes, including GeSn mid-infrared photodetectors, all-Si plasmonic Schottky infrared photodetectors, and Si quanta image sensors for non-avalanche, low noise single photon detection and photon counting. These emerging technologies, though still under development, could make a significant impact on the future of large-scale electronic-photonic integration with performance inaccessible from conventional Si photonics technologies-photonic integration with perform- ance inaccessible from conventional Si photonics technologies.
基金This work is supported by the the National Natural Science Foundation of China under grant nos.11988101,11973049,11933004,11890694,12090040,12090042,12090043,12090044,11833002,11833006,12022304,11835057,11973052,11633005,12173007,11933001,11703035,U2031203,and U1531244the National Key R&D Program of China under grant nos.2019YFA0405100,2019YFA0405500,2019YFA0405502,2019YFA0405503,2019YFA0405504,2016YFA0400804,and 2019YFA0405000+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences,grant nos.XDB34020205 and XDB41000000H.Yan,H.L.,S.W.,and Hailong Yuan acknowledge support from the Youth Innovation Promotion Association of the Chinese Academy of Sciences(nos.2019060,Y202017,2019057,and 2020060,respectively).
文摘The Large Sky Area Multi-Object Fiber Spectroscopic Telescope(LAMOST),also known as the Guoshoujing Telescope,is a major national scientific facility for astronomical research located in Xinglong,China.Beginning with a pilot survey in 2011,LAMOST has been surveying the night sky for more than 10 years.The LAMOST survey covers various objects in the Universe,from normal stars to peculiar ones.
文摘Two new compounds, jiadifenlactone acid monomethyl ester (1) and jiadifenin (3), and five known compounds were isolated from the fruits of I. jiadifengpi. Their structures were determined using spectroscopic techniques, in- cluding 1D, 2D NMR and HR-ESI-MS experiments. The relative stereochemistry ofjiadifenlactone acid monome- theyl ester (1) was further confirmed by X-ray crystallographic data. All isolates were evaluated for their effects on nerve growth factor (NGF)-mediated neurite outgrowth in pheochromocytoma (PC12) cells and two compounds showed promoting effects.
基金supported by the National Key R&D Program of China(Grant No.2017YFA0402602)National SKA Program of China(Grant No.2020SKA0120100)+1 种基金Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDB23010200)supported by a Boya Fellowship and the fellowship of China Postdoctoral Science Foundation(Grant No.2021M700247)。
文摘Fast radio bursts(FRBs) are millisecond-duration signals that are highly dispersed at distant galaxies. However, the physical origin of FRBs is still unknown. Coherent curvature emission by bunches, e.g., powered by starquakes, has already been proposed for repeating FRBs. It has the nature of understanding narrowband radiation exhibiting time-frequency drifting. Recently, a highly active FRB source, i.e., FRB 20201124A, was reported to enter a newly active episode and emit at least some highly circular-polarized bursts. In this study, we revisit the polarized FRB emission, particularly investigating the production mechanisms of a highly circular polarization(CP) by deriving the intrinsic mechanism and propagative effect. The intrinsic mechanisms of invoking charged bunches are approached with radiative coherence. Consequently, a highly CP could naturally be explained by the coherent summation of outcome waves, generated or scattered by bunches, with different phases and electric vectors. Different kinds of evolutionary trajectories are found on the Poincaré sphere for the bunch-coherent polarization, and this behavior could be tested through future observations. Cyclotron resonance can result in the absorption of R-mode photons at a low altitude region of the magnetosphere, and an FRB should then be emitted from a high-altitude region if the waves have strong linear polarization. Circularly polarized components could be produced from Faraday conversion exhibiting a λ-oscillation, but the average CP fraction depends only on the income wave, indicating a possibility of a highly circular-polarized income wave. The analysis could be welcome if extremely high(e.g., almost 100%) CP from repeating FRBs is detected in the future. Finally, the production of a bulk of energetic bunches in the pulsar-like magnetosphere is discussed, which is relevant to the nature of the FRB central engine.
基金This work has been sponsored by National Science Foundation under the collaborative research awards#1509272 and#1509197We thank Dr.Christopher Levey from Thayer school of Engineering at Dartmouth College for helpful discussionsWe greatly appreciate the advanced characterization instruments of the Electron Microscope Facility at Dartmouth College and the materials processing instruments of the Micro-System Technology Lab at MIT.
文摘The optical conductivity of single layer graphene (SLG) can be significantly and reversibly modified when the Fermi level is tuned by electrical gating. However, so far this interesting property has rarely been applied to free-space two-dimensional (2D) photonic devices because the surface-incident absolute absorption of SLG is limited to 1%–2%. No significant change in either reflectance or transmittance would be observed even if SLG is made transparent upon gating. To achieve significantly enhanced surface-incident optical absorption in SLG in a device structure that also allows gating, here we embed SLG in an optical slot-antenna-coupled cavity (SAC) framework, simultaneously enhancing SLG absorption by up to 20 times and potentially enabling electrical gating of SLG as a step towards tunable 2D photonic surfaces. This framework synergistically integrates near-field enhancement induced by ultrahigh refractive index semimetal slot-antenna with broadband resonances in visible and infrared regimes, ~ 3 times more effective than a vertical cavity structure alone. An example of this framework consists of self-assembled, close-packed Sn nanodots separated by ~ 10 nm nanogaps on a SLG/SiO2/Al stack, which dramatically increases SLG optical absorption to 10%-25% at λ = 600–1,900 nm. The enhanced SLG absorption spectrum can also be controlled by the insulator thickness. For example, SLG embedded in this framework with a 150 nm-thick SiO2 insulating layer displays a distinctive red color in contrast to its surrounding regions without SLG on the same sample under white light illumination. This opens a potential path towards gate-tunable spectral reflectors. Overall, this work initiates a new approach towards tunable 2D photonic surfaces.
基金the financial support from National Natural Science Foundation of China(51375221)College students of technology innovation projects in Jiangsu(201611276008Z)College students of“Challenge cup”fostering support projects of Nanjing Institute of Technology(TZ20170002).
文摘In order to solve to the technical bottleneck that powder is easy to reunite and without refining in the vibration ultrafine grinding(UFG)technology,the energy field of medium flow was studied by analyzing crushing energy and energy transfer.The numerical simulation model of medium flow based on Particle Flow Code(PFC)was established.By setting four kinds of working conditions of amplitude and frequency,the dynamic graphics and curves of the energy field(such as kinetic energy,strain energy,velocity field,force chain and so on)were obtained.In the situation of mid-frequency with large amplitude,the average speed of front medium flow was 1.3–5.03 times that of others and the low-energy region was decreased by 6%to 10%.The largest kinetic energy and strain energy were 3.25 and 2.94 times the average value of others,respectively.The diamond UFG was analyzed in new vibration mills under the conditions of low frequency with large amplitude and mid-frequency with large amplitude.Utilizing a laser particle size analyzer,it was discovered that the particle sizes d(50)in these two models were 3.840µm and 0.260µm and bandwidths were 9.940µm and 3.825µm.This highlights the effect of mid-frequency with large amplitude in particle refining and bandwidth narrowing,which is of great importance in the fields of ultra-hard particle refining research and energy utilization.
基金supported by The Leading Talent of Hundred,Thousand and Ten Thousand Project of Xingliao Gifted Person Program of Liaoning Province(No.XLYC1905013)Type A Project of Leading Talent’s Innovative Research of Dalian,Capacity-Building Projects of Clinical Discipline of Traditional Chinese Medicine of Health,and Family Planning Commission of Liaoning Province in 2018(No.LNZYXZK201806).
文摘To the Editor:Hepatocellular carcinoma(HCC)is the sixth most common tumor and the third leading cause of cancer death globally in 2020.[1]The lack of early diagnosis and high intratumoral heterogeneity in HCC are important reasons for its high mortality.Genetic susceptibility and environmental stimuli lead to a tumor mass consisting of mixed tumor cells with different differentiation characteristics.Thus,intratumoral heterogeneity is the inevitable product of the differentiation of tumor stem cells.[2]
基金supported by the National Key R&D Program of China(Grant No.2021YFA1600401)the National Natural Science Foundation of China(NSFC)(Grant Nos.11925301+10 种基金12033006)supported by the NSFC(Grant Nos.11973002,and 12322303)supported by the NSFC(Grant No.12103041)supported by the NSFC(Grant Nos.11988101,and 11933004)supported by the NSFC(Grant No.U2031117)supported by the NSFC(Grant No.12033004)supported by the NSFC(Grant No.12273029)supported by the NSFC(Grant No.12221003)supported by the NSFC(Grant No.11933008)supported by the NSFC(Grant No.12090044)supported by the NSFC(Grant Nos.12041301,and 12121003)。
文摘The near-Earth(within~100 pc)supernova explosions in the past several million years can cause the global deposition of radioactive elements(e.g.,60Fe)on Earth.The remnants of such supernovae are too old to be easily identified.It is therefore of great interest to search for million-year-old near-Earth neutron stars or black holes,the products of supernovae.However,neutron stars and black holes are challenging to find even in our Solar neighbourhood if they are not radio pulsars or X-ray/γ-ray emitters.Here we report the discovery of one of the nearest(127.7±0.3 pc)neutron star candidates in a detached single-lined spectroscopic binary LAMOST J235456.73+335625.9(hereafter J2354).Utilizing the time-resolved ground-based spectroscopy and space photometry,we find that J2354 hosts an unseen compact object with M_(inv)being 1.4-1.6 M_(⊙).The follow-up Swift ultraviolet(UV)and X-ray observations suggest that the UV and X-ray emission is produced by the visible star rather than the compact object.Hence,J2354 probably harbours a neutron star rather than a hot ultramassive white dwarf.Two-hour exceptionally sensitive radio follow-up observations with Five-hundred-meter Aperture Spherical radio Telescope fail to reveal any pulsating radio signals at the 6σflux upper limit of 12.5μJy.Therefore,the neutron star candidate in J2354 can only be revealed via our time-resolved observations.Interestingly,the distance between J2354 and our Earth can be as close as~50 pc around 2.5 million years(Myrs)ago,as revealed by the Gaia kinematics.Our discovery demonstrates a promising way to unveil the hidden near-Earth neutron stars in binaries by exploring the optical time domain,thereby facilitating understanding of the metal-enrichment history in our Solar neighbourhood.
基金The authors acknowledge the financial support from National Natural Science Foundation of China(51375221)Natural Science Fund in Jiangsu Province(BK2012865)+2 种基金Scientific and Technological Projects of Zhengzhou City(20130797)college students of Science and Technology Innovation Projects in Jiangsu Province(201411276009Z)Key Scientific and technological projects of Henan(42102210138).
文摘People gained limited progress on refinement of super-hard powder using the vibration mill for many years.According to various amplitude–frequency combination working conditions of vibration mill prototype,simulation research on dynamic characteristic of grinding medium flow field based on PFC is proposed in the paper,and a dynamics model of grinding medium flow field in barrel is established.Furthermore,trajectory image of medium flow,kinetic energy and strain energy and collision frequency can be obtained.The simulation analysis shows that collision between media as well as between media and the barrel can cause the changes of kinetic energy and strain energy of grinding medium flow under various amplitude–frequency combination conditions,and an energy-lacking region exists in the barrel.Contrast experiments under various working conditions show that kinetic energy and strain energy of grinding medium flow have large increment and energy-lacking regions become smaller,and then energy consumption decreases on working condition of high-amplitude and middle-frequency.The conclusion has practical value to refine powder by high-intensity vibration mill with certain frequency.
基金Air Force Office of Scientific Research (FA9550-18-1-0045, FA9550-19-1-0341, FA9550-21-1-0347)。
文摘GeSn lasers enable the monolithic integration of lasers on the Si platform using all-group-Ⅳ direct-bandgap material.The GeSn laser study recently moved from optical pumping into electrical injection.In this work,we present explorative investigations of GeSn heterostructure laser diodes with various layer thicknesses and material compositions.Cap layer material was studied by using Si_(0.03)Ge_(0.89)Sn_(0.08) and Ge_(0.95)Sn_(0.05),and cap layer total thickness was also compared.The 190 nm SiGeSn-cap device had threshold of 0.6 kA/cm^(2) at 10 K and a maximum operating temperature(T_(max)) of 100 K,compared to 1.4 kA/cm^(2) and 50 K from 150 nm SiGeSn-cap device,respectively.Furthermore,the 220 nm GeSn-cap device had 10 K threshold at 2.4 kA/cm^(2) and T_(max) at 90 K,i.e.,higher threshold and lower maximal operation temperature compared to the SiGeSn cap layer,indicating that enhanced electron confinement using SiGeSn can reduce the threshold considerably.The study of the active region material showed that device gain region using Ge_(0.87)Sn_(0.13) had a higher threshold and lower T_(max),compared to Ge_(0.89)Sn_(0.11).The performance was affected by the metal absorption,free carrier absorption,and possibly defect density level.The maximum peak wavelength was measured as 2682 nm at 90 K by using Ge_(0.87)Sn_(0.13) in gain regions.The investigations provide directions to the future GeSn laser diode designs toward the full integration of group-Ⅳ photonics on a Si platform.
基金supported by the National Key R&D Program of China(No.2020YFF0305002)the Project program of Tianjin Key Laboratory of Food Quality and Health,Tianjin University of Science and Technology(No.TJS202102).
文摘VX is a highly toxic organophosphorus nerve agent that the Chemical Weapons Convention classifies as a Schedule 1. In our previous study, we developed a method for detecting organophosphorus compounds using peptide self-assembly. Nevertheless, the self-assembly mechanisms of peptides that bind organophosphorus and the roles of each peptide residue remain elusive, restricting the design and application of peptide materials. Here, we use a multi-scale computational combined with experimental approach to illustrate the self-assembly mechanism of peptide-bound VX and the roles played by residues in different peptide sequences. We calculated that the self-assembly of peptides was accelerated after adding VX, and the final size of assembled nanofibers was larger than the original one, aligning with experimental findings. The atomic scale details offered by our approach enabled us to clarify the connection between the peptide sequences and nanostructures formation, as well as the contribution of various residues in binding VX and assembly process. Our investigation revealed a tight correlation between the number of Tyrosine residues and morphology of the assembly. These results indicate a self-assembly mechanism of peptide and VX, which can be used to design functional peptides for binding and hydrolyzing other organophosphorus nerve agents for detoxification and biomedical applications.