Chiral metamaterials have been proven to possess many appealing mechanical phenomena,such as negative Poisson's ratio,high-impact resistance,and energy absorption.This work extends the applications of chiral metam...Chiral metamaterials have been proven to possess many appealing mechanical phenomena,such as negative Poisson's ratio,high-impact resistance,and energy absorption.This work extends the applications of chiral metamaterials to underwater sound insulation.Various chiral metamaterials with low acoustic impedance and proper stiffness are inversely designed using the topology optimization scheme.Low acoustic impedance enables the metamaterials to have a high and broadband sound transmission loss(STL),while proper stiffness guarantees its robust acoustic performance under a hydrostatic pressure.As proof-of-concept demonstrations,two specimens are fabricated and tested in a water-filled impedance tube.Experimental results show that,on average,over 95%incident sound energy can be isolated by the specimens in a broad frequency range from 1 k Hz to 5 k Hz,while the sound insulation performance keeps stable under a certain hydrostatic pressure.This work may provide new insights for chiral metamaterials into the underwater applications with sound insulation.展开更多
The violent vibration of supersonic wings threatens aircraft safety.This paper proposes the strongly nonlinear acoustic metamaterial(NAM)method to mitigate aeroelastic vibration in supersonic wing plates.We employ the...The violent vibration of supersonic wings threatens aircraft safety.This paper proposes the strongly nonlinear acoustic metamaterial(NAM)method to mitigate aeroelastic vibration in supersonic wing plates.We employ the cantilever plate to simulate the practical behavior of a wing.An aeroelastic vibration model of the NAM cantilever plate is established based on the mode superposition method and a modified third-order piston theory.The aerodynamic properties are systematically studied using both the timedomain integration and frequency-domain harmonic balance methods.While presenting the flutter and post-flutter behaviors of the NAM wing,we emphasize more on the preflutter broadband vibration that is prevalent in aircraft.The results show that the NAM method can reduce the low-frequency and broadband pre-flutter steady vibration by 50%-90%,while the post-flutter vibration is reduced by over 95%,and the critical flutter velocity is also slightly delayed.As clarified,the significant reduction arises from the bandgap,chaotic band,and nonlinear resonances of the NAM plate.The reduction effect is robust across a broad range of parameters,with optimal performance achieved with only 10%attached mass.This work offers a novel approach for reducing aeroelastic vibration in aircraft,and it expands the study of nonlinear acoustic/elastic metamaterials.展开更多
To solve the problem of low broadband multi-directional vibration control of fluid-conveying pipes,a novel metamaterial periodic structure with multi-directional wide bandgaps is proposed.First,an integrated design me...To solve the problem of low broadband multi-directional vibration control of fluid-conveying pipes,a novel metamaterial periodic structure with multi-directional wide bandgaps is proposed.First,an integrated design method is proposed for the longitudinal and transverse wave control of fluid-conveying pipes,and a novel periodic structure unit model is constructed for vibration reduction.Based on the bandgap vibration reduction mechanism of the acoustic metamaterial periodic structure,the material parameters,structural parameters,and the arrangement interval of the periodic structure unit are optimized.The finite element method(FEM)is used to predict the vibration transmission characteristics of the fluid-conveying pipe installed with the vibration reduction periodic structure.Then,the wave/spectrum element method(WSEM)and experimental test are used to verify the calculated results above.Lastly,the vibration attenuation characteristics of the structure under different conditions,such as rubber material parameters,mass ring material,and fluid-structure coupling effect,are analyzed.The results show that the structure can produce a complete bandgap of 46 Hz-75 Hz in the low-frequency band below 100 Hz,which can effectively suppress the low broadband vibration of the fluidconveying pipe.In addition,a high damping rubber material is used in the design of the periodic structure unit,which realizes the effective suppression of each formant peak of the pipe,and improves the vibration reduction effect of the fluid-conveying pipe.Meanwhile,the structure has the effect of suppressing both bending vibration and longitudinal vibration,and effectively inhibits the transmission of transverse waves and longitudinal waves in the pipe.The research results provide a reference for the application of acoustic metamaterials in the multi-directional vibration control of fluid-conveying pipes.展开更多
Nonlinear elastic metamaterial,a topic which has attracted extensive attention in recent years,can enable broadband vibration reduction under relatively large amplitude.The combination of damping and strong nonlineari...Nonlinear elastic metamaterial,a topic which has attracted extensive attention in recent years,can enable broadband vibration reduction under relatively large amplitude.The combination of damping and strong nonlinearity in metamaterials may entail extraordinary effects and offer the capability for low-frequency and broadband vibration reduction.However,there exists a clear lack of proper design methods as well as the deficiency in understanding properties arising from this concept.To tackle this problem,this paper numerically demonstrates that the nonlinear elastic metamaterials,consisting of sandwich damping layers and collision resonators,can generate very robust hyper-damping effect,conducive to efficient and broadband vibration suppression.The collision-enhanced hyper damping is persistently presented in a large parameter space,ranging from small to large amplitudes,and for small and large damping coefficients.The achieved robust effects greatly enlarge the application scope of nonlinear metamaterials.We report the design concept,properties and mechanisms of the hyper-damping and its effect on vibration transmission.This paper reveals new properties offered by nonlinear elastic metamaterials,and offers a robust method for achieving efficient low-frequency and broadband vibration suppression.展开更多
A periodical composite material pipe is proposed based on the Bragg scattering mechanism of phononic crystals (PCs). The band gap (BG) properties of the flexural wave in this PC pipe under axial load and hydro-pressur...A periodical composite material pipe is proposed based on the Bragg scattering mechanism of phononic crystals (PCs). The band gap (BG) properties of the flexural wave in this PC pipe under axial load and hydro-pressure are calculated using the transfer matrix (TM) method. The frequency response functions (FRFs) of the PC pipe under axial load and hydro-pressure are calculated using the finite element approach, and the mechanism is elucidated to illustrate the phenomenon. The results show that axial load and hydro-pressure and their combination all have a great influence on the flexural vibration proper ties. This research offers theoretical support for research on PC pipes with complex conditions and is of great significance in solving the problem of high pressure.展开更多
基金supported by the National Natural Science Foundation of China(Nos.52171327,11991032,52201386,and 51805537)。
文摘Chiral metamaterials have been proven to possess many appealing mechanical phenomena,such as negative Poisson's ratio,high-impact resistance,and energy absorption.This work extends the applications of chiral metamaterials to underwater sound insulation.Various chiral metamaterials with low acoustic impedance and proper stiffness are inversely designed using the topology optimization scheme.Low acoustic impedance enables the metamaterials to have a high and broadband sound transmission loss(STL),while proper stiffness guarantees its robust acoustic performance under a hydrostatic pressure.As proof-of-concept demonstrations,two specimens are fabricated and tested in a water-filled impedance tube.Experimental results show that,on average,over 95%incident sound energy can be isolated by the specimens in a broad frequency range from 1 k Hz to 5 k Hz,while the sound insulation performance keeps stable under a certain hydrostatic pressure.This work may provide new insights for chiral metamaterials into the underwater applications with sound insulation.
基金supported by the National Natural Science Foundation of China(Nos.52241103,52322505,and 11991032)the Natural Science Foundation of Hunan Province of China(No.2023JJ10055)。
文摘The violent vibration of supersonic wings threatens aircraft safety.This paper proposes the strongly nonlinear acoustic metamaterial(NAM)method to mitigate aeroelastic vibration in supersonic wing plates.We employ the cantilever plate to simulate the practical behavior of a wing.An aeroelastic vibration model of the NAM cantilever plate is established based on the mode superposition method and a modified third-order piston theory.The aerodynamic properties are systematically studied using both the timedomain integration and frequency-domain harmonic balance methods.While presenting the flutter and post-flutter behaviors of the NAM wing,we emphasize more on the preflutter broadband vibration that is prevalent in aircraft.The results show that the NAM method can reduce the low-frequency and broadband pre-flutter steady vibration by 50%-90%,while the post-flutter vibration is reduced by over 95%,and the critical flutter velocity is also slightly delayed.As clarified,the significant reduction arises from the bandgap,chaotic band,and nonlinear resonances of the NAM plate.The reduction effect is robust across a broad range of parameters,with optimal performance achieved with only 10%attached mass.This work offers a novel approach for reducing aeroelastic vibration in aircraft,and it expands the study of nonlinear acoustic/elastic metamaterials.
基金supported by the National Natural Science Foundation of China(Nos.11991032 and 52241103)。
文摘To solve the problem of low broadband multi-directional vibration control of fluid-conveying pipes,a novel metamaterial periodic structure with multi-directional wide bandgaps is proposed.First,an integrated design method is proposed for the longitudinal and transverse wave control of fluid-conveying pipes,and a novel periodic structure unit model is constructed for vibration reduction.Based on the bandgap vibration reduction mechanism of the acoustic metamaterial periodic structure,the material parameters,structural parameters,and the arrangement interval of the periodic structure unit are optimized.The finite element method(FEM)is used to predict the vibration transmission characteristics of the fluid-conveying pipe installed with the vibration reduction periodic structure.Then,the wave/spectrum element method(WSEM)and experimental test are used to verify the calculated results above.Lastly,the vibration attenuation characteristics of the structure under different conditions,such as rubber material parameters,mass ring material,and fluid-structure coupling effect,are analyzed.The results show that the structure can produce a complete bandgap of 46 Hz-75 Hz in the low-frequency band below 100 Hz,which can effectively suppress the low broadband vibration of the fluidconveying pipe.In addition,a high damping rubber material is used in the design of the periodic structure unit,which realizes the effective suppression of each formant peak of the pipe,and improves the vibration reduction effect of the fluid-conveying pipe.Meanwhile,the structure has the effect of suppressing both bending vibration and longitudinal vibration,and effectively inhibits the transmission of transverse waves and longitudinal waves in the pipe.The research results provide a reference for the application of acoustic metamaterials in the multi-directional vibration control of fluid-conveying pipes.
基金supported by the National Natural Science Foundation of China(Grant Nos.11872371,11991032,and 12002371)the Science and Technology Innovation Program of Hunan Province,China(Grant No.2020RC4022)。
文摘Nonlinear elastic metamaterial,a topic which has attracted extensive attention in recent years,can enable broadband vibration reduction under relatively large amplitude.The combination of damping and strong nonlinearity in metamaterials may entail extraordinary effects and offer the capability for low-frequency and broadband vibration reduction.However,there exists a clear lack of proper design methods as well as the deficiency in understanding properties arising from this concept.To tackle this problem,this paper numerically demonstrates that the nonlinear elastic metamaterials,consisting of sandwich damping layers and collision resonators,can generate very robust hyper-damping effect,conducive to efficient and broadband vibration suppression.The collision-enhanced hyper damping is persistently presented in a large parameter space,ranging from small to large amplitudes,and for small and large damping coefficients.The achieved robust effects greatly enlarge the application scope of nonlinear metamaterials.We report the design concept,properties and mechanisms of the hyper-damping and its effect on vibration transmission.This paper reveals new properties offered by nonlinear elastic metamaterials,and offers a robust method for achieving efficient low-frequency and broadband vibration suppression.
基金the National Natural Science Foundation of China (Grant Nos. 51275519 and 11372346).
文摘A periodical composite material pipe is proposed based on the Bragg scattering mechanism of phononic crystals (PCs). The band gap (BG) properties of the flexural wave in this PC pipe under axial load and hydro-pressure are calculated using the transfer matrix (TM) method. The frequency response functions (FRFs) of the PC pipe under axial load and hydro-pressure are calculated using the finite element approach, and the mechanism is elucidated to illustrate the phenomenon. The results show that axial load and hydro-pressure and their combination all have a great influence on the flexural vibration proper ties. This research offers theoretical support for research on PC pipes with complex conditions and is of great significance in solving the problem of high pressure.