期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
电化学谱学表征方法的应用与发展 被引量:1
1
作者 朱越洲 王琨 +3 位作者 郑世胜 汪弘嘉 董金超 李剑锋 《物理化学学报》 SCIE CAS CSCD 北大核心 2024年第3期1-19,共19页
经历两个多世纪的发展,电化学表征方法的理论和实验研究不断完善,在表界面精细结构表征、电化学反应机理研究等方面起到重要作用。电化学谱学表征技术的出现,填补了传统电化学表征方法在分子水平上鉴定电化学反应活性位点及中间物种的... 经历两个多世纪的发展,电化学表征方法的理论和实验研究不断完善,在表界面精细结构表征、电化学反应机理研究等方面起到重要作用。电化学谱学表征技术的出现,填补了传统电化学表征方法在分子水平上鉴定电化学反应活性位点及中间物种的空白。本文总结了近年来红外光谱(IR)、表面增强拉曼光谱(SERS)及和频振动光谱(SFG)三种经典分子振动光谱电化学表征技术的研究进展。首先介绍了三种光谱的基本原理和电化学联用电解池的设计,然后从基础电化学理论出发,介绍其在模型单晶体系及界面水机理研究中的应用,进一步重点介绍了其在锂离子电池和燃料电池领域的相关研究进展,最后展望了电化学谱学表征技术的未来发展方向。 展开更多
关键词 光谱电化学 傅里叶变换红外光谱 表面增强拉曼光谱 和频振动光谱
下载PDF
碳载金属单原子催化剂的电合成氨进展
2
作者 李沐霖 谢一萌 +3 位作者 宋静婷 杨级 董金超 李剑锋 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第5期42-67,共26页
氨不仅是生产农业肥料和医药分子的关键原料,同时因其具备高能量密度和零碳排放的特性,也被视为极具潜力的能源载体.鉴于当前对环保和可持续发展的迫切需求,实现氨分子的绿色合成已成为重要任务.其中,利用可再生能源驱动的电化学合成氨... 氨不仅是生产农业肥料和医药分子的关键原料,同时因其具备高能量密度和零碳排放的特性,也被视为极具潜力的能源载体.鉴于当前对环保和可持续发展的迫切需求,实现氨分子的绿色合成已成为重要任务.其中,利用可再生能源驱动的电化学合成氨技术,因其对环境友好和高效性,被视为替代传统哈伯-博世工艺的绿色路径,具有广阔的应用前景.在电化学催化合成氨的研究中,单原子催化剂(SAC)因其独特的性质而备受关注.SAC的孤立金属中心不仅提高了金属原子的利用率,而且有效抑制了氮-氮偶联反应,从而显著提升了催化合成氨的效率,成为当前的研究热点.本文综述了SAC电催化合成氨领域的最新研究进展,旨在为科研工作者提供基础的理论和实验参考.系统总结了不同氮源(包括氮气、硝酸根、亚硝酸根及一氧化氮)合成氨的研究进展,并深入探讨了催化剂的理论和实验设计、催化活性中心的种类及其催化活性,以及真实反应过程中的催化动态行为.首先,介绍了自然和人工固氮系统中的氮循环路径.自然固氮系统展示了氮气、氮氧化物、氨的循环路径,为不同氮物种合成氨方法提供了可借鉴的思路;而人工氮循环则阐述了社会发展、工业生产对自然循环氮平衡的破坏,凸显了电化学人工固氮的必要性.随后,基于理论模拟方法,在原子和分子尺度上总结了不同氮物种在催化剂表面的反应过程.例如,在氮气合成氨过程中探讨了涉及的解离路径、交替缔合及远端缔合路径等.本文详细阐述了催化活性结构的理论筛选方法的重要性,并介绍了如何通过结构稳定性评估、反应物种的吸附活性以及催化活性及选择性的综合考量,来确定最佳的催化活性中心种类及微观结构.随后,总结了科研人员基于理论筛选结果,采用热解策略制备碳载金属SAC的研究进展.这些策略包括,碳基底与金属络合物的混合热解策略、金属有机框架衍生策略、金属辅助小分子热解策略、吸附活性策略及模板牺牲辅助策略等.同时,系统地总结了不同SAC对四种氮前驱体还原反应的催化活性.此外,深入地讨论了催化活性中心如Cu和Fe单原子在合成氨反应过程中的结构动态演化行为,强调了非原位结构可能仅是单原子前驱体,而反应过程中演变结构才是真实催化活性中心.这对于深入理解SAC电催化合成氨的机理和提高催化效率有一定的借鉴意义.最后,本文简要探讨了单原子催化剂在合成氨领域所面临的挑战及发展机遇.主要包括(1)发展更为精准的理论预测方法,实现从静态计算向动态模拟的转变,以更准确地预测和解析催化剂在实际反应中的行为机制;(2)积极发展多原子协同位点,从金属单原子到双甚至三原子团簇,利用多原子间的协同作用提升催化效率;(3)发展可替代氨合成路径,如低温等离子体耦合电化学合成氨技术,以推动氨合成技术的绿色化和高效化;(4)结合动态谱学技术的发展及应用,通过在原位甚至工况条件下的探究,深入解析动态反应过程,为催化剂的进一步优化提供科学依据.通过发展更为精准的理论预测方法、多原子协同位点、可替代氨合成路径以及结合动态谱学技术的进步,我们有望推动单原子催化剂在合成氨领域的应用取得更大突破. 展开更多
关键词 合成氨 氮转化反应 电化学还原 单原子催化剂 氮气 氮氧化物
下载PDF
揭示明确定义的金属-N_(4)位点在电催化硝酸盐还原中的活性趋势
3
作者 蒋远 杨级 +5 位作者 李沐霖 王雪佳 杨娜 陈伟平 董金超 李剑锋 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第4期195-203,共9页
氨是一种重要的化工原材料,广泛用于肥料、药物、塑料以及其它化工产品的生产.特别是,氨作为一种绿色、新型的替代燃料,正逐渐被视为未来可持续能源体系的重要组成部分之一.近期,研究者们提出了一种新的等离子体电催化合成氨的方法,为... 氨是一种重要的化工原材料,广泛用于肥料、药物、塑料以及其它化工产品的生产.特别是,氨作为一种绿色、新型的替代燃料,正逐渐被视为未来可持续能源体系的重要组成部分之一.近期,研究者们提出了一种新的等离子体电催化合成氨的方法,为氨的生产开辟了新的途径.该方法首先在等离子处理条件下将空气中的氮气和氧气氧化成为氮氧化物;然后,通过电催化还原NOx-(主要为NO_(2)-/NO3-等)合成氨.在该过程中,金属-氮-碳单原子(M-N-C SACs)催化剂因其金属原子利用率高、活性和选择性好等优点而受到广泛关注.然而,由于当前催化剂合成路线的可控性不足,导致金属中心的配位环境复杂,MNx配位数(x=2-5)不明确,阻碍了对催化剂本征活性趋势的深入揭示.为了解决上述问题,研究者们开始关注具有均匀且明确MN_(4)结构的金属酞菁(MPc),并将其作为模型催化剂,用于深入研究电催化硝酸盐还原反应的活性位点和反应机理.本文将六种具有明确MN_(4)结构的金属酞菁催化剂(M=Mn,Fe,Co,Ni,Cu和Zn)负载在卡博特碳黑XC-72R载体上,并探究了不同金属中心的MN_(4)位点对硝酸盐还原合成氨的活性影响.扫描电子显微镜、X射线光电子能谱以及氮气吸脱附等温曲线结果表明,六种不同金属中心的MPc/XC-72R催化剂间的差异仅在于金属中心,从而排除了载体等其他因素的干扰.实验结果显示,金属中心对硝酸盐还原合成氨的活性顺序为:FeN_(4)>CuN_(4)>NiN_(4)>MnN_(4)>CoN_(4)>ZnN_(4).其中,FeN_(4)位点表现出最好的催化活性,在-1.0 V vs.RHE时,氨的法拉第效率达到83.3%,产率为2.94 mgNH3 h^(-1)cm^(-2),转化频率(TOF)为4395.2 h^(-1).相比之下,在相同条件下,ZnN_(4)位点上亚硝酸盐的选择性和产率最高,亚硝酸盐的法拉第效率为49.1%,产率达到16.8 mgNO_(2)h^(-1)cm^(-2).此外,FeN_(4)位点的单原子催化剂表现出较好的循环稳定性,在-0.8 V vs.RHE的电位下,经过20次循环测试,氨的法拉第效率仍能维持在80%左右.密度泛函理论计算结果表明,FeN_(4)位点对NO_(2)中间体和氢原子具有适宜的吸附能,有利于硝酸盐加氢进一步生成氨.相比之下,NO_(2)在ZnN_(4)位点上吸附很弱,导致NO_(2)容易从催化剂表面脱附至溶液中,形成亚硝酸盐副产物.此外,计算结果还显示,FeN_(4)位点上硝酸还原反应的决速步骤NO*→HNO*的自由能差仅为0.07 eV,进一步证实了FeN_(4)位点在硝酸盐还原合成氨反应中的优异活性.综上,本文系统研究了六种具有明确MN_(4)结构的金属酞菁催化剂在硝酸盐还原合成氨反应中的活性趋势,并探究了不同MN_(4)位点对硝酸盐还原的活性影响.结合密度泛函理论计算,揭示了不同MN_(4)位点对硝酸盐还原反应的机理.为深刻理解硝酸盐还原反应机制,指导设计高效活性位提供了参考. 展开更多
关键词 电催化 金属酞菁 金属-N_(4) 硝酸根还原成氨 活性趋势
下载PDF
In situ characterizations of advanced electrode materials for sodium-ion batteries toward high electrochemical performances 被引量:4
4
作者 Xiu-Mei Lin Xin-Tao Yang +5 位作者 Hao-Ning Chen Yong-Liang Deng Wen-Han Chen jin-chao dong Yi-Min Wei Jian-Feng Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期146-164,I0004,共20页
Energy storage is an ever-growing global concern due to increased energy needs and resource exhaustion.Sodium-ion batteries(SIBs)have called increasing attention and achieved substantial progress in recent years owing... Energy storage is an ever-growing global concern due to increased energy needs and resource exhaustion.Sodium-ion batteries(SIBs)have called increasing attention and achieved substantial progress in recent years owing to the abundance and even distribution of Na resources in the crust,and the predicted low cost of the technique.Nevertheless,SIBs still face challenges like lower energy density and inferior cycling stability compared to mature lithium-ion batteries(LIBs).Enhancing the electrochemical performance of SIBs requires an in-deep and comprehensive understanding of the improvement strategies and the underlying reaction mechanism elucidated by in situ techniques.In this review,commonly applied in situ techniques,for instance,transmission electron microscopy(TEM),Raman spectroscopy,X-ray diffraction(XRD),and X-ray absorption near-edge structure(XANES),and their applications on the representative cathode and anode materials with selected samples are summarized.We discuss the merits and demerits of each type of material,strategies to enhance their electrochemical performance,and the applications of in situ characterizations of them during the de/sodiation process to reveal the underlying reaction mechanism for performance improvement.We aim to elucidate the composition/structure-per formance relationship to provide guidelines for rational design and preparation of electrode materials toward high electrochemical performance. 展开更多
关键词 Sodium-ion batteries(SIBs) In situ characterizations Electrode materials Composition/structure-performance
下载PDF
In situ tracking of the lithiation and sodiation process of disodium terephthalate as anodes for rechargeable batteries by Raman spectroscopy
5
作者 Xiu-Mei Lin Chong Han +6 位作者 Xin-Tao Yang Jia-Sheng Lin Wei-Qiang Yang Hong-Xu Guo Yao-Hui Wang jin-chao dong Jian-Feng Li 《Nano Research》 SCIE EI CSCD 2024年第1期245-252,共8页
Organic compounds represent an appealing group of electrode materials for rechargeable batteries due to their merits of biomass,sustainability,environmental friendliness,and processability.Disodium terephthalate(Na_(2... Organic compounds represent an appealing group of electrode materials for rechargeable batteries due to their merits of biomass,sustainability,environmental friendliness,and processability.Disodium terephthalate(Na_(2)C_(8)H_(4)O_(4),Na_(2)TP),an organic salt with a theoretical capacity of 255 mAh·g^(-1),is electroactive towards both lithium and sodium.However,its electrochemical energy storage(EES)process has not been directly observed via in situ characterization techniques and the underlying mechanisms are still under debate.Herein,in situ Raman spectroscopy was employed to track the de/lithiation and de/sodiation processes of Na2TP.The appearance and then disappearance of the–COOLi Raman band at 1625 cm^(-1) during the de/lithiation,and the increase and then decrease of the–COONa Raman band at 1615 cm^(-1) during the de/sodiation processes of Na2TP elucidate the one-step with the 2Li+or 2Na+transfer mechanism.We also found that the inferior cycling stability of Na2TP as an anode for sodium-ion batteries(SIBs)than lithium-ion batteries(LIBs)could be due to the larger ion radium of Na+than Li+,which results in larger steric resistance and polarization during EES.The Na2TP,therefore,shows greater changes in spectra during de/sodiation than de/lithiation.We expect that our findings could provide a reference for the rational design of organic compounds for EES. 展开更多
关键词 disodium terephthalate(Na_(2)C_(8)H_(4)O_(4) Na2TP) in situ Raman spectroscopy de/lithiation de/sodiation mechanisms
原文传递
In situ Raman,FTIR,and XRD spectroscopic studies in fuel cells and rechargeable batteries 被引量:5
6
作者 Fan Gao Xiang-dong Tian +3 位作者 Jia-Sheng Lin jin-chao dong Xiu-Mei Lin Jian-Feng Li 《Nano Research》 SCIE EI CSCD 2023年第4期4855-4866,共12页
As state-of-the-art electrochemical energy conversion and storage(EECS)techniques,fuel cells and rechargeable batteries have achieved great success in the past decades.However,modern societies’ever-growing demand in ... As state-of-the-art electrochemical energy conversion and storage(EECS)techniques,fuel cells and rechargeable batteries have achieved great success in the past decades.However,modern societies’ever-growing demand in energy calls for EECS devices with high efficiency and enhanced performance,which mainly rely on the rational design of catalysts,electrode materials,and electrode/electrolyte interfaces in EESC,based on in-deep and comprehensive mechanistic understanding of the relevant electrochemical redox reactions.Such an understanding can be realized by monitoring the dynamic redox reaction processes under realistic operation conditions using in situ techniques,such as in situ Raman,Fourier transform infrared(FTIR),and X-ray diffraction(XRD)spectroscopy.These techniques can provide characteristic spectroscopic information of molecules and/or crystals,which are sensitive to structure/phase changes resulted from different electrochemical working conditions,hence allowing for intermediates identification and mechanisms understanding.This review described and summarized recent progress in the in situ studies of fuel cells and rechargeable batteries via Raman,FTIR,and XRD spectroscopy.The applications of these in situ techniques on typical electrocatalytic electrooxidation reaction and oxygen reduction reaction(ORR)in fuel cells,on representative high capacity and/or resource abundance cathodes and anodes,and on the solid electrolyte interface(SEI)in rechargeable batteries are discussed.We discuss how these techniques promote the development of novel EECS systems and highlight their critical importance in future EECS research. 展开更多
关键词 in situ spectroscopy RAMAN Fourier transform infrared spectroscopy(FTIR) X-ray diffraction(XRD) fuel cells rechargeable batteries
原文传递
Surface-Enhanced Raman Spectroscopy:Principles,Methods,and Applications in Energy Systems 被引量:1
7
作者 Quan-Feng He Yu-Jin Zhang +3 位作者 Zhi-Lan Yang jin-chao dong Xiu-Mei Lin Jian-Feng Li 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2023年第3期355-369,共15页
Surface-enhanced Raman spectroscopy(SERS)has advanced significantly since its inception.Numerous experimental and theoretical efforts have been made to understand the SERS effect and demonstrate its potential.Due to i... Surface-enhanced Raman spectroscopy(SERS)has advanced significantly since its inception.Numerous experimental and theoretical efforts have been made to understand the SERS effect and demonstrate its potential.Due to its extremely high sensitivity and selectivity and ability to provide molecular fingerprint information,SERS has a wide range of applications in surface and interfacial chemistry,energy,materials,biomedicine,environmental analysis,etc.This review aims to provide readers with an understanding of the principles,methodologies,and applications of SERS.We briefly introduce the fundamental theory of the SERS enhancement mechanism and summarize the details of the preparation of SERS-active substrates.Recent applications of SERS in energy systems are then highlighted,including probing surface reactions and interfacial charge transfer of batteries and electrocatalysts.Finally,the challenges and prospects of SERS research are discussed. 展开更多
关键词 Surface-enhance Raman spectroscopy In situ characterization Li-ion batteries Water splitting Fuel cells
原文传递
Converting CO_(2)to ethanol on Ag nanowires with high selectivity investigated by operando Raman spectroscopy
8
作者 Qiong Liu Xia-Guang Zhang +6 位作者 Zi-Yu Du Can-Jun Zou Huan-Yu Chen Yu Zhao jin-chao dong Ping-Ping Fang Jian-Feng Li 《Science China Chemistry》 SCIE EI CAS CSCD 2023年第1期259-265,共7页
Electrochemical conversion of CO_(2)into liquid fuels provides an efficient way to store the renewable energy in the production of fuels and chemicals.However,effectively converting CO_(2)to ethanol remains extremely ... Electrochemical conversion of CO_(2)into liquid fuels provides an efficient way to store the renewable energy in the production of fuels and chemicals.However,effectively converting CO_(2)to ethanol remains extremely challenging due to the low activity and selectivity.Herein,we achieve a high ethanol Faradaic efficiency(FE)as high as 85%on Ag nanowires(NWs)for CO_(2)electroreduction at-0.95 V.X-ray photoelectron spectroscopy and electrochemical experiments prove that such Ag NWs are partially oxidized.Operando Raman spectroscopy finds the important CO intermediate adsorbed on partially oxidized Ag NWs,facilitating the ethanol formation.Density functional theory calculations prove that the reaction energy of CO coupling with the*CHO to*COCHO intermediate on the partially oxidized Ag NWs is smaller than that on the surface of Cu,which explains why the ethanol FE of such partially oxidized Ag NWs can exceed that of Cu,and therefore is the most favorable pathway for the formation of C_(2)products on partially oxidized Ag NWs.This study provides a new insight to design efficient catalysts and investigate the mechanisms to improve the selectivity. 展开更多
关键词 surface-enhanced Raman spectroscopy CO_(2)electroreduction ELECTROCATALYSIS operando spectroscopy ETHANOL
原文传递
Recent advances in Raman spectroelectrochemistry on single-crystal surfaces
9
作者 Quan-Feng He Jia Yu +1 位作者 jin-chao dong Jian-Feng Li 《Science China Chemistry》 SCIE EI CAS CSCD 2023年第12期3360-3371,共12页
Benefiting from a principally contaminant-free and well-defined surface,single-crystal electrodes offer new insights into interfacial processes and are important in electrochemistry.The early impetus for using single-... Benefiting from a principally contaminant-free and well-defined surface,single-crystal electrodes offer new insights into interfacial processes and are important in electrochemistry.The early impetus for using single-crystal electrodes in electrocatalysis was to investigate the surface structure at the atomic level for the reactions that are sensitive to the surface.These studies were usually performed in an ultra-high vacuum with atomic force microscopy(AFM),scanning tunneling microscope(STM),and X-ray methods to avoid the contamination.However,such characterizations are limited in their ability to identify chemical species definitively,a limitation that has similarly plagued the study of single-crystals.Recent advances in shellisolated nanoparticle-enhanced Raman spectroscopy(SHINERS)have enabled the detection of reaction intermediates on singlecrystal electrodes,in which shell-isolated nanoparticles on the single-crystal electrode can enhance the Raman signal from the surface,without changing the surface structure and electrochemical response.Thus,this work aims to review recent advances in Raman spectroelectrochemical studies on single-crystal electrode surfaces.The discussion focuses on how SHINERS technology has enabled the effective detection of intermediate species and,when combined with the electrochemical method,has yielded novel insights into the dynamic evolution of surface structure and electrocatalytic reaction mechanisms.Finally,the challenges and future of single-crystal electrodes are introduced. 展开更多
关键词 single-crystal electrode shell-isolated nanoparticle-enhanced Raman spectroscopy interfacial structures adsorption
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部