期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Preliminary safety analysis for heavy water-moderated molten salt reactor
1
作者 Gao-Ang Wen Jian-Hui Wu +3 位作者 Chun-Yan Zou Xiang-Zhou Cai jin-gen chen Man Bao 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第6期202-217,共16页
The heavy water-moderated molten salt reactor(HWMSR)is a newly proposed reactor concept,in which heavy water is adopted as the moderator and molten salt dissolved with fissile and fertile elements is used as the fuel.... The heavy water-moderated molten salt reactor(HWMSR)is a newly proposed reactor concept,in which heavy water is adopted as the moderator and molten salt dissolved with fissile and fertile elements is used as the fuel.Issues arising from graphite in traditional molten salt reactors,including the positive temperature coefficient and management of highly radio-active spent graphite waste,can be addressed using the HWMSR.Until now,research on the HWMSR has been centered on the core design and nuclear fuel cycle to explore the viability of the HWMSR and its advantages in fuel utilization.However,the core safety of the HWMSR has not been extensively studied.Therefore,we evaluate typical accidents in a small modular HWMSR,including fuel salt inlet temperature overcooling and overheating accidents,fuel salt inlet flow rate decrease,heavy water inlet temperature overcooling accidents,and heavy water inlet mass flow rate decrease accidents,based on a neutronics and thermal-hydraulics coupled code.The results demonstrated that the core maintained safety during the investigated accidents. 展开更多
关键词 Heavy water-moderated molten salt reactor Neutronics and thermal-hydraulics coupling Transient analysis Accident analysis
下载PDF
Correction to:Assembly-level analysis on temperature coefficient of reactivity in a graphite-moderated fuel salt reactor fueled with low-enriched uranium
2
作者 Xiao-Xiao Li De-Yang Cui +3 位作者 Chun-Yan Zou Jian-Hui Wu Xiang-Zhou Cai jin-gen chen 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期234-235,共2页
Following publication of the original article,the authors observed that both Fig.5 and Fig.4 depict the same image.Figure 5 was inaccurately referenced and displayed.The correct Fig.5 is copied below:The original arti... Following publication of the original article,the authors observed that both Fig.5 and Fig.4 depict the same image.Figure 5 was inaccurately referenced and displayed.The correct Fig.5 is copied below:The original article has been updated. 展开更多
关键词 FUEL enriched REACTIVITY
下载PDF
Assembly-level analysis on temperature coefficient of reactivity in a graphite-moderated fuel salt reactor fueled with low-enriched uranium 被引量:1
3
作者 Xiao-Xiao Li De-Yang Cui +3 位作者 Chun-Yan Zou Jian-Hui Wu Xiang-Zhou Cai jin-gen chen 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第5期67-84,共18页
To provide a reliable and comprehensive data reference for core geometry design of graphite-moderated and low-enriched uranium fueled molten salt reactors,the influences of geometric parameters on the temperature coef... To provide a reliable and comprehensive data reference for core geometry design of graphite-moderated and low-enriched uranium fueled molten salt reactors,the influences of geometric parameters on the temperature coefficient of reactivity(TCR)at an assembly level were characterized.A four-factor formula was introduced to explain how different reactivity coefficients behave in terms of the fuel salt volume fraction and assembly size.The results show that the fuel salt temperature coefficient(FSTC)is always negative owing to a more negative fuel salt density coefficient in the over-moderated region or a more negative Doppler coefficient in the under-moderated region.Depending on the fuel salt channel spacing,the graphite moderator temperature coefficient(MTC)can be negative or positive.Furthermore,an assembly with a smaller fuel salt channel spacing is more likely to exhibit a negative MTC.As the fuel salt volume fraction increases,the negative FSTC first weakens and then increases,owing to the fuel salt density effect gradually weakening from negative to positive feedback and then decreasing.Meanwhile,the MTC weakens as the thermal utilization coefficient caused by the graphite temperature effect deteriorates.Thus,the negative TCR first weakens and then strengthens,mainly because of the change in the fuel salt density coefficient.As the assembly size increases,the magnitude of the FSTC decreases monotonously owing to a monotonously weakened fuel salt Doppler coefficient,whereas the MTC changes from gradually weakened negative feedback to gradually enhanced positive feedback.Then,the negative TCR weakens.Therefore,to achieve a proper negative TCR,particularly a negative MTC,an assembly with a smaller fuel salt channel spacing in the under-moderated region is strongly recommended. 展开更多
关键词 Molten salt reactor Temperature coefficient of reactivity Four-factor formula
下载PDF
Influences of ^7Li enrichment on Th-U fuel breeding for an Improved Molten Salt Fast Reactor(IMSFR) 被引量:10
4
作者 Guang-Chao Li Yang Zou +3 位作者 cheng-Gang Yu Jian-Long Han jin-gen chen Hong-Jie Xu 《Nuclear Science and Techniques》 SCIE CAS CSCD 2017年第7期105-113,共9页
The molten salt fast reactor(MSFR) shows great promise with high breeding ratio(BR),large negative temperature coefficient of reactivity,high thermal-electric conversion efficiency,inherent safety,and online reprocess... The molten salt fast reactor(MSFR) shows great promise with high breeding ratio(BR),large negative temperature coefficient of reactivity,high thermal-electric conversion efficiency,inherent safety,and online reprocessing.Based on an improved MSFR optimized by adding axial fertile salt and a graphite reflector,the influences of ~7Li enrichment on Th-U breeding are investigated,aiming to provide a feasible selection for the molten salt with high fissile breeding and a relatively low technology requirement for ~7Li concentration.With the self-developed molten salt reactor reprocessing sequence based on SCALE6.1,the burn-up calculations with online reprocessing are carried out.Parameters are explored including BR,^(233)U production,double time(DT),spectrum,~6Li inventory,neutron absorption,and the tritium production.The results show that the Li enrichment of 99.95% is appropriate in the fast fission reactor.In this case,BR above 1.10 can be achieved for a long time,corresponding to the ^(233)U production of130 kg per year and DT of 36 years.After 80 years' operation,the tritium production for 99.5% is only about 7kg,and there is no obvious increase compared to that for 99.9995%. 展开更多
关键词 繁殖率 熔盐 富集 铀燃料 裂变反应堆 快堆 在线处理 负温度系数
下载PDF
Transition toward thorium fuel cycle in a molten salt reactor by using plutonium 被引量:5
5
作者 De-Yang Cui Shao-Peng Xia +2 位作者 Xiao-Xiao Li Xiang-Zhou Cai jin-gen chen 《Nuclear Science and Techniques》 SCIE CAS CSCD 2017年第10期103-112,共10页
The molten salt reactor(MSR), as one of the Generation Ⅳ advanced nuclear systems, has attracted a worldwide interest due to its excellent performances in safety, economics, sustainability, and proliferation resistan... The molten salt reactor(MSR), as one of the Generation Ⅳ advanced nuclear systems, has attracted a worldwide interest due to its excellent performances in safety, economics, sustainability, and proliferation resistance. The aim of this work is to provide and evaluate possible solutions to fissile 233 U production and further the fuel transition to thorium fuel cycle in a thermal MSR by using plutonium partitioned from light water reactors spent fuel. By using an in-house developed tool, a breeding and burning(B&B) scenario is first introduced and analyzed from the aspects of the evolution of main nuclides, net 233 U production, spectrum shift, and temperature feedback coefficient. It can be concluded that such a Th/Pu to Th/^(233)U transition can be accomplished by employing a relatively fast fuel reprocessing with a cycle time less than 60 days. At the equilibrium state, the reactor can achieve a conversion ratio of about 0.996 for the 60-day reprocessing period(RP) case and about 1.047 for the 10-day RP case.The results also show that it is difficult to accomplish such a fuel transition with limited reprocessing(RP is 180 days),and the reactor operates as a converter and burns the plutonium with the help of thorium. Meanwhile, a prebreeding and burning(PB&B) scenario is also analyzed briefly with respect to the net 233 U production and evolution of main nuclides. One can find that it is more efficient to produce 233 U under this scenario, resulting in a double time varying from about 1.96 years for the 10-day RP case to about 6.15 years for the 180-day RP case. 展开更多
关键词 钍燃料循环 反应器 熔盐堆 先进核能系统 循环时间 轻水反应堆 燃料后处理
下载PDF
Neutron excess method for performance assessment of thoriumbased fuel in a breed-and-burn reactor with various coolants 被引量:4
6
作者 Kun Yang Wei Qin +1 位作者 jin-gen chen Xiang-Zhou Cai 《Nuclear Science and Techniques》 SCIE CAS CSCD 2016年第4期167-173,共7页
Fertile fuel, such as thorium or depleted uranium, can be bred into fissile fuel and burnt in a breed-andburn(B&B) reactor. Modeling a full core with fertile fuel can assess the performance of a B&B reactor wi... Fertile fuel, such as thorium or depleted uranium, can be bred into fissile fuel and burnt in a breed-andburn(B&B) reactor. Modeling a full core with fertile fuel can assess the performance of a B&B reactor with exact quantitative estimates, but costs too much computation time. For simplicity, performing the recently developed neutron balance method with a zero-dimensional(0-D)model can also provide a reasonable result. Based on the0-D model, the feasibility of the B&B mode for thorium fuel in a fast reactor cooled by sodium was investigated by considering the(n, 2n) and(n, 3n) reaction rates of fuel and coolant in this work, and compared with that of depleted uranium fuel. Afterward, the performance of the same thorium-based fuel core, but cooled by helium, lead-bismuth, and FLi Be, respectively, is discussed. It is found that the(n, 2n) and(n, 3n) reactions should not be neglected for the neutron balance calculation for thorium-based fuel to sustain the B&B mode of operation. 展开更多
关键词 性能评估 钠燃料 冷却剂 反应器 中子 燃烧 零维模型 化学反应速率
下载PDF
Core and blanket thermal-hydraulic analysis of a molten salt fast reactor based on coupling of OpenMC and OpenFOAM 被引量:8
7
作者 Bin Deng Yong Cui +5 位作者 jin-gen chen Long He Shao-Peng Xia cheng-Gang Yu Fan Zhu Xiang-Zhou Cai 《Nuclear Science and Techniques》 SCIE CAS CSCD 2020年第9期1-15,共15页
In the core of a molten salt fast reactor(MSFR),heavy metal fuel and fission products can be dissolved in a molten fluoride salt to form a eutectic mixture that acts as both fuel and coolant.Fission energy is released... In the core of a molten salt fast reactor(MSFR),heavy metal fuel and fission products can be dissolved in a molten fluoride salt to form a eutectic mixture that acts as both fuel and coolant.Fission energy is released from the fuel salt and transferred to the second loop by fuel salt circulation.Therefore,the MSFR is characterized by strong interaction between the neutronics and the thermal hydraulics.Moreover,recirculation flow occurs,and nuclear heat is accumulated near the fertile blanket,which significantly affects both the flow and the temperature fields in the core.In this work,to further optimize the conceptual geometric design of the MSFR,three geometries of the core and fertile blanket are proposed,and the thermal-hydraulic characteristics,including the three-dimensional flow and temperature fields of the fuel and fertile salts,are simulated and analyzed using a coupling scheme between the open source codes OpenMC and OpenFOAM.The numerical results indicate that a flatter core temperature distribution can be obtained and the hot spot and flow stagnation zones that appear in the upper and lower parts of the core center near the reflector can be eliminated by curving both the top and bottom walls of the core.Moreover,eight cooling loops with a total flow rate of0.0555 m3 s-1 ensur an acceptable temperature distribusure an acceptable temperature distribution in the fertile blanket. 展开更多
关键词 Molten salt fast reactor Core and blanket thermal-hydraulic analysis Neutronics and thermal hydraulics coupling
下载PDF
Preliminary analysis of fuel cycle performance for a small modular heavy water-moderated thorium molten salt reactor 被引量:6
8
作者 Ya-Peng Zhang Yu-Wen Ma +2 位作者 Jian-Hui Wu jin-gen chen Xiang-Zhou Cai 《Nuclear Science and Techniques》 SCIE CAS CSCD 2020年第11期23-35,共13页
Heavy water-moderated molten salt reactors(HWMSRs)are novel molten salt reactors that adopt heavy water rather than graphite as the moderator while employing liquid fuel.Owing to the high moderating ratio of the heavy... Heavy water-moderated molten salt reactors(HWMSRs)are novel molten salt reactors that adopt heavy water rather than graphite as the moderator while employing liquid fuel.Owing to the high moderating ratio of the heavy water moderator and the utilization of liquid fuel,HWMSRs can achieve a high neutron economy.In this study,a large-scale small modular HWMSR with a thermal power of 500 MWth was proposed and studied.The criticality of the core was evaluated using an in-house critical search calculation code(CSCC),which was developed based on Standardized Computer Analyses for Licensing Evaluation,version 6.1.The preliminary fuel cycle performances(initial conversion ratio(CR),initialfissile fuel loading mass,and temperature coefficient)were investigated by varying the lattice pitch(P)and the molten salt volume fraction(VF).The results demonstrate that the temperature coefficient can be negative over the range of investigated Ps and VFs for both 233U-Th and LEU-Th fuels.A core with a P of 20 cm and a VF of 20%is recommended for 233U-Th and LEU-Th fuels to achieve a high performance of initial CR and fuel loading.Regarding TRU-Th fuel,a core with a smaller P(~5 cm)and larger VF(~24%)is recommended to obtain a negative temperature coefficient. 展开更多
关键词 Molten salt reactor Heavy water-moderated molten salt reactor(HWMSR) Th-U fuel cycle
下载PDF
Effects of fuel salt composition on fuel salt temperature coefficient(FSTC)for an under-moderated molten salt reactor(MSR) 被引量:3
9
作者 Xiao-Xiao Li Yu-Wen Ma +3 位作者 cheng-Gang Yu Chun-Yan Zou Xiang-Zhou Cai jin-gen chen 《Nuclear Science and Techniques》 SCIE CAS CSCD 2018年第8期126-135,共10页
With respect to a liquid-fueled molten salt reactor(MSR),the temperature coefficient of reactivity mainly includes the moderator temperature coefficient(MTC)and the fuel salt temperature coefficient(FSTC).The FSTC is ... With respect to a liquid-fueled molten salt reactor(MSR),the temperature coefficient of reactivity mainly includes the moderator temperature coefficient(MTC)and the fuel salt temperature coefficient(FSTC).The FSTC is typically divided into the Doppler coefficient and the density coefficient.In order to compensate for the potentially positive MTC,the FSTC should be sufficiently negative,and this is mostly optimized in terms of the geometry aspect in pioneering studies.However,the properties of fuel salt also directly influence the FSTC.Thus,the effects of different fuel salt compositions including the^(235)U enrichment,heavy metal proportion in salt phase(HM proportion),and the^7Li enrichment on FSTC are investigated from the viewpoint of the essential six-factor formula.The analysis is based on an undermoderated MSR.With respect to the Doppler coefficient,the temperature coefficient of the fast fission factors(a_T(ξ))is positive and those of the resonance escape probability(a_T(p)),thermal reproduction factor(a_T(g)),thermal utilization factor(a_T(f)),and total non-leakage probability(a_T(λ))are negative.With respect to the density coefficient,a_T(p)and a_T(g)are positive,while the others are negative.The results indicate that the effects of the^(235)U enrichment and HM on FSTC are mainly reflected in a_T(e)and a_T(p),which are the dominant factors when the neutron spectrum is relatively hard.Furthermore,the^7Li enrichment influences FSTC by a_T(f)and a_T(λ),which are the key factors in a relative soft spectrum.In order to obtain a more negative FSTC for an under-moderated MSR,the possible positive density coefficient,especially its a_T(p),should be suppressed.Thus,a lower^(235)U enrichment(albeit higher than a certain value,5 wt%in this article)along with a lower HM proportion and/or a higher^7Li enrichment are recommended.The analyses provide an approach to achieve a more suitable fuel salt composition with a sufficiently negative FSTC. 展开更多
关键词 液体燃料 温度系数 反应堆 熔融 节制 MTC MSR
下载PDF
Analysis of Th-U breeding capability for an accelerator-driven subcritical molten salt reactor 被引量:3
10
作者 Xue-Chao Zhao De-Yang Cui +1 位作者 Xiang-Zhou Cai jin-gen chen 《Nuclear Science and Techniques》 SCIE CAS CSCD 2018年第8期218-226,共9页
Accelerator-driven systems based on molten salt fuel have several unique advantages and features for advanced nuclear fuel utilization.The aim of this work was to study the Th-U breeding capability in such systems,kno... Accelerator-driven systems based on molten salt fuel have several unique advantages and features for advanced nuclear fuel utilization.The aim of this work was to study the Th-U breeding capability in such systems,known as‘‘accelerator-driven subcritical molten salt reactors’’(ADS–MSRs).Breeding capacities including conversion ratio and net^(233)U production for various subcriticalities and different minor actinides(MA)loadings were analyzed for an ADS–MSR.The results show that the subcriticality of the core has a considerable effect on the Th-U breeding.A high subcriticality is favorable to improving the conversion ratio,increasing the net^(233)U production,and reducing the doubling time.Specifically,the doubling time for k_(eff)of 0.99 is larger than 80 years,while the counterpart for k_(eff)of 0.93 is only approximately22 years.Nevertheless,in an ADS–MSR with a high initial MA loading,MA results in a non-negligible^(233)U depletion in the first two decades,while increasing the net^(233)U production compared to reactors without MA loading.During the 50 years of operation,for the subcritical reactor(k_(eff)0:97)with MA fraction increasing from 1 to 14%,the net^(233)U production increases from 3.94 to 8.24 t. 展开更多
关键词 加速器驱动 反应堆 熔融 能力 星期 MSR net
下载PDF
Effect of 37Cl enrichment on neutrons in a molten chloride salt fast reactor 被引量:4
11
作者 Liao-Yuan He Guang-Chao Li +3 位作者 Shao-Peng Xia jin-gen chen Yang Zou Gui-Min Liu 《Nuclear Science and Techniques》 SCIE CAS CSCD 2020年第3期45-56,共12页
A molten chloride salt fast reactor(MCFR)is well suited to fuel breeding and the transmutation of transuranium(TRU)elements owing to its advantageous features of fast neutron spectrum and high TRU solubility.However,t... A molten chloride salt fast reactor(MCFR)is well suited to fuel breeding and the transmutation of transuranium(TRU)elements owing to its advantageous features of fast neutron spectrum and high TRU solubility.However,the neutron absorption cross section of 35Cl is approximately 1000 times greater than for 37Cl,which has a significant impact on the neutron physical characteristics of a MCFR.Based on an automatic online refueling and reprocessing procedure,the influences of 37Cl enrichment on neutron economy,breeding performance,and the production of harmful nuclides were analyzed.Results show that 37Cl enrichment strongly influences the neutron properties of a MCFR.With natural chlorine,233U breeding cannot be achieved and the yields of S and 36Cl are very high.Increasing the 37Cl enrichment to 97%brings a clear improvement in its neutronics property,making it almost equal to that corresponding to 100%enrichment.Moreover,when 37Cl is enriched to 99%,its neutronics parameters are almost the same as for 100%enrichment.Considering the enrichment cost and the neutron properties,a 37Cl enrichment of 97%is recommended.Achieving an optimal neutronics performance requires 99%37Cl enrichment. 展开更多
关键词 Molten salt reactor Molten chlorine salt fast reactor 37Cl enrichment Th-U fuel breeding
下载PDF
Th–U cycle performance analysis based on molten chloride salt and molten fluoride salt fast reactors 被引量:3
12
作者 Liao-Yuan He Shao-Peng Xia +4 位作者 Xue-Mei Zhou jin-gen chen Gui-Min Liu Yang Zou Rui Yan 《Nuclear Science and Techniques》 SCIE CAS CSCD 2020年第8期116-128,共13页
The recent development of molten salt fast reactors has generated a renewed interest in them. As compared to traditional solid fuel fast neutron systems, it has many unique advantages, e.g., lower fissile inventory,no... The recent development of molten salt fast reactors has generated a renewed interest in them. As compared to traditional solid fuel fast neutron systems, it has many unique advantages, e.g., lower fissile inventory,no initial criticality reserve, waste reduction, and a simplified fuel cycle. It has been recognized as an ideal reactor for achieving a closed Th–U cycle. Based on the carrier salt, molten salt fast reactors could be divided into either a molten chloride salt fast reactor(MCFR) or a molten fluoride salt fast reactor(MFFR);to compare their Th–U cycle performance, the neutronic parameters in a breeding and burning(B&B) transition scenario were studied based on similar core geometry and power. The results demonstrated that the required reprocessing rate for an MCFR to achieve self-breeding was lower than that of an MFFR.Moreover, the breeding capability of an MCFR was better than that of an MFFR;at a reprocessing rate of 40 L/day,using LEU and Pu as start-up fissile materials, the doubling time(DT) of an MFFR and MCFR were 88.0 years and 48.0 years, and 16.5 years and 16.2 years, respectively.Besides, an MCFR has lower radio-toxicity due to lower buildup of fission products(FPs) and transuranium(TRU),while an MFFR has a larger, delayed neutron fraction with smaller changes during the entire operation. 展开更多
关键词 Th–U cycle Molten salt fast reactor Breeding capability Doubling time
下载PDF
Influence of 235U enrichment on the moderator temperature coefficient of reactivity in a graphite-moderated molten salt reactor 被引量:1
13
作者 Xiao-Xiao Li De-Yang Cui +2 位作者 Yu-Wen Ma Xiang-Zhou Cai jin-gen chen 《Nuclear Science and Techniques》 SCIE CAS CSCD 2019年第11期149-159,共11页
To optimize the temperature coefficient of reactivity(TCR)for a graphite-moderated and liquid-fueled molten salt reactor,the effects of fuel salt composition on the fuel salt temperature coefficient of reactivity(FSTC... To optimize the temperature coefficient of reactivity(TCR)for a graphite-moderated and liquid-fueled molten salt reactor,the effects of fuel salt composition on the fuel salt temperature coefficient of reactivity(FSTC)were investigated in our earlier work.In this study,we aim to provide a more comprehensive analysis of the TCR by considering the effects of the graphite-moderator temperature coefficient of reactivity(MTC).The effects of^235U enrichment and heavy metal(HM)proportion in the salt mixture on the MTC are investigated from the perspective of the six-factor formula based on a full-core model.For the MTC(labeled“αTM”),the temperature coefficient of the fast fission factors(αTM(ε))is positive,while those of the resonance escape probability(αTM(p)),the thermal reproduction factor(αTM(η)),the thermal utilization factor(αTM(f)),and the total non-leakage probability(αTM(A))are negative.The results reveal that the magnitudes ofαTM(ε)andαTM(p)for the MTC are similar.Thus,variations in the MTC with^235U enrichment for different HM proportions are mainly dependent onαTM(η),αTM(A),andαTM(f),but especially on the former two.To obtain a more negative MTC,a lower HM proportion and/or a lower 235U enrichment is recommended.Together with our previous studies on the FSTC,a relatively soft neutron spectrum could strengthen the TCR with a sufficiently negative MTC. 展开更多
关键词 MOLTEN salt reactor(MSR) MODERATOR temperature coefficient of reactivity(MTC) Six-factor formula
下载PDF
Transmutation of 129I in a single-fluid double-zone thorium molten salt reactor 被引量:1
14
作者 Kun-Feng Ma cheng-Gang Yu +2 位作者 Xiang-Zhou Cai Chun-Yan Zou jin-gen chen 《Nuclear Science and Techniques》 SCIE CAS CSCD 2020年第1期94-101,共8页
Herein, we assess the129I transmutation capability of a 2250-MWt single-fluid double-zone thorium molten salt reactor(SD-TMSR) by considering two methods. One is realized by loading an appropriate amount of129I before... Herein, we assess the129I transmutation capability of a 2250-MWt single-fluid double-zone thorium molten salt reactor(SD-TMSR) by considering two methods. One is realized by loading an appropriate amount of129I before the startup of the reactor, and the amount of129I during operation is kept constant by online feeding129I.The other adopts only an initial loading of129I before startup, and no other129I is fed online during operation.The investigation first focuses on the effect of the loading of I on the Th-233U isobreeding performance. The results indicate that a233U isobreeding mode can be achieved for both scenarios for a 60-year operation when the initial molar proportion of LiI is maintained within 0.40% and 0.87%, respectively. Then, the transmutation performances for the two scenarios are compared by changing the amount of injected iodine into the core. It is found that the scenario that adopts an initial loading of129I shows a slightly better transmutation performance in comparison with the scenario that adopts online feeding of129I when the net233U productions for the two scenarios are kept equal. The initial loading of129I scenario with LiI = 0.87% molar proportion is recommended for129I transmutation in the SD-TMSR,and can transmute 1.88 t of129I in the233U isobreeding mode over 60 years. 展开更多
关键词 129I transmutation Thorium molten salt reactor Th-U isobreeding
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部