Emerging technological advances are reshaping the casting sector in latest decades.Casting technology is evolving towards intelligent casting paradigm that involves automation,greenization and intelligentization,which...Emerging technological advances are reshaping the casting sector in latest decades.Casting technology is evolving towards intelligent casting paradigm that involves automation,greenization and intelligentization,which attracts more and more attention from the academic and industry communities.In this paper,the main features of casting technology were briefly summarized and forecasted,and the recent developments of key technologies and the innovative efforts made in promoting intelligent casting process were discussed.Moreover,the technical visions of intelligent casting process were also put forward.The key technologies for intelligent casting process comprise 3D printing technologies,intelligent mold technologies and intelligent process control technologies.In future,the intelligent mold that derived from mold with sensors,control devices and actuators will probably incorporate the Internet of Things,online inspection,embedded simulation,decision-making and control system,and other technologies to form intelligent cyber-physical casting system,which may pave the way to realize intelligent casting.It is promising that the intelligent casting process will eventually achieve the goal of real-time process optimization and full-scale control,with the defects,microstructure,performance,and service life of the fabricated castings can be accurately predicted and tailored.展开更多
3D printing is such a magical technology that it extends into almost every sector relating to manufacturing, not to mention casting production. In this paper, the past, present and future of 3D printing in the foundry...3D printing is such a magical technology that it extends into almost every sector relating to manufacturing, not to mention casting production. In this paper, the past, present and future of 3D printing in the foundry sector are profoundly reviewed. 3D printing has the potential to supplement or partially replace the casting method. Today, some castings can be directly printed by metal powders, for example, titanium alloys, nickel alloys and steel parts. Meanwhile, 3D printing has found an unique position in other casting aspects as well, such as printing the wax pattern, ceramic shell, sand core, sand mould, etc. Most importantly, 3D printing is not just a manufacturing method, it will also revolutionize the design of products, assemblies and parts, such as castings, patterns, cores, moulds and shells in casting production. The solid structure of castings and moulds will be redesigned in future into truss or spatially open and skeleton structures. This kind of revolution is just sprouting, but it will bring unimaginable impact on manufacturing including casting production. Nobody doubts the potential of 3D printing technologies in manufacturing, but they do have limitations and drawbacks.展开更多
The insulation effect of the air cavity surrounding the riser in a 3D printed sand mold was studied. The influence of the air cavity on heat flux was theoretically analyzed. The results demonstrated that the heat flux...The insulation effect of the air cavity surrounding the riser in a 3D printed sand mold was studied. The influence of the air cavity on heat flux was theoretically analyzed. The results demonstrated that the heat flux of the air cavity in the 3D printed sand mold was significantly less than that of resin-bonded sand. The insulation effect of the air cavity in sand molds for a cylinder casting and a stress-frame casting were simulated using software COMSOL. The results illustrated that the air cavity could be used to insulate the riser and it was more suitable for a lower melting point metal casting. An air cavity with 10-15 mm width and 5-10 mm away from the riser can significantly prolong the solidification of the riser by over 10%. Meanwhile, the sand mold for the stressframe was made by 3D printing technology and poured with aluminum alloy A356 melt. The experiment results showed that the presence of the air cavity led to a 12.5% increase of the solidification time of its riser.展开更多
3D printing technology has been used for sand molding and core printing, but they simply substitute the traditional molding and core making method without changing the shape or size of the sand mold(core) and their de...3D printing technology has been used for sand molding and core printing, but they simply substitute the traditional molding and core making method without changing the shape or size of the sand mold(core) and their dense structure. In this study, a new type of hollow mold based on 3D printing is presented. The new type of mold is a rib reinforced thickness-varying shell mold. This mold design can realize the controlled cooling of castings, i.e., different cooling rates at different areas, and improve the temperature uniformity of a casting after its solidifi cation. Therefore, the performance of castings can be improved and their residual stress and deformation can be reduced. This kind of new mold was applied to a stress frame of A356 aluminum alloy. The 3D printed rib reinforced thickness-varying shell mold was compared with the traditional dense mold, and the castings obtained by these two kinds of molds were also compared. The experimental results showed that the rib reinforced shell mold increased the cooling rate of the casting by 30%, tensile strength by 17%, yield strength by 11%, elongation by 67%, and decreased its deformation by 43%, while sand consumption was greatly reduced by 90%.展开更多
The cooling control of the melt during the casting process is of great significance. A comprehensive closed-loop cooling control of castings by adopting a skeletal sand mold design was proposed. The skeletal sand mold...The cooling control of the melt during the casting process is of great significance. A comprehensive closed-loop cooling control of castings by adopting a skeletal sand mold design was proposed. The skeletal sand mold consisting of an adaptive shell, functional cavities and a support was designed and created based on the finite difference meshes of a casting. It was applied to a round wall test casting. Two kinds of skeletal sand molds, one with lattice support and the other with enforcing ribs for this casting were designed and printed out by the 3 D printing(3 DP) method. Aluminum alloy A356 was cast by using these two sand molds. The first mold was cooled by natural convection, the other one by water spray cooling. Two sound castings were obtained. The sand mold temperature, cooling curves, microstructures, mechanical properties, residual stress and deformation were measured, compared and discussed. Water spray cooling hastened the cooling rate by 62%, increased the content of Mg and Cu in the α-Al matrix, improved the mechanical properties, and altered the surface residual stress state.展开更多
Numerical simulation is the most powerful computational and analysis tool for a large variety of engineering and physical problems.For a complex problem relating to multi-field,multi-process and multi-scale,different ...Numerical simulation is the most powerful computational and analysis tool for a large variety of engineering and physical problems.For a complex problem relating to multi-field,multi-process and multi-scale,different computing tools have to be developed so as to solve particular fields at different scales and for different processes.Therefore,the integration of different types of software is inevitable.However,it is difficult to perform the transfer of the meshes and simulated results among software packages because of the lack of shared data formats or encrypted data formats.An image processing based method for three-dimensional model reconstruction for numerical simulation was proposed,which presents a solution to the integration problem by a series of slice or projection images obtained by the post-processing modules of the numerical simulation software.By means of mapping image pixels to meshes of either finite difference or finite element models,the geometry contour can be extracted to export the stereolithography model.The values of results,represented by color,can be deduced and assigned to the meshes.All the models with data can be directly or indirectly integrated into other software as a continued or new numerical simulation.The three-dimensional reconstruction method has been validated in numerical simulation of castings and case studies were provided in this study.展开更多
To replace metal padding by insulation padding for castings can save the melt and reduce cleaning work of castings. The design of insulation padding was investigated. The equation of the modulus extension factor for i...To replace metal padding by insulation padding for castings can save the melt and reduce cleaning work of castings. The design of insulation padding was investigated. The equation of the modulus extension factor for insulation padding and the ratio of its thickness over the modulus of a casting were improved to deter- mine the thickness of insulation padding. The insulation padding was designed for a turbine guide vane casting weighing 3.5 t. A sound casting was obtained with 750 kg steel saved. On the other side, the cast- ing obviously expanded at the interface with the insulation padding, which is perhaps the reason that the use of insulation padding has been suspended for many years. To avoid the expansion of insulation pad- ding, a shielding layer made of a kind of material of good fire resistance was adopted to prevent the insula- tion layer from touching the melt. The shielding layer serves as a cushion of heat and expansion during so- lidification process so as to resist the expansion of castings and guarantee the feeding effect at the same time. Furthermore, insulation padding can be placed by a certain offset into the mold cavity so as to coun- teract the expansion of castings.展开更多
基金funded by the Beijing Natural Science Foundation-Haidian Original Innovation Joint Fund(L212002)the Tsinghua-Toyota Joint Research Fund(20223930096)the Guangdong Provincial Key Area Research and Development Program(2022B0909070001).
文摘Emerging technological advances are reshaping the casting sector in latest decades.Casting technology is evolving towards intelligent casting paradigm that involves automation,greenization and intelligentization,which attracts more and more attention from the academic and industry communities.In this paper,the main features of casting technology were briefly summarized and forecasted,and the recent developments of key technologies and the innovative efforts made in promoting intelligent casting process were discussed.Moreover,the technical visions of intelligent casting process were also put forward.The key technologies for intelligent casting process comprise 3D printing technologies,intelligent mold technologies and intelligent process control technologies.In future,the intelligent mold that derived from mold with sensors,control devices and actuators will probably incorporate the Internet of Things,online inspection,embedded simulation,decision-making and control system,and other technologies to form intelligent cyber-physical casting system,which may pave the way to realize intelligent casting.It is promising that the intelligent casting process will eventually achieve the goal of real-time process optimization and full-scale control,with the defects,microstructure,performance,and service life of the fabricated castings can be accurately predicted and tailored.
文摘3D printing is such a magical technology that it extends into almost every sector relating to manufacturing, not to mention casting production. In this paper, the past, present and future of 3D printing in the foundry sector are profoundly reviewed. 3D printing has the potential to supplement or partially replace the casting method. Today, some castings can be directly printed by metal powders, for example, titanium alloys, nickel alloys and steel parts. Meanwhile, 3D printing has found an unique position in other casting aspects as well, such as printing the wax pattern, ceramic shell, sand core, sand mould, etc. Most importantly, 3D printing is not just a manufacturing method, it will also revolutionize the design of products, assemblies and parts, such as castings, patterns, cores, moulds and shells in casting production. The solid structure of castings and moulds will be redesigned in future into truss or spatially open and skeleton structures. This kind of revolution is just sprouting, but it will bring unimaginable impact on manufacturing including casting production. Nobody doubts the potential of 3D printing technologies in manufacturing, but they do have limitations and drawbacks.
基金funded by the National Science and Technology Major Project of the Ministry of Science and Technology of China under Project No.2016YFB1100703
文摘The insulation effect of the air cavity surrounding the riser in a 3D printed sand mold was studied. The influence of the air cavity on heat flux was theoretically analyzed. The results demonstrated that the heat flux of the air cavity in the 3D printed sand mold was significantly less than that of resin-bonded sand. The insulation effect of the air cavity in sand molds for a cylinder casting and a stress-frame casting were simulated using software COMSOL. The results illustrated that the air cavity could be used to insulate the riser and it was more suitable for a lower melting point metal casting. An air cavity with 10-15 mm width and 5-10 mm away from the riser can significantly prolong the solidification of the riser by over 10%. Meanwhile, the sand mold for the stressframe was made by 3D printing technology and poured with aluminum alloy A356 melt. The experiment results showed that the presence of the air cavity led to a 12.5% increase of the solidification time of its riser.
基金funded by the National Science and Technology Major Project of the Ministry of Science and Technology of China under Project No.2016YFB1100703
文摘3D printing technology has been used for sand molding and core printing, but they simply substitute the traditional molding and core making method without changing the shape or size of the sand mold(core) and their dense structure. In this study, a new type of hollow mold based on 3D printing is presented. The new type of mold is a rib reinforced thickness-varying shell mold. This mold design can realize the controlled cooling of castings, i.e., different cooling rates at different areas, and improve the temperature uniformity of a casting after its solidifi cation. Therefore, the performance of castings can be improved and their residual stress and deformation can be reduced. This kind of new mold was applied to a stress frame of A356 aluminum alloy. The 3D printed rib reinforced thickness-varying shell mold was compared with the traditional dense mold, and the castings obtained by these two kinds of molds were also compared. The experimental results showed that the rib reinforced shell mold increased the cooling rate of the casting by 30%, tensile strength by 17%, yield strength by 11%, elongation by 67%, and decreased its deformation by 43%, while sand consumption was greatly reduced by 90%.
基金funded by the National Natural Science Foundation of China (No. 51875308)。
文摘The cooling control of the melt during the casting process is of great significance. A comprehensive closed-loop cooling control of castings by adopting a skeletal sand mold design was proposed. The skeletal sand mold consisting of an adaptive shell, functional cavities and a support was designed and created based on the finite difference meshes of a casting. It was applied to a round wall test casting. Two kinds of skeletal sand molds, one with lattice support and the other with enforcing ribs for this casting were designed and printed out by the 3 D printing(3 DP) method. Aluminum alloy A356 was cast by using these two sand molds. The first mold was cooled by natural convection, the other one by water spray cooling. Two sound castings were obtained. The sand mold temperature, cooling curves, microstructures, mechanical properties, residual stress and deformation were measured, compared and discussed. Water spray cooling hastened the cooling rate by 62%, increased the content of Mg and Cu in the α-Al matrix, improved the mechanical properties, and altered the surface residual stress state.
基金funded by National Key R&D Program of China(No.2021YFB3401200)the National Natural Science Foundation of China(No.51875308)the Beijing Nature Sciences Fund-Haidian Originality Cooperation Project(L212002).
文摘Numerical simulation is the most powerful computational and analysis tool for a large variety of engineering and physical problems.For a complex problem relating to multi-field,multi-process and multi-scale,different computing tools have to be developed so as to solve particular fields at different scales and for different processes.Therefore,the integration of different types of software is inevitable.However,it is difficult to perform the transfer of the meshes and simulated results among software packages because of the lack of shared data formats or encrypted data formats.An image processing based method for three-dimensional model reconstruction for numerical simulation was proposed,which presents a solution to the integration problem by a series of slice or projection images obtained by the post-processing modules of the numerical simulation software.By means of mapping image pixels to meshes of either finite difference or finite element models,the geometry contour can be extracted to export the stereolithography model.The values of results,represented by color,can be deduced and assigned to the meshes.All the models with data can be directly or indirectly integrated into other software as a continued or new numerical simulation.The three-dimensional reconstruction method has been validated in numerical simulation of castings and case studies were provided in this study.
基金funded by National Basic Research Program of China(No.2011CB012900)
文摘To replace metal padding by insulation padding for castings can save the melt and reduce cleaning work of castings. The design of insulation padding was investigated. The equation of the modulus extension factor for insulation padding and the ratio of its thickness over the modulus of a casting were improved to deter- mine the thickness of insulation padding. The insulation padding was designed for a turbine guide vane casting weighing 3.5 t. A sound casting was obtained with 750 kg steel saved. On the other side, the cast- ing obviously expanded at the interface with the insulation padding, which is perhaps the reason that the use of insulation padding has been suspended for many years. To avoid the expansion of insulation pad- ding, a shielding layer made of a kind of material of good fire resistance was adopted to prevent the insula- tion layer from touching the melt. The shielding layer serves as a cushion of heat and expansion during so- lidification process so as to resist the expansion of castings and guarantee the feeding effect at the same time. Furthermore, insulation padding can be placed by a certain offset into the mold cavity so as to coun- teract the expansion of castings.