Doping heteroatoms on carbon materials could bring some special advantages for using as catalyst support.In this work, a boron doped lamellar porous carbon(B-LPC) was prepared facilely and utilized as carbonbased supp...Doping heteroatoms on carbon materials could bring some special advantages for using as catalyst support.In this work, a boron doped lamellar porous carbon(B-LPC) was prepared facilely and utilized as carbonbased support to construct Cu/B-LPC catalyst for dimethyl oxalate(DMO) hydrogenation. Doping boron could make the B-LPC own more defects on surface and bigger pore size than B-free LPC, which were beneficial to disperse and anchor Cu nanoparticles. Moreover, the interaction between Cu species and B-LPC could be strengthened by the doped B, which not only stabilized the Cu nanoparticles, but also tuned the valence of Cu species to maintain more Cu^(+). Therefore, the B-doped Cu/B-LPC catalyst exhibited stronger hydrogenation ability and obtained higher alcohols selectivity than Cu/LPC, as well as high stability without decrease of DMO conversion and ethylene glycol selectivity even after 300 h of reaction at 240℃.展开更多
基金financially supported by the National Natural Science Foundation of China (22008166)Natural Science Foundation of Shanxi (201901D211047)Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (2019L0185)。
文摘Doping heteroatoms on carbon materials could bring some special advantages for using as catalyst support.In this work, a boron doped lamellar porous carbon(B-LPC) was prepared facilely and utilized as carbonbased support to construct Cu/B-LPC catalyst for dimethyl oxalate(DMO) hydrogenation. Doping boron could make the B-LPC own more defects on surface and bigger pore size than B-free LPC, which were beneficial to disperse and anchor Cu nanoparticles. Moreover, the interaction between Cu species and B-LPC could be strengthened by the doped B, which not only stabilized the Cu nanoparticles, but also tuned the valence of Cu species to maintain more Cu^(+). Therefore, the B-doped Cu/B-LPC catalyst exhibited stronger hydrogenation ability and obtained higher alcohols selectivity than Cu/LPC, as well as high stability without decrease of DMO conversion and ethylene glycol selectivity even after 300 h of reaction at 240℃.