In the past few years,significant progress has been made in modeling and state estimation for industrial processes to improve control performance,reliable monitoring,quick and accurate fault detection,diagnosis,high p...In the past few years,significant progress has been made in modeling and state estimation for industrial processes to improve control performance,reliable monitoring,quick and accurate fault detection,diagnosis,high product quality,fule and resource consumption,etc.However,with the fast development of information technology,numerous essential issues are faced in modeling and state estimation,which generates the new need for novel modeling and or state estimation methodologies and in-depth studies of them.Therefore,this special issue is dedicated to innovative modeling and state estimation from applicability,computational efficiency,and effectiveness.展开更多
In this experiment, 97 patients with obstructive sleep apnea hypopnea syndrome were divided into three groups (mild, moderate, severe) according to minimum oxygen saturation, and 35 healthy subjects were examined as...In this experiment, 97 patients with obstructive sleep apnea hypopnea syndrome were divided into three groups (mild, moderate, severe) according to minimum oxygen saturation, and 35 healthy subjects were examined as controls. Cognitive function was determined using the mismatch negativity paradigm and the Montreal Cognitive Assessment. The results revealed that as the disease worsened, the mismatch negativity latency was gradually extended, and the amplitude gradually declined in patients with obstructive sleep apnea hypopnea syndrome. Importantly, mismatch negativity latency in severe patients with a persistent time of minimum oxygen saturation 〈 60 seconds was significantly shorter than that with a persistent time of minimum oxygen saturation 〉 60 seconds. Correlation analysis revealed a negative correlation between minimum oxygen saturation latency and Montreal Cognitive Assessment scores. These findings indicate that intermittent night-time hypoxemia affects mismatch negativity waveforms and Montrea Cognitive Assessment scores. As indicators for detecting the cognitive functional status of obstructive sleep apnea hypopnea syndrome patients, the sensitivity of mismatch negativity is 82.93%, the specificity is 73.33%, the accuracy rate is 81.52%, the positive predictive value is 85.00%, the negative predictive value is 70.21%, the positive likelihood ratio is 3, and the negative likelihood ratio is 0.23. These results indicate that mismatch negativity can be used as an effective tool for diagnosis of cognitive dysfunction in obstructive sleep apnea hypopnea syndrome patients.展开更多
The precedence effect is a prerequisite for faithful sound localization in a complex auditory environment, and is a physiological phenomenon in which the auditory system selectively suppresses the directional informat...The precedence effect is a prerequisite for faithful sound localization in a complex auditory environment, and is a physiological phenomenon in which the auditory system selectively suppresses the directional information from echoes. Here we investigated how neurons in the inferior colliculus respond to the paired sounds that produce precedence-effect illusions, and whether their firing behavior can be modulated through inhibition with gamma-aminobutyric acid (GABA). We recorded extracellularly from 36 neurons in rat inferior colliculus under three conditions: no injection, injection with saline, and injection with gamma-aminobutyric acid. The paired sounds that produced precedence effects were two identical 4-ms noise bursts, which were delivered contralaterally or ipsilaterally to the recording site. The normalized neural responses were measured as a function of different inter-stimulus delays and half-maximal interstimulus delays were acquired. Neuronal responses to the lagging sounds were weak when the inter-stimulus delay was short, but increased gradually as the delay was lengthened. Saline injection produced no changes in neural responses, but after local gamma-arninobutyric acid application, responses to the lagging stimulus were suppressed. Application of gamma-aminobutyric acid affected the normalized response to lagging sounds, independently of whether they or the paired sounds were contralateral or ipsilateral to the recording site. These observations suggest that local inhibition by gamma-aminobutyric acid in the rat inferior colliculus shapes the neural responses to lagging sounds, and modulates the precedence effect.展开更多
Conventional hexagonal dimolybdenum carbide(Mo2 C) as a good cocatalyst has been widely applied for the enhanced photocatalytic hydrogen production of various photocatalysts. Compared with the hexagonal Mo2 C, however...Conventional hexagonal dimolybdenum carbide(Mo2 C) as a good cocatalyst has been widely applied for the enhanced photocatalytic hydrogen production of various photocatalysts. Compared with the hexagonal Mo2 C, however, the investigation about cubic molybdenum carbide(Mo C) is still very limited in photocatalytic field. In this study, carbon-coated cubic molybdenum carbide(MoC@C) nanoparticle was synthesized and used as an effective cocatalyst to improve the H2-evolution efficiency of Ti O2. The cubic MoC@C can be obtained by adjusting the mass ratio of C3 N3(NH2)3 to(NH4)6 Mo7 O(24)(2:1) and controlling the calcination temperature to 800 °C. When the above cubic MoC@C nanoparticles were evenly loaded on the Ti O2 via a sonication-assisted deposition, a homogeneous composite of TiO2/MoC@C was formed due to the strong coupling interface between TiO2 and cubic MoC nanoparticles. More importantly, the highest H2-production rate of Ti O-12/MoC@C reached 504 μmol hg^(-1)(AQE=1.43%), which was 50 times as high as that of the pure TiO2. The enhanced performance of TiO2/MoC@C can be attributed to the synergistic effect of carbon layer as an electron mediator and the cubic MoC as interfacial H2-evolution active sites. This work provides a feasible guideline to develop high-efficiency Mo-based cocatalysts for potential applications in the H2-evolution field.展开更多
OBJECTIVE:The aims of this study were to investigate the changes of the total intensity of transient evoked otoacoustic emission(TEOAE) and signal-to-noise ratio in various frequency bands as a function of aging,an...OBJECTIVE:The aims of this study were to investigate the changes of the total intensity of transient evoked otoacoustic emission(TEOAE) and signal-to-noise ratio in various frequency bands as a function of aging,and to explore the role of age-related decline of cochlear outer hair cells.DATA SOURCES:The literature was searched using the PubMed database using 'transient-evoked otoacoustic emissions' as a keyword.Articles were limited as follows:Species was 'Humans';languages were 'English and Chinese';publication date between 1990-01-01 and 2010-12-31.The references of the found were also searched to obtain additional articles.DATA SELECTION:Inclusion criteria:(1) Articles should involve the total TEOAE level or signal-to-noise ratio.(2) The measurement and analysis system used was Otodynamics ILO analysis system(ILO88,ILO92,ILO96 or ILO292).(3) Studies involved groups of greater than 10 subjects and TEOAE results were from normally hearing ears.(4) If more papers from the same author or laboratory analyzed the same subjects,only one was used.MAIN OUTCOME MEASURES:The correlations of the age scale with the total level and signal-to-noise ratio of TEOAE was determined,respectively.RESULTS:(1) TEOAE total level gradually increased until 2 months of age,and then decreased with increasing age.Significant negative correlations between total TEOAE level and age were found(r =-0.885,P = 0.000).(2) The most rapid decrease of TEOAE amplitude occurred at 1 year old.The total TEOAE level decreased about 4.25 dB SPL between 2 months to 1 year old,then about 0.26-0.52 dB SPL from 1 year to 10 years old,about 0.23 dB SPL from 11 years to 25 years old,and about 0.14 dB SPL from 26 years to 60 years old.(3) The signal-to-noise ratio in the frequency bands centered at 1.5,2,3 and 4 kHz decreased with increasing age after 2 months of age.Significant negative correlations between the signal-to-noise ratio and age were found for frequency bands ranging from 1.5 kHz to 4 kHz,with the highest correlations at 4 kHz(r =-0.890,P 〈 0.01),then at 3 kHz(r =-0.889,P 〈 0.01),at 2 kHz(r =-0.850,P 〈 0.01) and at 1.5 kHz(r =-0.705,P 〈 0.05).Conversely,a positive correlation between the signal-to-noise ratio centered at 1 kHz and age was found,but was not statistically significant(r = 0.298,P = 0.374).CONCLUSION:The total TEOAE response level decreased with increasing age after the first 2 months of age.The signal-to-noise ratio also decreased with increasing age in frequency bands above 1.5 kHz.The signal-to-noise ratio in higher frequencies decreased faster than in lower frequencies,leading to the maximum signal-to-noise ratio shift form 3.2-4.0 kHz in neonates to 1.5 kHz in adults,and further decreasing the total TEOAE response level.The age-related TEOAE spectrum peak shift is most likely because the outer hair cells functioning in higher frequencies are more prone to damage than those for lower frequencies.展开更多
Exploring the molecular mechanism of soybean response to drought stress,providing a basis for genetic improvement and breeding of heat-resistant varieties,relying on the transcriptome sequencing data of unpollinated o...Exploring the molecular mechanism of soybean response to drought stress,providing a basis for genetic improvement and breeding of heat-resistant varieties,relying on the transcriptome sequencing data of unpollinated ovary at the seven-leaf stage of soybean Jinong 18(JN18)and Jinong 18 mutant(JB18)soybeans,using reverse transcription,one gene in the sHSP family was cloned using PCR(RT-PCR)and it was named sHSP26.In this experiment,the soybean sHSP26 gene was successfully cloned by RT-PCR,the protein encoded by the sHSP26 gene was analyzed by bioinformatics,and the sHSP26 gene overexpression vector and CRISPR/Cas9 gene-editing vector were constructed.The positive plants were derived from Agrobacterium-mediated transformation of soybean cotyledon nodes,and T2 plants were identified through conventional PCR,QT-PCR,and Southern blot hybridization.Finally,through the determination of drought-related physiological and biochemical indicators and the analysis of agronomic traits,further research on gene function was conducted.The results indicated that the overexpression vector plant GmsHSP26 gene expression increased.After stress,the SOD and POD activities,and the PRO content of the transgenic overexpression plants increased,while the MDA content decreased.The reverse was true for soybean plants with genetically modified editing vectors.A survey of agronomic traits indicated that the fourpod ratio and yield per plant of the transgenic overexpression plants were higher than those of the control and transgenic editing vector soybean plants.It indicates that the expression of the sHSP26 gene can enhance drought resistance and soybean yield.The soybean sHSP26 gene cloning and its functional verification have not yet been reported.This is the first report where PCR amplification of soybean sHSP26 genes and gene expression vector were applied.It lays the foundation for creating new drought-resistant transgenic soybean lines through genetic engineering technology and is essential for improving soybean yield and quality.展开更多
Many debris flows have occurred in the areas surrounding the epicenter of the Wenchuan earthquake. Susceptibility assessment of debris flows in this area is especially important for disaster prevention and mitigation....Many debris flows have occurred in the areas surrounding the epicenter of the Wenchuan earthquake. Susceptibility assessment of debris flows in this area is especially important for disaster prevention and mitigation. This paper studies one of the worst hit areas, the Subao river valley, and the susceptibility assessment of debris flows is performed based on field surveys and remote sensing interpretation. By investigating the formation conditions of debris flows in the valley, the following assessment factors are selected: mixture density of landslides and rock avalanches, distance to the seismogenic fault, stratum lithology, ground roughness, and hillside angle. The weights of the assessment factors are determined by the analytic hierarchy process (AHP) method. Each of the assessment factors is further divided into five grades. Then, the assessment model is built using the multifactor superposition method to assess the debris flow susceptibility. Based on the assessment results, the Subao river valley is divided into three areas: high susceptibility areas, medium susceptibility areas, and low susceptibility areas. The high susceptibility areas are concentrated in the middle of the valley, accounting for 17.6%of the valley area. The medium susceptibility areas are in the middle and lower reaches, most of which are located on both sides of the high susceptibility areas and account for 45.3% of the valley area. The remainders are clas-sified as low susceptibility areas. The results of the model are in accordance with the actual debris flow events that occurred after the earthquake in the valley, confirming that the proposed model is capable of assessing the debris flow susceptibility. The results can also provide guidance for reconstruction planning and debris flow prevention in the Subao river valley.展开更多
Seed shattering refers to the phenomenon in which the pods split along the abdominal and back sutures before the crop is received,so that the seeds are spread.Seed shattering is vital to the reproduction of their offs...Seed shattering refers to the phenomenon in which the pods split along the abdominal and back sutures before the crop is received,so that the seeds are spread.Seed shattering is vital to the reproduction of their offspring in wild plants,but it is also the main cause of crop yield loss reason.Pod-explosion resistance is a complex process of physical and physiological and biochemical reactions.Soybean seed shattering phenomenon is widespread,which severely restricts the development of soybean industry.Seed shattering(pod cracking or fruit dropping)is essential for the reproduction of its offspring in wild plants,but it is also the main cause of crop yield loss.This article analyzes the morphology and structure of pods related to seed shattering from the morphology of pods.On the basis of the regularity of the occurrence of seed shattering and the summary of phenotypic index identification methods,physiologically introduced the regulation mechanism of key enzymes and endogenous hormones on seed shattering.The localization,labeling and cloning of seed shattering genes are introduced in molecular biology.The study focused on reviewing the latest advances in the research on soybean seed shattering characteristics,and discussed with the research results of related crops.Finally,the research and application of soybean seed shattering resistance were prospected for several aspects.展开更多
Waste cooking oils and non-edible vegetable oils are abundant and renewable resources for bio-based materials which have showed great potential applications in many industries.In this study,five fatty acids commonly f...Waste cooking oils and non-edible vegetable oils are abundant and renewable resources for bio-based materials which have showed great potential applications in many industries.In this study,five fatty acids commonly found in non-edible vegetable oils,including palmitic acid,stearic acid,linoleic acid,linolenic acid,ricinoleic acid,and their mixtures,were used to produce bio-based zwitterionic surfactants through a facile and high-yield chemical modification.These surfactants demonstrated excellent surface/interfacial properties with the minimum surface tensions ranging from 28.4 mN/m to 32.8 mN/m in aqueous solutions.The interfacial tensions between crude oil and surfactant solutions were remarkably reduced to lower values ranging from 0.0028 mN/m to 0.1983 mN/m without the aid of extra alkali,which particularly implied a great potential application in enhanced oil recovery.Meanwhile,these bio-based surfactants also showed good wetting properties(contact angles of~51°comparing with that of double distilled water,92.04°)and appropriate predicted biodegradability(degradation order of“weeks”for bio-based surfactants synthesized from saturated fatty acids,and“months”for those synthesized from unsaturated fatty acids).Bio-based surfactants synthesized from unsaturated fatty acids showed better interfacial properties in reducing interfacial tension between crude oil and formation water.The bio-based surfactants presented in this study are alternative substitutes for traditional petroleum-based surfactants in various surfactant application fields.展开更多
In this study,we investigated the structural and dynamical properties of liquid water by using ab initio molecular dynamics simulation under periodic boundary conditions based on the fragment-based quantum mechanical ...In this study,we investigated the structural and dynamical properties of liquid water by using ab initio molecular dynamics simulation under periodic boundary conditions based on the fragment-based quantum mechanical approach.This study was carried out using the second-order Møller-Plesset perturbation theory(MP2)with the aug-cc-pVDZ basis set,which has been validated to be sufficiently accurate for describing water interactions.Diverse properties of liquid water,including radial distribution functions,diffusion coefficient,dipole moment,triplet oxygen-oxygen-oxygen angles,and hydrogen-bond structures,were simulated.This ab initio description leads to these properties in good agreement with experimental observations.This computational approach is general and transferable,providing a comprehensive framework for ab initio predictions of properties of condensed-phase matters.展开更多
Soybean(Glycine max(L.)Merr.)is an important cultivated crop,which requires much water during its growth,and drought seriously affects soybean yields.Studies have shown that the expression of small heat shock proteins...Soybean(Glycine max(L.)Merr.)is an important cultivated crop,which requires much water during its growth,and drought seriously affects soybean yields.Studies have shown that the expression of small heat shock proteins can enhance drought resistance,cold resistance and salt resistance of plants.In this experiment,soybean GmHsps_p23-like gene was successfully cloned by RT-PCR,the protein encoded by the GmHsps_p23-like gene was subjected to bioinformatics analysis,and the pCAMBIA3301-GmHsps_p23-like overexpression vector and pCBSG015-GmHsps_p23-like gene editing vector were constructed.Agrobacterium-mediated method was used to transform soybeans to obtain positive plants.RT-PCR detection,rehydration experiment and drought resistance physiological and biochemical index detection were performed on the T2 generation positive transgenic soybean plants identified by PCR and Southern hybridization.The results showed that the overexpression vector plant GmHsps_p23-like gene expression increased.After rehydration,the transgenic overexpression plants returned to normal growth,and the damage to the plants was low.After drought stress,the SOD and POD activities and the PRO content of the transgenic overexpression plants increased,while the MDA content decreased.The reverse was true for soybean plants with genetically modified editing vectors.The drought resistance of the overexpressed soybeans under drought stress was higher than that of the control group,and had a stronger drought resistance.It showed that the expression of soybean GmHsps_p23-like gene can improve the drought resistance of soybean.The cloning and functional verification of soybean GmHsps_p23-like gene had not been reported yet.This is the first time that PCR technology has been used to amplify the soybean GmHsps_p23-like gene and construct an expression vector for this gene.This research has laid the foundation for transgenic technology to improve plant drought resistance and cultivate new drought-resistant transgenic soybean varieties.展开更多
The Electromagnetic Compatibility (EMC) of direct current (DC) motor windings is a system model which is used to reflect the functional characters of the system in the whole EMC specified frequency (150 KHz ~ 30 MHz)....The Electromagnetic Compatibility (EMC) of direct current (DC) motor windings is a system model which is used to reflect the functional characters of the system in the whole EMC specified frequency (150 KHz ~ 30 MHz). For most motor designing process, it is always used to evaluate the inductance of windings in lower or working frequency;however, when analyzing the conducted interference, it is necessary to take some pa-rameters in high frequency into account in building up the EMC model, such as the noticeable capacitance distributed among the windings or between windings and shells. Past research neglected the common-mode current generated by the high frequency interference within motor bearings coupled with shells, since the parasitic capacitance of rotor core comes from armature windings supplied sufficient paths. In EMC model-ing process for DC motor problem, first, test the impedance of windings by experiments;then, generate the equivalent circuit with overall parameters. At present, it is a difficulty that how to choose the parameters. Most researchers preferred to adopt analytical calculation results, however, it could not reflect the essence of the model since it requires many simplification. Based on this point, this paper adopted ant colony algorithm (ACA) with positive feedback to intelligently search and globally optimize the parameters of equivalent cir-cuit. Simulation result showed that the impedance of equivalent circuit calculated by this algorithm was the same as experimental result in the whole EMC frequency. In order to further confirm the validity of ACA, PSPICE circuit simulation was implemented to simulate the spectrum of common mode Electromagnetic Interference (EMI) of equivalent circuit. The simulation result accords well with the experiment result re-ceived by EMI receiver. So it sufficiently demonstrated correctness of ACA in the analysis of high frequency equivalent circuit.展开更多
LiNi0.5Mn1.5O4 (LNMO)/poly(3,4-ethylenedioxythiophene) (PEDOT) composite cathode materials were prepared through in-situ polymerization of thiophene monomer (EDOT), with ammonium persulphate (APS) as oxidizing agent, ...LiNi0.5Mn1.5O4 (LNMO)/poly(3,4-ethylenedioxythiophene) (PEDOT) composite cathode materials were prepared through in-situ polymerization of thiophene monomer (EDOT), with ammonium persulphate (APS) as oxidizing agent, p-toluenesulfonic acid (PTSA) as dopant. The morphology, amount of PEDOT coating, electrochemical properties of LNMO/PEDOT were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and galvanostatic charge and discharge tests. The results show that the composite materials show better cycle performance than bare LNMO.展开更多
Exploring the therapeutic effect of single atom catalysts beyond reactive oxygen species(ROS)modulation would boost the prosperity of nanomedicine in cancer treatment.Autophagy as a vital therapy target offers new opt...Exploring the therapeutic effect of single atom catalysts beyond reactive oxygen species(ROS)modulation would boost the prosperity of nanomedicine in cancer treatment.Autophagy as a vital therapy target offers new options for the control of renal cell carcinoma(RCC)progression.Herein,Fe single atom-decorated graphene oxide(Fe_(1)-GO)nanosheet is developed to be a feasible autophagy inducer in RCC treatment.With the well-dispersed O-Fe_(1)-O active sites,Fe_(1)-GO kills ACHN cells effectively but maintains acceptable cytotoxicity to the normal podocyte and HK2 ones.In-depth analyses ascribe the inhibition of ACHN cells to the upregulated autophagy instead of the commonly known catalytic ROS generation.The in vivo therapeutic effect of Fe_(1)-GO nanomedicine is also validated by the RCC-bearing BALB/c mice model,realizing an 89% reduction of tumor weight and good biosafety.This work provides new insights into the design of autophagy regulators as well as potential therapeutic strategies for RCC treatment.展开更多
The Chinese Clinical Practice Guidelines for the prevention and treatment ofmother-to-child transmission of hepatitis B virus,developed by the Chinese Society of Infectious Diseases of the Chinese Medical Association ...The Chinese Clinical Practice Guidelines for the prevention and treatment ofmother-to-child transmission of hepatitis B virus,developed by the Chinese Society of Infectious Diseases of the Chinese Medical Association in 2019,serves as a valuable reference for standardizing the process of preventing mother-to-child transmission in China.As new evidence emerges,it is crucial that timely and regular updates are made to the clinical practice guidelines so as to optimize guidance for clinical practice and research.To this end,the Infectious Disease Physician Branch of Chinese Medical Doctor Association and the Chinese Society of Infectious Diseases of Chinese Medical Association,in collaboration with multidisciplinary experts,have updated the guidelines based on the latest domestic and international research advancements and clinical practice,in order to provide guidance and reference for clinicians andmaternal and child healthcare workers.展开更多
The Chinese Clinical Practice Guidelines for the Prevention and Treatment of Mother-to-child Transmission of Hepatitis B Virus,developed by the Chinese Society of Infectious Diseases of the Chinese Medical Association...The Chinese Clinical Practice Guidelines for the Prevention and Treatment of Mother-to-child Transmission of Hepatitis B Virus,developed by the Chinese Society of Infectious Diseases of the Chinese Medical Association in 2019,serves as a valuable reference for standardizing the prevention of mother-to-child transmission in China.As new evidence continues to emerge,it is essential to update these guidelines regularly to optimize clinical practice and research.To this end,the Infectious Disease Physician Branch of the Chinese Medical Doctor Association and the Chinese Society of Infectious Diseases of the Chinese Medical Association,in collaboration with multidisciplinary experts,have updated the guidelines based on the latest domestic and international research advancements and clinical practices,providing upto-date guidance for clinicians and maternal and child healthcare workers.展开更多
In 1995,Yu et al.[1]first reported bulk-heterojunction(BHJ)solar cells with a conjugated polymer donor and a fullerene acceptor as the active materials.From then on,BHJ organic solar cells(OSCs)have attracted academic...In 1995,Yu et al.[1]first reported bulk-heterojunction(BHJ)solar cells with a conjugated polymer donor and a fullerene acceptor as the active materials.From then on,BHJ organic solar cells(OSCs)have attracted academic and industrial interests due to the advantages like lightweight,flexibility and roll-to-roll fabrication.Nowadays,17%power conversion efficiencies(PCEs)have been achieved in the state-of-the-art OSCs[2,3].The remarkable progress in OSCs relies on the continuously emerging new materials and device fabrication technologies,and the understanding on film morphology and device physics[4,5].展开更多
文摘In the past few years,significant progress has been made in modeling and state estimation for industrial processes to improve control performance,reliable monitoring,quick and accurate fault detection,diagnosis,high product quality,fule and resource consumption,etc.However,with the fast development of information technology,numerous essential issues are faced in modeling and state estimation,which generates the new need for novel modeling and or state estimation methodologies and in-depth studies of them.Therefore,this special issue is dedicated to innovative modeling and state estimation from applicability,computational efficiency,and effectiveness.
基金supported by the National Natural Science Foundation of China,No. 30973309
文摘In this experiment, 97 patients with obstructive sleep apnea hypopnea syndrome were divided into three groups (mild, moderate, severe) according to minimum oxygen saturation, and 35 healthy subjects were examined as controls. Cognitive function was determined using the mismatch negativity paradigm and the Montreal Cognitive Assessment. The results revealed that as the disease worsened, the mismatch negativity latency was gradually extended, and the amplitude gradually declined in patients with obstructive sleep apnea hypopnea syndrome. Importantly, mismatch negativity latency in severe patients with a persistent time of minimum oxygen saturation 〈 60 seconds was significantly shorter than that with a persistent time of minimum oxygen saturation 〉 60 seconds. Correlation analysis revealed a negative correlation between minimum oxygen saturation latency and Montreal Cognitive Assessment scores. These findings indicate that intermittent night-time hypoxemia affects mismatch negativity waveforms and Montrea Cognitive Assessment scores. As indicators for detecting the cognitive functional status of obstructive sleep apnea hypopnea syndrome patients, the sensitivity of mismatch negativity is 82.93%, the specificity is 73.33%, the accuracy rate is 81.52%, the positive predictive value is 85.00%, the negative predictive value is 70.21%, the positive likelihood ratio is 3, and the negative likelihood ratio is 0.23. These results indicate that mismatch negativity can be used as an effective tool for diagnosis of cognitive dysfunction in obstructive sleep apnea hypopnea syndrome patients.
基金supported by the National Natural Science Foundation of China,No.81271090 and the Beijing Natural Science Foundation,No.7112055
文摘The precedence effect is a prerequisite for faithful sound localization in a complex auditory environment, and is a physiological phenomenon in which the auditory system selectively suppresses the directional information from echoes. Here we investigated how neurons in the inferior colliculus respond to the paired sounds that produce precedence-effect illusions, and whether their firing behavior can be modulated through inhibition with gamma-aminobutyric acid (GABA). We recorded extracellularly from 36 neurons in rat inferior colliculus under three conditions: no injection, injection with saline, and injection with gamma-aminobutyric acid. The paired sounds that produced precedence effects were two identical 4-ms noise bursts, which were delivered contralaterally or ipsilaterally to the recording site. The normalized neural responses were measured as a function of different inter-stimulus delays and half-maximal interstimulus delays were acquired. Neuronal responses to the lagging sounds were weak when the inter-stimulus delay was short, but increased gradually as the delay was lengthened. Saline injection produced no changes in neural responses, but after local gamma-arninobutyric acid application, responses to the lagging stimulus were suppressed. Application of gamma-aminobutyric acid affected the normalized response to lagging sounds, independently of whether they or the paired sounds were contralateral or ipsilateral to the recording site. These observations suggest that local inhibition by gamma-aminobutyric acid in the rat inferior colliculus shapes the neural responses to lagging sounds, and modulates the precedence effect.
基金supported by the National Natural Science Foundation of China (51872221 and 21771142)the Fundamental Research Funds for the Central Universities (WUT 2019IB002)。
文摘Conventional hexagonal dimolybdenum carbide(Mo2 C) as a good cocatalyst has been widely applied for the enhanced photocatalytic hydrogen production of various photocatalysts. Compared with the hexagonal Mo2 C, however, the investigation about cubic molybdenum carbide(Mo C) is still very limited in photocatalytic field. In this study, carbon-coated cubic molybdenum carbide(MoC@C) nanoparticle was synthesized and used as an effective cocatalyst to improve the H2-evolution efficiency of Ti O2. The cubic MoC@C can be obtained by adjusting the mass ratio of C3 N3(NH2)3 to(NH4)6 Mo7 O(24)(2:1) and controlling the calcination temperature to 800 °C. When the above cubic MoC@C nanoparticles were evenly loaded on the Ti O2 via a sonication-assisted deposition, a homogeneous composite of TiO2/MoC@C was formed due to the strong coupling interface between TiO2 and cubic MoC nanoparticles. More importantly, the highest H2-production rate of Ti O-12/MoC@C reached 504 μmol hg^(-1)(AQE=1.43%), which was 50 times as high as that of the pure TiO2. The enhanced performance of TiO2/MoC@C can be attributed to the synergistic effect of carbon layer as an electron mediator and the cubic MoC as interfacial H2-evolution active sites. This work provides a feasible guideline to develop high-efficiency Mo-based cocatalysts for potential applications in the H2-evolution field.
基金supported by the Natural Science Foundation of Beijing,No.7112055
文摘OBJECTIVE:The aims of this study were to investigate the changes of the total intensity of transient evoked otoacoustic emission(TEOAE) and signal-to-noise ratio in various frequency bands as a function of aging,and to explore the role of age-related decline of cochlear outer hair cells.DATA SOURCES:The literature was searched using the PubMed database using 'transient-evoked otoacoustic emissions' as a keyword.Articles were limited as follows:Species was 'Humans';languages were 'English and Chinese';publication date between 1990-01-01 and 2010-12-31.The references of the found were also searched to obtain additional articles.DATA SELECTION:Inclusion criteria:(1) Articles should involve the total TEOAE level or signal-to-noise ratio.(2) The measurement and analysis system used was Otodynamics ILO analysis system(ILO88,ILO92,ILO96 or ILO292).(3) Studies involved groups of greater than 10 subjects and TEOAE results were from normally hearing ears.(4) If more papers from the same author or laboratory analyzed the same subjects,only one was used.MAIN OUTCOME MEASURES:The correlations of the age scale with the total level and signal-to-noise ratio of TEOAE was determined,respectively.RESULTS:(1) TEOAE total level gradually increased until 2 months of age,and then decreased with increasing age.Significant negative correlations between total TEOAE level and age were found(r =-0.885,P = 0.000).(2) The most rapid decrease of TEOAE amplitude occurred at 1 year old.The total TEOAE level decreased about 4.25 dB SPL between 2 months to 1 year old,then about 0.26-0.52 dB SPL from 1 year to 10 years old,about 0.23 dB SPL from 11 years to 25 years old,and about 0.14 dB SPL from 26 years to 60 years old.(3) The signal-to-noise ratio in the frequency bands centered at 1.5,2,3 and 4 kHz decreased with increasing age after 2 months of age.Significant negative correlations between the signal-to-noise ratio and age were found for frequency bands ranging from 1.5 kHz to 4 kHz,with the highest correlations at 4 kHz(r =-0.890,P 〈 0.01),then at 3 kHz(r =-0.889,P 〈 0.01),at 2 kHz(r =-0.850,P 〈 0.01) and at 1.5 kHz(r =-0.705,P 〈 0.05).Conversely,a positive correlation between the signal-to-noise ratio centered at 1 kHz and age was found,but was not statistically significant(r = 0.298,P = 0.374).CONCLUSION:The total TEOAE response level decreased with increasing age after the first 2 months of age.The signal-to-noise ratio also decreased with increasing age in frequency bands above 1.5 kHz.The signal-to-noise ratio in higher frequencies decreased faster than in lower frequencies,leading to the maximum signal-to-noise ratio shift form 3.2-4.0 kHz in neonates to 1.5 kHz in adults,and further decreasing the total TEOAE response level.The age-related TEOAE spectrum peak shift is most likely because the outer hair cells functioning in higher frequencies are more prone to damage than those for lower frequencies.
基金the Jilin Province Education Department Science and Technology Research Project[JJKH20210350KJ]the Jilin Province Science and Technology Guidance Program Project[20200402023NC]+1 种基金the Jilin Provincial Natural Science Foundation Project[20200201027JC]the Innovation and Entrepreneurship Training Program for College Students in Jilin Province[2021]。
文摘Exploring the molecular mechanism of soybean response to drought stress,providing a basis for genetic improvement and breeding of heat-resistant varieties,relying on the transcriptome sequencing data of unpollinated ovary at the seven-leaf stage of soybean Jinong 18(JN18)and Jinong 18 mutant(JB18)soybeans,using reverse transcription,one gene in the sHSP family was cloned using PCR(RT-PCR)and it was named sHSP26.In this experiment,the soybean sHSP26 gene was successfully cloned by RT-PCR,the protein encoded by the sHSP26 gene was analyzed by bioinformatics,and the sHSP26 gene overexpression vector and CRISPR/Cas9 gene-editing vector were constructed.The positive plants were derived from Agrobacterium-mediated transformation of soybean cotyledon nodes,and T2 plants were identified through conventional PCR,QT-PCR,and Southern blot hybridization.Finally,through the determination of drought-related physiological and biochemical indicators and the analysis of agronomic traits,further research on gene function was conducted.The results indicated that the overexpression vector plant GmsHSP26 gene expression increased.After stress,the SOD and POD activities,and the PRO content of the transgenic overexpression plants increased,while the MDA content decreased.The reverse was true for soybean plants with genetically modified editing vectors.A survey of agronomic traits indicated that the fourpod ratio and yield per plant of the transgenic overexpression plants were higher than those of the control and transgenic editing vector soybean plants.It indicates that the expression of the sHSP26 gene can enhance drought resistance and soybean yield.The soybean sHSP26 gene cloning and its functional verification have not yet been reported.This is the first report where PCR amplification of soybean sHSP26 genes and gene expression vector were applied.It lays the foundation for creating new drought-resistant transgenic soybean lines through genetic engineering technology and is essential for improving soybean yield and quality.
基金supported by the National Natural Science Foundation of China (Grant No. 41372301)the National Science and Technology Support Program (Grant No. 2012BAC06B02)
文摘Many debris flows have occurred in the areas surrounding the epicenter of the Wenchuan earthquake. Susceptibility assessment of debris flows in this area is especially important for disaster prevention and mitigation. This paper studies one of the worst hit areas, the Subao river valley, and the susceptibility assessment of debris flows is performed based on field surveys and remote sensing interpretation. By investigating the formation conditions of debris flows in the valley, the following assessment factors are selected: mixture density of landslides and rock avalanches, distance to the seismogenic fault, stratum lithology, ground roughness, and hillside angle. The weights of the assessment factors are determined by the analytic hierarchy process (AHP) method. Each of the assessment factors is further divided into five grades. Then, the assessment model is built using the multifactor superposition method to assess the debris flow susceptibility. Based on the assessment results, the Subao river valley is divided into three areas: high susceptibility areas, medium susceptibility areas, and low susceptibility areas. The high susceptibility areas are concentrated in the middle of the valley, accounting for 17.6%of the valley area. The medium susceptibility areas are in the middle and lower reaches, most of which are located on both sides of the high susceptibility areas and account for 45.3% of the valley area. The remainders are clas-sified as low susceptibility areas. The results of the model are in accordance with the actual debris flow events that occurred after the earthquake in the valley, confirming that the proposed model is capable of assessing the debris flow susceptibility. The results can also provide guidance for reconstruction planning and debris flow prevention in the Subao river valley.
基金Jilin Province Education Department Science and Technology Research Project[JJKH20210350KJ]Jilin Province Science and Technology Guidance Program Project[20200402023NC]+1 种基金Jilin Provincial Natural Science Foundation Project[20200201027JC]Innovation and Entrepreneurship Training Program for College Students in Jilin Province[2021].
文摘Seed shattering refers to the phenomenon in which the pods split along the abdominal and back sutures before the crop is received,so that the seeds are spread.Seed shattering is vital to the reproduction of their offspring in wild plants,but it is also the main cause of crop yield loss reason.Pod-explosion resistance is a complex process of physical and physiological and biochemical reactions.Soybean seed shattering phenomenon is widespread,which severely restricts the development of soybean industry.Seed shattering(pod cracking or fruit dropping)is essential for the reproduction of its offspring in wild plants,but it is also the main cause of crop yield loss.This article analyzes the morphology and structure of pods related to seed shattering from the morphology of pods.On the basis of the regularity of the occurrence of seed shattering and the summary of phenotypic index identification methods,physiologically introduced the regulation mechanism of key enzymes and endogenous hormones on seed shattering.The localization,labeling and cloning of seed shattering genes are introduced in molecular biology.The study focused on reviewing the latest advances in the research on soybean seed shattering characteristics,and discussed with the research results of related crops.Finally,the research and application of soybean seed shattering resistance were prospected for several aspects.
基金supported by the National Key Research and Development Program of China(No.2017YFB0308900)National Natural Science Foundation of China(Grant No.51574125)+1 种基金the Fundamental Research Funds for the Central Universities of China(No.50321101917017)the Research Program of State Key Laboratory of Bioreactor Engineering.
文摘Waste cooking oils and non-edible vegetable oils are abundant and renewable resources for bio-based materials which have showed great potential applications in many industries.In this study,five fatty acids commonly found in non-edible vegetable oils,including palmitic acid,stearic acid,linoleic acid,linolenic acid,ricinoleic acid,and their mixtures,were used to produce bio-based zwitterionic surfactants through a facile and high-yield chemical modification.These surfactants demonstrated excellent surface/interfacial properties with the minimum surface tensions ranging from 28.4 mN/m to 32.8 mN/m in aqueous solutions.The interfacial tensions between crude oil and surfactant solutions were remarkably reduced to lower values ranging from 0.0028 mN/m to 0.1983 mN/m without the aid of extra alkali,which particularly implied a great potential application in enhanced oil recovery.Meanwhile,these bio-based surfactants also showed good wetting properties(contact angles of~51°comparing with that of double distilled water,92.04°)and appropriate predicted biodegradability(degradation order of“weeks”for bio-based surfactants synthesized from saturated fatty acids,and“months”for those synthesized from unsaturated fatty acids).Bio-based surfactants synthesized from unsaturated fatty acids showed better interfacial properties in reducing interfacial tension between crude oil and formation water.The bio-based surfactants presented in this study are alternative substitutes for traditional petroleum-based surfactants in various surfactant application fields.
基金supported by the National Key R&D Program of China(No.2016YFA0501700 and No.2019YFA0905201)the National Natural Science Foundation of China(No.21703289,No.21922301,and No.21761132022)+2 种基金“Double First-Class”University Project(CPU2018GY09)the Fundamental Research Funds for China Pharmaceutical University(2632019FY01)the Fundamental Research Funds for the Central Universities。
文摘In this study,we investigated the structural and dynamical properties of liquid water by using ab initio molecular dynamics simulation under periodic boundary conditions based on the fragment-based quantum mechanical approach.This study was carried out using the second-order Møller-Plesset perturbation theory(MP2)with the aug-cc-pVDZ basis set,which has been validated to be sufficiently accurate for describing water interactions.Diverse properties of liquid water,including radial distribution functions,diffusion coefficient,dipole moment,triplet oxygen-oxygen-oxygen angles,and hydrogen-bond structures,were simulated.This ab initio description leads to these properties in good agreement with experimental observations.This computational approach is general and transferable,providing a comprehensive framework for ab initio predictions of properties of condensed-phase matters.
基金Jilin Province Education Department Science and Technology Research Project[JJKH20210350KJ]Jilin Province Science and Technology Guidance Program Project[20200402023NC]+1 种基金Jilin Provincial Natural Science Foundation Project[20200201027JC]Innovation and Entrepreneurship Training Program for College Students in Jilin Province[2021].
文摘Soybean(Glycine max(L.)Merr.)is an important cultivated crop,which requires much water during its growth,and drought seriously affects soybean yields.Studies have shown that the expression of small heat shock proteins can enhance drought resistance,cold resistance and salt resistance of plants.In this experiment,soybean GmHsps_p23-like gene was successfully cloned by RT-PCR,the protein encoded by the GmHsps_p23-like gene was subjected to bioinformatics analysis,and the pCAMBIA3301-GmHsps_p23-like overexpression vector and pCBSG015-GmHsps_p23-like gene editing vector were constructed.Agrobacterium-mediated method was used to transform soybeans to obtain positive plants.RT-PCR detection,rehydration experiment and drought resistance physiological and biochemical index detection were performed on the T2 generation positive transgenic soybean plants identified by PCR and Southern hybridization.The results showed that the overexpression vector plant GmHsps_p23-like gene expression increased.After rehydration,the transgenic overexpression plants returned to normal growth,and the damage to the plants was low.After drought stress,the SOD and POD activities and the PRO content of the transgenic overexpression plants increased,while the MDA content decreased.The reverse was true for soybean plants with genetically modified editing vectors.The drought resistance of the overexpressed soybeans under drought stress was higher than that of the control group,and had a stronger drought resistance.It showed that the expression of soybean GmHsps_p23-like gene can improve the drought resistance of soybean.The cloning and functional verification of soybean GmHsps_p23-like gene had not been reported yet.This is the first time that PCR technology has been used to amplify the soybean GmHsps_p23-like gene and construct an expression vector for this gene.This research has laid the foundation for transgenic technology to improve plant drought resistance and cultivate new drought-resistant transgenic soybean varieties.
文摘The Electromagnetic Compatibility (EMC) of direct current (DC) motor windings is a system model which is used to reflect the functional characters of the system in the whole EMC specified frequency (150 KHz ~ 30 MHz). For most motor designing process, it is always used to evaluate the inductance of windings in lower or working frequency;however, when analyzing the conducted interference, it is necessary to take some pa-rameters in high frequency into account in building up the EMC model, such as the noticeable capacitance distributed among the windings or between windings and shells. Past research neglected the common-mode current generated by the high frequency interference within motor bearings coupled with shells, since the parasitic capacitance of rotor core comes from armature windings supplied sufficient paths. In EMC model-ing process for DC motor problem, first, test the impedance of windings by experiments;then, generate the equivalent circuit with overall parameters. At present, it is a difficulty that how to choose the parameters. Most researchers preferred to adopt analytical calculation results, however, it could not reflect the essence of the model since it requires many simplification. Based on this point, this paper adopted ant colony algorithm (ACA) with positive feedback to intelligently search and globally optimize the parameters of equivalent cir-cuit. Simulation result showed that the impedance of equivalent circuit calculated by this algorithm was the same as experimental result in the whole EMC frequency. In order to further confirm the validity of ACA, PSPICE circuit simulation was implemented to simulate the spectrum of common mode Electromagnetic Interference (EMI) of equivalent circuit. The simulation result accords well with the experiment result re-ceived by EMI receiver. So it sufficiently demonstrated correctness of ACA in the analysis of high frequency equivalent circuit.
文摘LiNi0.5Mn1.5O4 (LNMO)/poly(3,4-ethylenedioxythiophene) (PEDOT) composite cathode materials were prepared through in-situ polymerization of thiophene monomer (EDOT), with ammonium persulphate (APS) as oxidizing agent, p-toluenesulfonic acid (PTSA) as dopant. The morphology, amount of PEDOT coating, electrochemical properties of LNMO/PEDOT were characterized by scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and galvanostatic charge and discharge tests. The results show that the composite materials show better cycle performance than bare LNMO.
基金supported by the National Natural Science Foundation of China(Nos.52202240,82270756 and 82000686)the China Postdoctoral Science Foundation(No.2021M701409)+3 种基金the Natural Science Foundation of Guangdong,China(No.2018A030313527)the Basic and Applied Basic Research Foundation of Guangdong Province,China(No.2019A1515010176)the Science and Technology Project of Guangzhou,China(No.202102010133)the Science and Technology Project of Shenzhen,China(No.JCYJ20190808095615389)。
文摘Exploring the therapeutic effect of single atom catalysts beyond reactive oxygen species(ROS)modulation would boost the prosperity of nanomedicine in cancer treatment.Autophagy as a vital therapy target offers new options for the control of renal cell carcinoma(RCC)progression.Herein,Fe single atom-decorated graphene oxide(Fe_(1)-GO)nanosheet is developed to be a feasible autophagy inducer in RCC treatment.With the well-dispersed O-Fe_(1)-O active sites,Fe_(1)-GO kills ACHN cells effectively but maintains acceptable cytotoxicity to the normal podocyte and HK2 ones.In-depth analyses ascribe the inhibition of ACHN cells to the upregulated autophagy instead of the commonly known catalytic ROS generation.The in vivo therapeutic effect of Fe_(1)-GO nanomedicine is also validated by the RCC-bearing BALB/c mice model,realizing an 89% reduction of tumor weight and good biosafety.This work provides new insights into the design of autophagy regulators as well as potential therapeutic strategies for RCC treatment.
基金supported by the Key Research and Development Projects of Shaanxi Province(2018ZDXM-SF-037,2024SF-LCZX-14).
文摘The Chinese Clinical Practice Guidelines for the prevention and treatment ofmother-to-child transmission of hepatitis B virus,developed by the Chinese Society of Infectious Diseases of the Chinese Medical Association in 2019,serves as a valuable reference for standardizing the process of preventing mother-to-child transmission in China.As new evidence emerges,it is crucial that timely and regular updates are made to the clinical practice guidelines so as to optimize guidance for clinical practice and research.To this end,the Infectious Disease Physician Branch of Chinese Medical Doctor Association and the Chinese Society of Infectious Diseases of Chinese Medical Association,in collaboration with multidisciplinary experts,have updated the guidelines based on the latest domestic and international research advancements and clinical practice,in order to provide guidance and reference for clinicians andmaternal and child healthcare workers.
文摘The Chinese Clinical Practice Guidelines for the Prevention and Treatment of Mother-to-child Transmission of Hepatitis B Virus,developed by the Chinese Society of Infectious Diseases of the Chinese Medical Association in 2019,serves as a valuable reference for standardizing the prevention of mother-to-child transmission in China.As new evidence continues to emerge,it is essential to update these guidelines regularly to optimize clinical practice and research.To this end,the Infectious Disease Physician Branch of the Chinese Medical Doctor Association and the Chinese Society of Infectious Diseases of the Chinese Medical Association,in collaboration with multidisciplinary experts,have updated the guidelines based on the latest domestic and international research advancements and clinical practices,providing upto-date guidance for clinicians and maternal and child healthcare workers.
基金the National Key Research and Development Program of China (2017YFA0206600)the National Natural Science Foundation of China (51773045, 21572041, 21772030 and 51922032)the Youth Association for Promoting Innovation (CAS) for financial support.
文摘In 1995,Yu et al.[1]first reported bulk-heterojunction(BHJ)solar cells with a conjugated polymer donor and a fullerene acceptor as the active materials.From then on,BHJ organic solar cells(OSCs)have attracted academic and industrial interests due to the advantages like lightweight,flexibility and roll-to-roll fabrication.Nowadays,17%power conversion efficiencies(PCEs)have been achieved in the state-of-the-art OSCs[2,3].The remarkable progress in OSCs relies on the continuously emerging new materials and device fabrication technologies,and the understanding on film morphology and device physics[4,5].