Lithofacies identification is a crucial work in reservoir characterization and modeling.The vast inter-well area can be supplemented by facies identification of seismic data.However,the relationship between lithofacie...Lithofacies identification is a crucial work in reservoir characterization and modeling.The vast inter-well area can be supplemented by facies identification of seismic data.However,the relationship between lithofacies and seismic information that is affected by many factors is complicated.Machine learning has received extensive attention in recent years,among which support vector machine(SVM) is a potential method for lithofacies classification.Lithofacies classification involves identifying various types of lithofacies and is generally a nonlinear problem,which needs to be solved by means of the kernel function.Multi-kernel learning SVM is one of the main tools for solving the nonlinear problem about multi-classification.However,it is very difficult to determine the kernel function and the parameters,which is restricted by human factors.Besides,its computational efficiency is low.A lithofacies classification method based on local deep multi-kernel learning support vector machine(LDMKL-SVM) that can consider low-dimensional global features and high-dimensional local features is developed.The method can automatically learn parameters of kernel function and SVM to build a relationship between lithofacies and seismic elastic information.The calculation speed will be expedited at no cost with respect to discriminant accuracy for multi-class lithofacies identification.Both the model data test results and the field data application results certify advantages of the method.This contribution offers an effective method for lithofacies recognition and reservoir prediction by using SVM.展开更多
An amidoxime-based polymeric adsorbent was prepared by pre-irradiation grafting of acrylonitrile and acrylic acid onto high-density polyethylene fibers using electron beams,followed by amidoximation.Quantitative recov...An amidoxime-based polymeric adsorbent was prepared by pre-irradiation grafting of acrylonitrile and acrylic acid onto high-density polyethylene fibers using electron beams,followed by amidoximation.Quantitative recovery of uranium was investigated by flow-through experiment using simulated seawater and marine test in natural seawater.The maximum amount of uranium uptake was 2.51 mg/g-ads after 42 days of contact with simulated seawater and 0.13 mg/g-ads for 15 days of contact with natural seawater.A lower uranium uptake in marine test can be attributed to the short adsorption time and the contamination of marine microorganisms and iron.However,the high selectivity toward uranium against vanadium may be beneficial to harvest uranyl ion onto adsorbents and the economic feasibility for recovery of uranium from seawater.展开更多
In VTI media,the conventional inversion methods based on the existing approximation formulas are difficult to accurately estimate the anisotropic parameters of reservoirs,even more so for unconventional reservoirs wit...In VTI media,the conventional inversion methods based on the existing approximation formulas are difficult to accurately estimate the anisotropic parameters of reservoirs,even more so for unconventional reservoirs with strong seismic anisotropy.Theoretically,the above problems can be solved by utilizing the exact reflection coefficients equations.However,their complicated expression increases the difficulty in calculating the Jacobian matrix when applying them to the Bayesian deterministic inversion.Therefore,the new reduced approximation equations starting from the exact equations are derived here by linearizing the slowness expressions.The relatively simple form and satisfactory calculation accuracy make the reduced equations easy to apply for inversion while ensuring the accuracy of the inversion results.In addition,the blockiness constraint,which follows the differentiable Laplace distribution,is added to the prior model to improve contrasts between layers.Then,the concept of GLI and an iterative reweighted least-squares algorithm is combined to solve the objective function.Lastly,we obtain the iterative solution expression of the elastic parameters and anisotropy parameters and achieve nonlinear AVA inversion based on the reduced equations.The test results of synthetic data and field data show that the proposed method can accurately obtain the VTI parameters from prestack AVA seismic data.展开更多
Membrane fouling is always the biggest problem in the practice of membrane separation technologies,which strongly impacts their applicability,separation efficiency,cost effectiveness,and service lifespan.Herein,a simp...Membrane fouling is always the biggest problem in the practice of membrane separation technologies,which strongly impacts their applicability,separation efficiency,cost effectiveness,and service lifespan.Herein,a simple but effective 3D modification approach was designed for permanently functionalizing polymeric membranes by directly cross-linking polyvinyl alcohol(PVA)under gamma-ray irradiation at room temperature without any additives.After the modification,a PVA layer was constructed on the membrane surface and the pore inner surface of polyvinylidene fluoride(PVDF)membranes.This endowed them with good hydrophilicity,low adsorption of protein model foulants,and easy recoverability properties.In addition,the pore size and distribution were customized by controlling the PVA concentration,which enhanced the rejection ability of the resultant membranes and converted them from microfiltration to ultrafiltration.The crosslinked PVA layer was equipped with the resultant membranes with good resistance to chemical cleaning by acidic,alkaline,and oxidative reagents,which could greatly prolong the membrane service lifetime.Furthermore,this approach was demonstrated as a universal method to modify PVDF membranes with other hydrophilic macromolecular modifiers,including polyethylene glycol,sodium alginate,and polyvinyl pyrrolidone.This modification of the membranes effectively endowed them with good hydrophilicity and antifouling properties,as expected.展开更多
To improve the affinity between separators and electrolyte in lithium-ion battery,microporous polyethylene(PE) separator was grafted of polyacrylamide(PAAm) by radiation.Chemical structure of the PAAmgrafted PE separa...To improve the affinity between separators and electrolyte in lithium-ion battery,microporous polyethylene(PE) separator was grafted of polyacrylamide(PAAm) by radiation.Chemical structure of the PAAmgrafted PE separators(denoted as PE-g-PAAm) was characterized by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy.Properties of the pristine PE and PE-g-PAAm were tested by scanning electron microscope,liquid electrolyte uptake and lithium-ion conductivity.Electrochemical performances of the grafted PE separators(up to 0.76 × 10^(-3) S/cm of ionic conductivity at room temperature) were much better than pristine PE,and performance of the battery with the grafted separator behaved better than with the virgin PE separator,under the same condition(assembled in Ar-filled glove box).展开更多
Ionizing radiation is a promising method for dye degradation or textile coloration using commercial azo dyes and small molecular weight organic dyes. Thus, the stability of the molecular structure of an azo dye is imp...Ionizing radiation is a promising method for dye degradation or textile coloration using commercial azo dyes and small molecular weight organic dyes. Thus, the stability of the molecular structure of an azo dye is important under ionizing radiation. Disperse Blue 79, as an example azo dyes, was irradiated with gamma rays or electron beam (EB) to investigate the radiation-induced effects on the molecular structure. Ultraviolet visible spectroscopy (UV Vis), nuclear magnetic resonance (NMR) spectra analysis, and mass spectrometry (MS) studies indicated that acetoxy and methoxyl were easily cleaved on the irradiation of the aqueous dye solution but retained a stable structure on the irradiation of the powder form. Gamma rays and EB showed similar effects on the decomposition process. Chromaticity changes using the Lab* method showed that the dye turned to dark yellow and the value of b* of the irradiated dyes increased with the increasing absorbed dose, which indicated that Disperse Blue 79 could be partly decomposed in an aqueous solution This work was nancially supported by the National Natural Science Foundation of China (Nos. 11875313, 11605274, and 11575277). Xiao-Jun Ding and Ming Yu contributed equally to this work. & Jing-Ye Li jyli@shnu.edu.cn 1 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Lab of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China with an absorbed dose of 10 kGy. Furthermore, the results demonstrated that the chemical stability of the Disperse Blue 79 under ionizing radiation are different in its powder form with the dye in the aqueous solution.展开更多
Herein,we report a facile solution process for preparing multi-walled carbon nanotube(MWCNT)bucky paper for solar-driven interfacial water evaporation.This process involves vacuum filtrating a dispersion of MWCNTs tha...Herein,we report a facile solution process for preparing multi-walled carbon nanotube(MWCNT)bucky paper for solar-driven interfacial water evaporation.This process involves vacuum filtrating a dispersion of MWCNTs that was modified by polyvinyl alcohol(PVA)under c-ray irradiation on a cellulose acetate microporous membrane,followed by borate crosslinking.Fourier transform infrared spectroscopy,Raman spectroscopy,and thermogravimetry confirmed the success of PVA grafting onto MWCNTs and borate crosslinking between modified MWCNT nanoyarns.The as-prepared crosslinked MWCNT bucky papers(BBP membranes)were used as a solar absorber,by placing them on a paper-wrapped floating platform,for interfacial water evaporation under simulated solar irradiation.The BBP membranes showed good water tolerance and mechanical stability,with an evaporation rate of 0.79 kg m^(-2)h^(-1)and an evaporation efficiency of 56%under 1 sun illumination in deionized water.Additionally,the BBP membranes achieved an evaporation rate of 0.76 kg m^(-2)h^(-1)in both NaCl solution(3.5 wt%)and sulfuric acid solution(1 mol L-1),demonstrating their impressive applicability for water reclamation from brine and acidic conditions.An evaporation rate of 0.70 kg m-2 h-1(very close to that from deionized water)was obtained from the solar evaporation of saturated NaCl solution,and the BBP membrane exhibited unexpected stability without the inference of salt accumulation on the membrane surface during long-term continuous solar evaporation.展开更多
As an important indicator parameter of fluid identification,fluid factor has always been a concern for scholars.However,when predicting Russell fluid factor or effective pore-fluid bulk modulus,it is necessary to intr...As an important indicator parameter of fluid identification,fluid factor has always been a concern for scholars.However,when predicting Russell fluid factor or effective pore-fluid bulk modulus,it is necessary to introduce a new rock skeleton parameter which is the dry-rock VP/VS ratio squared(DVRS).In the process of fluid factor calculation or inversion,the existing methods take this parameter as a static constant,which has been estimated in advance,and then apply it to the fluid factor calculation and inversion.The fluid identification analysis based on a portion of the Marmousi 2 model and numerical forward modeling test show that,taking the DVRS as a static constant will limit the identification ability of fluid factor and reduce the inversion accuracy.To solve the above problems,we proposed a new method to regard the DVRS as a dynamic variable varying with depth and lithology for the first time,then apply it to fluid factor calculation and inversion.Firstly,the exact Zoeppritz equations are rewritten into a new form containing the fluid factor and DVRS of upper and lower layers.Next,the new equations are applied to the four parameters simultaneous inversion based on the generalized nonlinear inversion(GNI)method.The testing results on a portion of the Marmousi 2 model and field data show that dynamic DVRS can significantly improve the fluid factor identification ability,effectively suppress illusion.Both synthetic and filed data tests also demonstrate that the GNI method based on Bayesian deterministic inversion(BDI)theory can successfully solve the above four parameter simultaneous inversion problem,and taking the dynamic DVRS as a target inversion parameter can effectively improve the inversion accuracy of fluid factor.All these results completely verified the feasibility and effectiveness of the proposed method.展开更多
While the high-energy radiation effects on polypropylene, which are crucial for the cable industry for nuclear power plants, have been thoroughly studied, the property changes of PP at low-dose-rate electron-beam irra...While the high-energy radiation effects on polypropylene, which are crucial for the cable industry for nuclear power plants, have been thoroughly studied, the property changes of PP at low-dose-rate electron-beam irradiation are far from elucidated. Herein, the influence of electron-beam irradiation on the structure and properties of PP was examined. The static EB irradiation conditions were 1.2 MeV at a low dose rate of 20 kGy/h to achieve absorbed doses ranging from 45, to 60, 100, and 200 kGy.The molecular structure was first evaluated by measuring the carboxyl index and the relative radical concentrations via Fourier transform infrared spectroscopy and electron spin resonance, respectively. Mechanical, differential scanning colorimetric, and rheological tests were carried out to further investigate the changes in the properties(tensile, crystalizing, and viscoelastic properties) of irradiated PP, which showed good agreement with the structural analysis results. We found that radio-oxidative degradation(chain scission) was predominant, which can be due to the low dose rate facilitating oxygen diffusion into the PP matrix during electron-beam irradiation.展开更多
Gamma-ray irradiation technique is an effective method for preparing graphene aerogel(GA).The effective reduction and self-assembly of graphene oxide(GO) sheets into 3D porous GA in ethylenediamine(EDA) aqueous soluti...Gamma-ray irradiation technique is an effective method for preparing graphene aerogel(GA).The effective reduction and self-assembly of graphene oxide(GO) sheets into 3D porous GA in ethylenediamine(EDA) aqueous solution under the protection of nitrogen have been achieved via γ-ray irradiation.The reduction degree and self-assembly process,which can be controlled by varying EDA dose and irradiation dose,are investigated by X-ray photoelectron spectroscopy,Fourier transform infrared spectroscopy,X-ray diffractometer,and thermogravimetric analysis.A reduction mechanism is proposed for interactions among EDA molecules,active radicals from the radiolysis of water,and oxygen-containing groups on GO sheets.展开更多
基金financially supported by the National Natural Science Foundation of China (41774129, 41904116)the Foundation Research Project of Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation (MTy2019-20)。
文摘Lithofacies identification is a crucial work in reservoir characterization and modeling.The vast inter-well area can be supplemented by facies identification of seismic data.However,the relationship between lithofacies and seismic information that is affected by many factors is complicated.Machine learning has received extensive attention in recent years,among which support vector machine(SVM) is a potential method for lithofacies classification.Lithofacies classification involves identifying various types of lithofacies and is generally a nonlinear problem,which needs to be solved by means of the kernel function.Multi-kernel learning SVM is one of the main tools for solving the nonlinear problem about multi-classification.However,it is very difficult to determine the kernel function and the parameters,which is restricted by human factors.Besides,its computational efficiency is low.A lithofacies classification method based on local deep multi-kernel learning support vector machine(LDMKL-SVM) that can consider low-dimensional global features and high-dimensional local features is developed.The method can automatically learn parameters of kernel function and SVM to build a relationship between lithofacies and seismic elastic information.The calculation speed will be expedited at no cost with respect to discriminant accuracy for multi-class lithofacies identification.Both the model data test results and the field data application results certify advantages of the method.This contribution offers an effective method for lithofacies recognition and reservoir prediction by using SVM.
基金supported by the National Natural Science Foundation of China(Nos.21676291,21306220,11275252,11305243 and11405249)in part supported by the "Knowledge Innovation Program of Chinese academy of sciences"
文摘An amidoxime-based polymeric adsorbent was prepared by pre-irradiation grafting of acrylonitrile and acrylic acid onto high-density polyethylene fibers using electron beams,followed by amidoximation.Quantitative recovery of uranium was investigated by flow-through experiment using simulated seawater and marine test in natural seawater.The maximum amount of uranium uptake was 2.51 mg/g-ads after 42 days of contact with simulated seawater and 0.13 mg/g-ads for 15 days of contact with natural seawater.A lower uranium uptake in marine test can be attributed to the short adsorption time and the contamination of marine microorganisms and iron.However,the high selectivity toward uranium against vanadium may be beneficial to harvest uranyl ion onto adsorbents and the economic feasibility for recovery of uranium from seawater.
文摘In VTI media,the conventional inversion methods based on the existing approximation formulas are difficult to accurately estimate the anisotropic parameters of reservoirs,even more so for unconventional reservoirs with strong seismic anisotropy.Theoretically,the above problems can be solved by utilizing the exact reflection coefficients equations.However,their complicated expression increases the difficulty in calculating the Jacobian matrix when applying them to the Bayesian deterministic inversion.Therefore,the new reduced approximation equations starting from the exact equations are derived here by linearizing the slowness expressions.The relatively simple form and satisfactory calculation accuracy make the reduced equations easy to apply for inversion while ensuring the accuracy of the inversion results.In addition,the blockiness constraint,which follows the differentiable Laplace distribution,is added to the prior model to improve contrasts between layers.Then,the concept of GLI and an iterative reweighted least-squares algorithm is combined to solve the objective function.Lastly,we obtain the iterative solution expression of the elastic parameters and anisotropy parameters and achieve nonlinear AVA inversion based on the reduced equations.The test results of synthetic data and field data show that the proposed method can accurately obtain the VTI parameters from prestack AVA seismic data.
基金This work was supported by the National Natural Science Foundation of China(Nos.11875313,12075153,and 11575277).
文摘Membrane fouling is always the biggest problem in the practice of membrane separation technologies,which strongly impacts their applicability,separation efficiency,cost effectiveness,and service lifespan.Herein,a simple but effective 3D modification approach was designed for permanently functionalizing polymeric membranes by directly cross-linking polyvinyl alcohol(PVA)under gamma-ray irradiation at room temperature without any additives.After the modification,a PVA layer was constructed on the membrane surface and the pore inner surface of polyvinylidene fluoride(PVDF)membranes.This endowed them with good hydrophilicity,low adsorption of protein model foulants,and easy recoverability properties.In addition,the pore size and distribution were customized by controlling the PVA concentration,which enhanced the rejection ability of the resultant membranes and converted them from microfiltration to ultrafiltration.The crosslinked PVA layer was equipped with the resultant membranes with good resistance to chemical cleaning by acidic,alkaline,and oxidative reagents,which could greatly prolong the membrane service lifetime.Furthermore,this approach was demonstrated as a universal method to modify PVDF membranes with other hydrophilic macromolecular modifiers,including polyethylene glycol,sodium alginate,and polyvinyl pyrrolidone.This modification of the membranes effectively endowed them with good hydrophilicity and antifouling properties,as expected.
基金supported by National Science Foundation of China(Grants 11575277,11175234,11505270,51473183 and 11475246)
文摘To improve the affinity between separators and electrolyte in lithium-ion battery,microporous polyethylene(PE) separator was grafted of polyacrylamide(PAAm) by radiation.Chemical structure of the PAAmgrafted PE separators(denoted as PE-g-PAAm) was characterized by Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy.Properties of the pristine PE and PE-g-PAAm were tested by scanning electron microscope,liquid electrolyte uptake and lithium-ion conductivity.Electrochemical performances of the grafted PE separators(up to 0.76 × 10^(-3) S/cm of ionic conductivity at room temperature) were much better than pristine PE,and performance of the battery with the grafted separator behaved better than with the virgin PE separator,under the same condition(assembled in Ar-filled glove box).
基金financially supported by the National Natural Science Foundation of China(Nos.11875313,11605274,and 11575277)
文摘Ionizing radiation is a promising method for dye degradation or textile coloration using commercial azo dyes and small molecular weight organic dyes. Thus, the stability of the molecular structure of an azo dye is important under ionizing radiation. Disperse Blue 79, as an example azo dyes, was irradiated with gamma rays or electron beam (EB) to investigate the radiation-induced effects on the molecular structure. Ultraviolet visible spectroscopy (UV Vis), nuclear magnetic resonance (NMR) spectra analysis, and mass spectrometry (MS) studies indicated that acetoxy and methoxyl were easily cleaved on the irradiation of the aqueous dye solution but retained a stable structure on the irradiation of the powder form. Gamma rays and EB showed similar effects on the decomposition process. Chromaticity changes using the Lab* method showed that the dye turned to dark yellow and the value of b* of the irradiated dyes increased with the increasing absorbed dose, which indicated that Disperse Blue 79 could be partly decomposed in an aqueous solution This work was nancially supported by the National Natural Science Foundation of China (Nos. 11875313, 11605274, and 11575277). Xiao-Jun Ding and Ming Yu contributed equally to this work. & Jing-Ye Li jyli@shnu.edu.cn 1 Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China 2 University of Chinese Academy of Sciences, Beijing 100049, China 3 The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Lab of Rare Earth Functional Materials, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai 200234, China with an absorbed dose of 10 kGy. Furthermore, the results demonstrated that the chemical stability of the Disperse Blue 79 under ionizing radiation are different in its powder form with the dye in the aqueous solution.
基金the National Natural Science Foundation of China(Grants 11875313 and 12075153).
文摘Herein,we report a facile solution process for preparing multi-walled carbon nanotube(MWCNT)bucky paper for solar-driven interfacial water evaporation.This process involves vacuum filtrating a dispersion of MWCNTs that was modified by polyvinyl alcohol(PVA)under c-ray irradiation on a cellulose acetate microporous membrane,followed by borate crosslinking.Fourier transform infrared spectroscopy,Raman spectroscopy,and thermogravimetry confirmed the success of PVA grafting onto MWCNTs and borate crosslinking between modified MWCNT nanoyarns.The as-prepared crosslinked MWCNT bucky papers(BBP membranes)were used as a solar absorber,by placing them on a paper-wrapped floating platform,for interfacial water evaporation under simulated solar irradiation.The BBP membranes showed good water tolerance and mechanical stability,with an evaporation rate of 0.79 kg m^(-2)h^(-1)and an evaporation efficiency of 56%under 1 sun illumination in deionized water.Additionally,the BBP membranes achieved an evaporation rate of 0.76 kg m^(-2)h^(-1)in both NaCl solution(3.5 wt%)and sulfuric acid solution(1 mol L-1),demonstrating their impressive applicability for water reclamation from brine and acidic conditions.An evaporation rate of 0.70 kg m-2 h-1(very close to that from deionized water)was obtained from the solar evaporation of saturated NaCl solution,and the BBP membrane exhibited unexpected stability without the inference of salt accumulation on the membrane surface during long-term continuous solar evaporation.
基金the National Natural Science Foundation of China(41904116,41874156,42074167 and 42204135)the Natural Science Foundation of Hunan Province(2020JJ5168)the China Postdoctoral Science Foundation(2021M703629)for their funding of this research.
文摘As an important indicator parameter of fluid identification,fluid factor has always been a concern for scholars.However,when predicting Russell fluid factor or effective pore-fluid bulk modulus,it is necessary to introduce a new rock skeleton parameter which is the dry-rock VP/VS ratio squared(DVRS).In the process of fluid factor calculation or inversion,the existing methods take this parameter as a static constant,which has been estimated in advance,and then apply it to the fluid factor calculation and inversion.The fluid identification analysis based on a portion of the Marmousi 2 model and numerical forward modeling test show that,taking the DVRS as a static constant will limit the identification ability of fluid factor and reduce the inversion accuracy.To solve the above problems,we proposed a new method to regard the DVRS as a dynamic variable varying with depth and lithology for the first time,then apply it to fluid factor calculation and inversion.Firstly,the exact Zoeppritz equations are rewritten into a new form containing the fluid factor and DVRS of upper and lower layers.Next,the new equations are applied to the four parameters simultaneous inversion based on the generalized nonlinear inversion(GNI)method.The testing results on a portion of the Marmousi 2 model and field data show that dynamic DVRS can significantly improve the fluid factor identification ability,effectively suppress illusion.Both synthetic and filed data tests also demonstrate that the GNI method based on Bayesian deterministic inversion(BDI)theory can successfully solve the above four parameter simultaneous inversion problem,and taking the dynamic DVRS as a target inversion parameter can effectively improve the inversion accuracy of fluid factor.All these results completely verified the feasibility and effectiveness of the proposed method.
基金supported by the "Strategic Priority Research Program" of the Chinese Academy of Science(No.XDA02040300)the National Natural Science Foundation of China(No.11575277)
文摘While the high-energy radiation effects on polypropylene, which are crucial for the cable industry for nuclear power plants, have been thoroughly studied, the property changes of PP at low-dose-rate electron-beam irradiation are far from elucidated. Herein, the influence of electron-beam irradiation on the structure and properties of PP was examined. The static EB irradiation conditions were 1.2 MeV at a low dose rate of 20 kGy/h to achieve absorbed doses ranging from 45, to 60, 100, and 200 kGy.The molecular structure was first evaluated by measuring the carboxyl index and the relative radical concentrations via Fourier transform infrared spectroscopy and electron spin resonance, respectively. Mechanical, differential scanning colorimetric, and rheological tests were carried out to further investigate the changes in the properties(tensile, crystalizing, and viscoelastic properties) of irradiated PP, which showed good agreement with the structural analysis results. We found that radio-oxidative degradation(chain scission) was predominant, which can be due to the low dose rate facilitating oxygen diffusion into the PP matrix during electron-beam irradiation.
基金supported by the National Natural Science Foundation of China(No.11505270)Shanghai Municipal Commission for Science and Technology(No.15ZR1448300)
文摘Gamma-ray irradiation technique is an effective method for preparing graphene aerogel(GA).The effective reduction and self-assembly of graphene oxide(GO) sheets into 3D porous GA in ethylenediamine(EDA) aqueous solution under the protection of nitrogen have been achieved via γ-ray irradiation.The reduction degree and self-assembly process,which can be controlled by varying EDA dose and irradiation dose,are investigated by X-ray photoelectron spectroscopy,Fourier transform infrared spectroscopy,X-ray diffractometer,and thermogravimetric analysis.A reduction mechanism is proposed for interactions among EDA molecules,active radicals from the radiolysis of water,and oxygen-containing groups on GO sheets.