期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Straw mulching alters the composition and loss of dissolved organic matter in farmland surface runoff by inhibiting the fragmentation of soil small macroaggregates
1
作者 Shanshan Cai Lei Sun +7 位作者 Wei wang Yan Li Jianli Ding Liang Jin Yumei Li Jiuming Zhang jingkuan wang Dan Wei 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第5期1703-1717,共15页
Straw mulching is a widespread practice for reducing the soil carbon loss caused by erosion.However,the effects of straw mulching on dissolved organic matter(DOM)runoff loss from black soil are not well studied.How st... Straw mulching is a widespread practice for reducing the soil carbon loss caused by erosion.However,the effects of straw mulching on dissolved organic matter(DOM)runoff loss from black soil are not well studied.How straw mulching affects the composition and loss of runoff DOM by changing soil aggregates remains largely unclear.Here,a straw mulching treatment was compared to a no mulching treatment(as a control)on sloping farmland with black soil erosion in Northeast China.We divided the soil into large macroaggregates(>2 mm),small macroaggregates(0.25-2 mm),and microaggregates(<0.25 mm).After five rain events,the effects of straw mulching on the concentration(characterized by dissolved organic carbon(DoC)and composition(analyzed by fluorescence spectroscopy)of runoff and soil aggregate DOM were studied.The results showed that straw mulching reduced the runoff amount by 54.7%.Therefore,although straw mulching increased the average DOc concentration in runoff,it reduced the total runoff DOM loss by 48.3%.The composition of runoff DOM is similar to that of soil,as both contain humic-like acid and protein-like components.With straw mulching treatment,the protein-like components in small macroaggregates accumulated and the protein-like components in runoff declined with rain events.Fluorescence spectroscopy technology may help in understanding the hydrological paths of rain events by capturing the dynamic changes of runoff and soil DOM characteristics.A variation partitioning analysis(VPA)indicated that the DOM concentration and composition of microaggregates explained 68.2%of the change in runoff DOM from no mulching plots,while the change in runoff DOM from straw mulching plots was dominated by small macroaggregates at a rate of 55.1%.Taken together,our results demonstrated that straw mulching reduces the fragmentation of small macroaggregates and the loss of microaggregates,thus effecting DOM compositions in soil and reducing the DOM loss in runoff.These results provide a theoretical basis for reducing carbon loss in sloping farmland. 展开更多
关键词 dissolved organic matter black soil surface runoff AGGREGATES fluorescence spectrum
下载PDF
Opposite effects of nitrogen fertilization and plastic film mulching on crop N and P stoichiometry in a temperate agroecosystem 被引量:10
2
作者 Fan Ding Shuangyi Li +6 位作者 Xiao-Tao Lü Feike A.Dijkstra Sean Schaeffer Tingting An Jiubo Pei Liangjie Sun jingkuan wang 《Journal of Plant Ecology》 SCIE CSCD 2019年第4期682-692,共11页
Aims Crop nitrogen(N)and phosphorus(P)stoichiometry can influence food nutritive quality and many ecosystem processes.However,how and why N and P stoichiometry respond to long-term agricul-tural management practices(e... Aims Crop nitrogen(N)and phosphorus(P)stoichiometry can influence food nutritive quality and many ecosystem processes.However,how and why N and P stoichiometry respond to long-term agricul-tural management practices(e.g.N fertilization and film mulching)are not clearly understood.Methods We collected maize tissues(leaf,stem,root and seed)and soil sam-ples from a temperate cropland under 30-year continuous N fer-tilization and plastic film mulching treatments,measured their C,N and P concentrations(the proportion(%)relative to the sample mass),and used structural equation models to uncover the re-sponding mechanisms for crop N and P contents(the total amount(g/m2)in crop biomass).Important Findings Long-term N fertilization increased N concentrations in all crop tissues but sharply decreased P concentrations in vegetative tis-sues(leaf,stem and root),thereby reducing their C/N ratio and increasing C/P and N/P ratios.The drop in P concentration in vegetative tissues was due to the dilution effect by biomass in-crement and the priority of P supply for seed production.In con-trast,film mulching decreased N concentration but increased P concentrations in most crop tissues,thereby increasing C/N ratio and reducing C/P and N/P ratios.Film mulching increased crop P content by increasing soil temperature and moisture;whereas,mulching showed little effect on crop N content,because a posi-tive effects of soil temperature may have canceled out a negative effect by soil moisture.This indicated a decoupling of P and N uptake by crops under film mulching.In conclusion,N fertiliza-tion and plastic film mulching showed opposite effects of on crop N and P stoichiometry. 展开更多
关键词 long-term soil stoichiometry soil moisture dilution effect maize tissues
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部