期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
A core-shell copper oxides-cobalt oxides heterostructure nanowire arrays for nitrate reduction to ammonia with high yield rate 被引量:2
1
作者 Hui liu jingsha li +5 位作者 Feng Du Luyun Yang Shunyuan Huang Jingfeng Gao Changming li Chunxian Guo 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第6期1619-1629,共11页
Electrochemical nitrate reduction to ammonia(NRA) can realize the green synthesis of ammonia(NH3) at ambient conditions, and also remove nitrate contamination in water. However, the current catalysts for NRA still fac... Electrochemical nitrate reduction to ammonia(NRA) can realize the green synthesis of ammonia(NH3) at ambient conditions, and also remove nitrate contamination in water. However, the current catalysts for NRA still face relatively low NH3yield rate and poor stability. We present here a core-shell heterostructure comprising cobalt oxide anchored on copper oxide nanowire arrays(CuO NWAs@Co_(3)O_(4)) for efficient NRA. The CuO NWAs@Co_(3)O_(4)demonstrates significantly enhanced NRA performance in alkaline media in comparison with plain CuO NWAs and Co_(3)O_(4)flocs. Especially, at-0.23 V vs. RHE, NH_(3) yield rate of the CuO NWAs@Co_(3)O_(4)reaches 1.915 mmol h^(-1)cm^(-2),much higher than those of CuO NWAs(1.472 mmol h^(-1)cm^(-2)), Co_(3)O_(4)flocs(1.222 mmol h^(-1)cm^(-2)) and recent reported Cu-based catalysts.It is proposed that the synergetic effects of the heterostructure combing atom hydrogen adsorption and nitrate reduction lead to the enhanced NRA performance. 展开更多
关键词 Electrocatalytic nitrate reduction Ammonia production Core–shell heterostructure Copper oxides nanowire arrays Cobalt oxidesflocs
下载PDF
Micropores regulating enables advanced carbon sphere catalyst for Zn-air batteries
2
作者 jingsha li Shijie Yi +3 位作者 Ranjusha Rajagopalan Zejie Zhang Yougen Tang Haiyan Wang 《Green Energy & Environment》 SCIE EI CSCD 2023年第1期308-317,共10页
Energy conversion technologies like fuel cells and metal-air batteries require oxygen reduction reaction(ORR)electrocatalysts with low cost and high catalytic activity.Herein,N-doped carbon spheres(N-CS)with rich micr... Energy conversion technologies like fuel cells and metal-air batteries require oxygen reduction reaction(ORR)electrocatalysts with low cost and high catalytic activity.Herein,N-doped carbon spheres(N-CS)with rich micropore structure have been synthesized by a facile two-step method,which includes the polymerization of pyrrole and formaldehyde and followed by a facile pyrolysis process.During the preparation,zinc chloride(ZnCl2)was utilized as a catalyst to promote polymerization and provide a hypersaline environment.In addition,the morphology,defect content and activity area of the resultant N-CS catalysts could be regulated by controlling the content of ZnCl2.The optimum N-CS-1 catalyst demonstrated much better catalytic activity and durability towards ORR in alkaline conditions than commercial 20 wt%Pt/C catalysts,of which the half-wave potential reached 0.844 V vs.RHE.When applied in the Zn-air batteries as cathode catalysts,N-CS-1 showed a maximum power density of 175 mW cm^(-2) and long-term discharging stability of over 150 h at 10 mA cm^(-2),which outperformed 20 wt%Pt/C.The excellent performance could be due to its ultrahigh specific surface area of 1757 m2 g1 and rich micropore channels structure.Meanwhile,this work provides an efficient method to synthesize an ultrahigh surface porous carbon material,especially for catalyst application. 展开更多
关键词 Zn-air batteries Oxygen reduction reaction N-doped carbon spheres MICROPORES Ultrahigh specific surface
下载PDF
Significantly enhanced oxygen reduction activity of Cu/CuN_xC_y co-decorated ketjenblack catalyst for Al–air batteries 被引量:6
3
作者 Fuzhi li jingsha li +3 位作者 Qiuju Feng Jun Yan Yougen Tang Haiyan Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第2期419-425,共7页
Highly efficient and non-precious catalysts are imperative for oxygen reduction reaction(ORR) to replace Pt/C. Anchoring efficient active species to carbon supports is a promising and scalable strategy. Here we synt... Highly efficient and non-precious catalysts are imperative for oxygen reduction reaction(ORR) to replace Pt/C. Anchoring efficient active species to carbon supports is a promising and scalable strategy. Here we synthesize Cu nanoparticles and noncrystalline CuNxCy species co-decorated ketjenblack(KB) carbon catalyst(denoted as Cu-N-KB-acid) by a facile and scalable method using copper sulfate, melamine, and KB as raw materials. An initial one-pot hydrothermal treatment is designed before pyrolysis process to achieve the good distribution of Cu and melamine on KB via a possible chelation effect. Owing to the synergistic effect of Cu and CuNxCy on KB, this composite catalyst displays excellent ORR catalytic activity in alkaline solution, which is comparable to the commercial 20% Pt/C. When used as a catalyst in a home-made Al-air battery, it shows a stable discharge voltage of 1.47 V at a discharge density of 50 mA cm-2, a little higher than that of Pt/C(1.45 V). 展开更多
关键词 Al-air batteries Oxygen reduction reaction ELECTROCATALYST Copper nanoparticles Copper-nitrogen doping
下载PDF
Surface-mediated iron on porous cobalt oxide with high energy state for efficient water oxidation electrocatalysis 被引量:2
4
作者 jingsha li Tao Hu +1 位作者 Changhong Wang Chunxian Guo 《Green Energy & Environment》 SCIE EI CSCD 2022年第4期662-671,共10页
Surface engineering of active materials to generate desired energy state is critical to fabricate high-performance heterogeneous catalysts.However, its realization in a controllable level remains challenging. Using ox... Surface engineering of active materials to generate desired energy state is critical to fabricate high-performance heterogeneous catalysts.However, its realization in a controllable level remains challenging. Using oxygen evolution reaction(OER) as a model reaction, we report a surface-mediated Fe deposition strategy to electronically tailor surface energy states of porous Co_(3)O_(4)(Fe-pCo_(3)O_(4)) for enhanced activity towards OER. The Fe-pCo_(3)O_(4) exhibits a low overpotential of 280 mV to reach an OER current density of 100 mA cm^(-2), and a fast-kinetic behavior with a low Tafel slop of 58.2 mV dec^(-1), outperforming Co_(3)O_(4)-based OER catalysts recently reported and also the noble IrO_(2). The engineered material retains 100% of its original activity after operating at an overpotential of 350 m V for 100 h. A combination of theoretical calculations and experimental results finds out that the surface doped Fe promotes a high energy state and desired coordination environment in the near surface region, which enables optimized OER intermediates binding and favorably changes the rate-determining step. 展开更多
关键词 Surficial Fe doping Cobalt oxides High energy state Water oxidation Oxygen evolution reactions
下载PDF
Cu/Cu_(2)O nanoparticles co-regulated carbon catalyst for alkaline Al-air batteries 被引量:2
5
作者 Jing Tian Depei liu +4 位作者 jingsha li Dan Sun Hongtao liu Haiyan Wang Yougen Tang 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第8期2427-2432,共6页
Developing high-efficiency,inexpensive,and steady non-precious metal oxygen reduction reaction(ORR) catalysts to displace Pt-based catalysts is significant for commercial applications of Al-air battery.Here,we have pr... Developing high-efficiency,inexpensive,and steady non-precious metal oxygen reduction reaction(ORR) catalysts to displace Pt-based catalysts is significant for commercial applications of Al-air battery.Here,we have prepared the Cu/Cu_(2)O-NC catalyst with excellent ORR performance and high stability,due to the synergistic effect of Cu and Cu_(2)O nanoparticles.The half-wave potential(0.8 V) and the limiting-current density(5.20 mA/cm^(2)) of the Cu/Cu_(2)O-NC are very close to those of the 20% Pt/C catalyst(0.82 V,5.10 mA/cm^(2)).Besides,it exhibits excellent performance with a maximal power density of 250 mW/cm^(2) and a stable continuous discharge for more than 90 h in the Al-air battery test The promoting effects of Cu_(2)O towards Cu-based ORR catalysts are illustrated as follows:(ⅰ) Cu_(2)O is the major ORR active site by the redox of Cu(Ⅱ)/Cu(Ⅰ),which provides excellent ORR activities;(ⅱ) Cu can stabilize the location of Cu_(2)O by assisting the electron transfer to Cu(Ⅱ)/Cu(Ⅰ) redox,which is conducive to the high stability of the catalyst.This work provides a useful strategy for enhancing the ORR performance of Cu-based catalysts. 展开更多
关键词 Cu/Cu_(2)O Oxygen reduction reaction Al-air battery Stability Synergistic effect
原文传递
锰铈二元氧化物的制备与应用 被引量:1
6
作者 刘德培 田敬 +3 位作者 李静莎 唐正 王海燕 唐有根 《化学进展》 SCIE CAS CSCD 北大核心 2019年第6期811-830,共20页
Mn-Ce二元氧化物具有资源丰富、成本低廉、催化活性优异等优点,引起了科研人员的广泛关注,在诸多领域具有潜在的应用价值。本文详细阐述了Mn-Ce二元氧化物的合成方法和应用领域。合成方法包括沉淀法、溶胶-凝胶法、水热法、浸渍法等,并... Mn-Ce二元氧化物具有资源丰富、成本低廉、催化活性优异等优点,引起了科研人员的广泛关注,在诸多领域具有潜在的应用价值。本文详细阐述了Mn-Ce二元氧化物的合成方法和应用领域。合成方法包括沉淀法、溶胶-凝胶法、水热法、浸渍法等,并比较了各方法的优缺点。在应用方面,主要综述了Mn-Ce二元氧化物在空气污染物消除(消除NOx、VOCs、CO、碳烟、Hg^0、甲醛)和能源储存(金属-空气电池、超级电容器)两个方面的应用及其作用机制。另外,本文还介绍了Mn-Ce二元氧化物在水污染治理(氟离子吸附、三价砷吸附和甲基橙吸附等)和有机催化合成方面的应用。最后,讨论了Mn-Ce二元氧化物在制备中存在的问题,并对之后的研究方向进行了展望。 展开更多
关键词 Mn-Ce二元氧化物 合成方法 污染治理 能源存储 有机催化
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部