Electrochemical nitrate reduction to ammonia(NRA) can realize the green synthesis of ammonia(NH3) at ambient conditions, and also remove nitrate contamination in water. However, the current catalysts for NRA still fac...Electrochemical nitrate reduction to ammonia(NRA) can realize the green synthesis of ammonia(NH3) at ambient conditions, and also remove nitrate contamination in water. However, the current catalysts for NRA still face relatively low NH3yield rate and poor stability. We present here a core-shell heterostructure comprising cobalt oxide anchored on copper oxide nanowire arrays(CuO NWAs@Co_(3)O_(4)) for efficient NRA. The CuO NWAs@Co_(3)O_(4)demonstrates significantly enhanced NRA performance in alkaline media in comparison with plain CuO NWAs and Co_(3)O_(4)flocs. Especially, at-0.23 V vs. RHE, NH_(3) yield rate of the CuO NWAs@Co_(3)O_(4)reaches 1.915 mmol h^(-1)cm^(-2),much higher than those of CuO NWAs(1.472 mmol h^(-1)cm^(-2)), Co_(3)O_(4)flocs(1.222 mmol h^(-1)cm^(-2)) and recent reported Cu-based catalysts.It is proposed that the synergetic effects of the heterostructure combing atom hydrogen adsorption and nitrate reduction lead to the enhanced NRA performance.展开更多
Energy conversion technologies like fuel cells and metal-air batteries require oxygen reduction reaction(ORR)electrocatalysts with low cost and high catalytic activity.Herein,N-doped carbon spheres(N-CS)with rich micr...Energy conversion technologies like fuel cells and metal-air batteries require oxygen reduction reaction(ORR)electrocatalysts with low cost and high catalytic activity.Herein,N-doped carbon spheres(N-CS)with rich micropore structure have been synthesized by a facile two-step method,which includes the polymerization of pyrrole and formaldehyde and followed by a facile pyrolysis process.During the preparation,zinc chloride(ZnCl2)was utilized as a catalyst to promote polymerization and provide a hypersaline environment.In addition,the morphology,defect content and activity area of the resultant N-CS catalysts could be regulated by controlling the content of ZnCl2.The optimum N-CS-1 catalyst demonstrated much better catalytic activity and durability towards ORR in alkaline conditions than commercial 20 wt%Pt/C catalysts,of which the half-wave potential reached 0.844 V vs.RHE.When applied in the Zn-air batteries as cathode catalysts,N-CS-1 showed a maximum power density of 175 mW cm^(-2) and long-term discharging stability of over 150 h at 10 mA cm^(-2),which outperformed 20 wt%Pt/C.The excellent performance could be due to its ultrahigh specific surface area of 1757 m2 g1 and rich micropore channels structure.Meanwhile,this work provides an efficient method to synthesize an ultrahigh surface porous carbon material,especially for catalyst application.展开更多
Highly efficient and non-precious catalysts are imperative for oxygen reduction reaction(ORR) to replace Pt/C. Anchoring efficient active species to carbon supports is a promising and scalable strategy. Here we synt...Highly efficient and non-precious catalysts are imperative for oxygen reduction reaction(ORR) to replace Pt/C. Anchoring efficient active species to carbon supports is a promising and scalable strategy. Here we synthesize Cu nanoparticles and noncrystalline CuNxCy species co-decorated ketjenblack(KB) carbon catalyst(denoted as Cu-N-KB-acid) by a facile and scalable method using copper sulfate, melamine, and KB as raw materials. An initial one-pot hydrothermal treatment is designed before pyrolysis process to achieve the good distribution of Cu and melamine on KB via a possible chelation effect. Owing to the synergistic effect of Cu and CuNxCy on KB, this composite catalyst displays excellent ORR catalytic activity in alkaline solution, which is comparable to the commercial 20% Pt/C. When used as a catalyst in a home-made Al-air battery, it shows a stable discharge voltage of 1.47 V at a discharge density of 50 mA cm-2, a little higher than that of Pt/C(1.45 V).展开更多
Surface engineering of active materials to generate desired energy state is critical to fabricate high-performance heterogeneous catalysts.However, its realization in a controllable level remains challenging. Using ox...Surface engineering of active materials to generate desired energy state is critical to fabricate high-performance heterogeneous catalysts.However, its realization in a controllable level remains challenging. Using oxygen evolution reaction(OER) as a model reaction, we report a surface-mediated Fe deposition strategy to electronically tailor surface energy states of porous Co_(3)O_(4)(Fe-pCo_(3)O_(4)) for enhanced activity towards OER. The Fe-pCo_(3)O_(4) exhibits a low overpotential of 280 mV to reach an OER current density of 100 mA cm^(-2), and a fast-kinetic behavior with a low Tafel slop of 58.2 mV dec^(-1), outperforming Co_(3)O_(4)-based OER catalysts recently reported and also the noble IrO_(2). The engineered material retains 100% of its original activity after operating at an overpotential of 350 m V for 100 h. A combination of theoretical calculations and experimental results finds out that the surface doped Fe promotes a high energy state and desired coordination environment in the near surface region, which enables optimized OER intermediates binding and favorably changes the rate-determining step.展开更多
Developing high-efficiency,inexpensive,and steady non-precious metal oxygen reduction reaction(ORR) catalysts to displace Pt-based catalysts is significant for commercial applications of Al-air battery.Here,we have pr...Developing high-efficiency,inexpensive,and steady non-precious metal oxygen reduction reaction(ORR) catalysts to displace Pt-based catalysts is significant for commercial applications of Al-air battery.Here,we have prepared the Cu/Cu_(2)O-NC catalyst with excellent ORR performance and high stability,due to the synergistic effect of Cu and Cu_(2)O nanoparticles.The half-wave potential(0.8 V) and the limiting-current density(5.20 mA/cm^(2)) of the Cu/Cu_(2)O-NC are very close to those of the 20% Pt/C catalyst(0.82 V,5.10 mA/cm^(2)).Besides,it exhibits excellent performance with a maximal power density of 250 mW/cm^(2) and a stable continuous discharge for more than 90 h in the Al-air battery test The promoting effects of Cu_(2)O towards Cu-based ORR catalysts are illustrated as follows:(ⅰ) Cu_(2)O is the major ORR active site by the redox of Cu(Ⅱ)/Cu(Ⅰ),which provides excellent ORR activities;(ⅱ) Cu can stabilize the location of Cu_(2)O by assisting the electron transfer to Cu(Ⅱ)/Cu(Ⅰ) redox,which is conducive to the high stability of the catalyst.This work provides a useful strategy for enhancing the ORR performance of Cu-based catalysts.展开更多
基金the financial support from National Natural Science Foundation of China (No. 21972102)National Key Research and Development Program of China (2021YFA0910400)+3 种基金Natural Science Foundation of Jiangsu Province (BK20200991)Suzhou Science and Technology Planning Project (SS202016)the USTS starting fund (No.332012104)the Natural Science Foundation of Suzhou University of Science and Technology (No.342134401)。
文摘Electrochemical nitrate reduction to ammonia(NRA) can realize the green synthesis of ammonia(NH3) at ambient conditions, and also remove nitrate contamination in water. However, the current catalysts for NRA still face relatively low NH3yield rate and poor stability. We present here a core-shell heterostructure comprising cobalt oxide anchored on copper oxide nanowire arrays(CuO NWAs@Co_(3)O_(4)) for efficient NRA. The CuO NWAs@Co_(3)O_(4)demonstrates significantly enhanced NRA performance in alkaline media in comparison with plain CuO NWAs and Co_(3)O_(4)flocs. Especially, at-0.23 V vs. RHE, NH_(3) yield rate of the CuO NWAs@Co_(3)O_(4)reaches 1.915 mmol h^(-1)cm^(-2),much higher than those of CuO NWAs(1.472 mmol h^(-1)cm^(-2)), Co_(3)O_(4)flocs(1.222 mmol h^(-1)cm^(-2)) and recent reported Cu-based catalysts.It is proposed that the synergetic effects of the heterostructure combing atom hydrogen adsorption and nitrate reduction lead to the enhanced NRA performance.
基金financially supported by the National Key R&D Program of China (No. 2018YFB0104000 and No. 2019YFA0210300)National Nature Science Foundation of China (No.21571189 and No.21671200)+3 种基金Natural Science Foundation of Jiangsu Province (BK20200991)Hunan Provincial Science and Technology Plan Project of China (No. 2019GK2033, No. 2017TP1001, CPS2019K06 and No. 2018RS3009)Postdoctoral International Exchange Program Funding of China (No. [2018]115)China Postdoctoral Science Foundation (2019M652802)
文摘Energy conversion technologies like fuel cells and metal-air batteries require oxygen reduction reaction(ORR)electrocatalysts with low cost and high catalytic activity.Herein,N-doped carbon spheres(N-CS)with rich micropore structure have been synthesized by a facile two-step method,which includes the polymerization of pyrrole and formaldehyde and followed by a facile pyrolysis process.During the preparation,zinc chloride(ZnCl2)was utilized as a catalyst to promote polymerization and provide a hypersaline environment.In addition,the morphology,defect content and activity area of the resultant N-CS catalysts could be regulated by controlling the content of ZnCl2.The optimum N-CS-1 catalyst demonstrated much better catalytic activity and durability towards ORR in alkaline conditions than commercial 20 wt%Pt/C catalysts,of which the half-wave potential reached 0.844 V vs.RHE.When applied in the Zn-air batteries as cathode catalysts,N-CS-1 showed a maximum power density of 175 mW cm^(-2) and long-term discharging stability of over 150 h at 10 mA cm^(-2),which outperformed 20 wt%Pt/C.The excellent performance could be due to its ultrahigh specific surface area of 1757 m2 g1 and rich micropore channels structure.Meanwhile,this work provides an efficient method to synthesize an ultrahigh surface porous carbon material,especially for catalyst application.
基金supported by the National Natural Science Foundation of China (nos. 21671200 and 21571189)Fujian Provincial Natural Science Foundation of China (no. 2015J01072)+1 种基金the Hunan Provincial Science and Technology Plan Project, China (no. 2016TP1007)Innovation-Driven Project of Central South University (no. 2016CXS009)
文摘Highly efficient and non-precious catalysts are imperative for oxygen reduction reaction(ORR) to replace Pt/C. Anchoring efficient active species to carbon supports is a promising and scalable strategy. Here we synthesize Cu nanoparticles and noncrystalline CuNxCy species co-decorated ketjenblack(KB) carbon catalyst(denoted as Cu-N-KB-acid) by a facile and scalable method using copper sulfate, melamine, and KB as raw materials. An initial one-pot hydrothermal treatment is designed before pyrolysis process to achieve the good distribution of Cu and melamine on KB via a possible chelation effect. Owing to the synergistic effect of Cu and CuNxCy on KB, this composite catalyst displays excellent ORR catalytic activity in alkaline solution, which is comparable to the commercial 20% Pt/C. When used as a catalyst in a home-made Al-air battery, it shows a stable discharge voltage of 1.47 V at a discharge density of 50 mA cm-2, a little higher than that of Pt/C(1.45 V).
基金financially supported by National Natural Science Foundation of China (21972102)Natural Science Foundation of Jiangsu province (BK20200991)+3 种基金Suzhou Science and Technology Planning Project (SS202016)Jiangsu Laboratory for Biochemical Sensing and BiochipJiangsu Key Laboratory for Micro and Nano Heat Fluid Flow Technology and Energy ApplicationCollaborative Innovation Center of Water Treatment Technology & Material。
文摘Surface engineering of active materials to generate desired energy state is critical to fabricate high-performance heterogeneous catalysts.However, its realization in a controllable level remains challenging. Using oxygen evolution reaction(OER) as a model reaction, we report a surface-mediated Fe deposition strategy to electronically tailor surface energy states of porous Co_(3)O_(4)(Fe-pCo_(3)O_(4)) for enhanced activity towards OER. The Fe-pCo_(3)O_(4) exhibits a low overpotential of 280 mV to reach an OER current density of 100 mA cm^(-2), and a fast-kinetic behavior with a low Tafel slop of 58.2 mV dec^(-1), outperforming Co_(3)O_(4)-based OER catalysts recently reported and also the noble IrO_(2). The engineered material retains 100% of its original activity after operating at an overpotential of 350 m V for 100 h. A combination of theoretical calculations and experimental results finds out that the surface doped Fe promotes a high energy state and desired coordination environment in the near surface region, which enables optimized OER intermediates binding and favorably changes the rate-determining step.
基金financially supported by the National Key R&D Program of China (No.2019YFA0210300)National Nature Science Foundation of China (No.21671200)+1 种基金Hunan Provincial Science and Technology Plan Project of China (Nos.2017TP1001,2018RS3009 and 2019GK2033)financial support from The Open Project Program of Key Laboratory of Preparation and Application of Environmental Friendly Materials (No.2019006),Ministry of Education。
文摘Developing high-efficiency,inexpensive,and steady non-precious metal oxygen reduction reaction(ORR) catalysts to displace Pt-based catalysts is significant for commercial applications of Al-air battery.Here,we have prepared the Cu/Cu_(2)O-NC catalyst with excellent ORR performance and high stability,due to the synergistic effect of Cu and Cu_(2)O nanoparticles.The half-wave potential(0.8 V) and the limiting-current density(5.20 mA/cm^(2)) of the Cu/Cu_(2)O-NC are very close to those of the 20% Pt/C catalyst(0.82 V,5.10 mA/cm^(2)).Besides,it exhibits excellent performance with a maximal power density of 250 mW/cm^(2) and a stable continuous discharge for more than 90 h in the Al-air battery test The promoting effects of Cu_(2)O towards Cu-based ORR catalysts are illustrated as follows:(ⅰ) Cu_(2)O is the major ORR active site by the redox of Cu(Ⅱ)/Cu(Ⅰ),which provides excellent ORR activities;(ⅱ) Cu can stabilize the location of Cu_(2)O by assisting the electron transfer to Cu(Ⅱ)/Cu(Ⅰ) redox,which is conducive to the high stability of the catalyst.This work provides a useful strategy for enhancing the ORR performance of Cu-based catalysts.