Maize stalk rot reduces grain yield and quality.Information about the genetics of resistance to maize stalk rot could help breeders design effective breeding strategies for the trait.Genomic prediction may be a more e...Maize stalk rot reduces grain yield and quality.Information about the genetics of resistance to maize stalk rot could help breeders design effective breeding strategies for the trait.Genomic prediction may be a more effective breeding strategy for stalk-rot resistance than marker-assisted selection.We performed a genome-wide association study(GWAS)and genomic prediction of resistance in testcross hybrids of 677 inbred lines from the Tuxpe?o and non-Tuxpe?o heterotic pools grown in three environments and genotyped with 200,681 single-nucleotide polymorphisms(SNPs).Eighteen SNPs associated with stalk rot shared genomic regions with gene families previously associated with plant biotic and abiotic responses.More favorable SNP haplotypes traced to tropical than to temperate progenitors of the inbred lines.Incorporating genotype-by-environment(G×E)interaction increased genomic prediction accuracy.展开更多
Fusarium ear rot(FER)is a destructive maize fungal disease worldwide.In this study,three tropical maize populations consisting of 874 inbred lines were used to perform genomewide association study(GWAS)and genomic pre...Fusarium ear rot(FER)is a destructive maize fungal disease worldwide.In this study,three tropical maize populations consisting of 874 inbred lines were used to perform genomewide association study(GWAS)and genomic prediction(GP)analyses of FER resistance.Broad phenotypic variation and high heritability for FER were observed,although it was highly influenced by large genotype-by-environment interactions.In the 874 inbred lines,GWAS with general linear model(GLM)identified 3034 single-nucleotide polymorphisms(SNPs)significantly associated with FER resistance at the P-value threshold of 1×10^(-5),the average phenotypic variation explained(PVE)by these associations was 3%with a range from 2.33%to 6.92%,and 49 of these associations had PVE values greater than 5%.The GWAS analysis with mixed linear model(MLM)identified 19 significantly associated SNPs at the P-value threshold of 1×10^(-4),the average PVE of these associations was 1.60%with a range from 1.39%to 2.04%.Within each of the three populations,the number of significantly associated SNPs identified by GLM and MLM ranged from 25 to 41,and from 5 to 22,respectively.Overlapping SNP associations across populations were rare.A few stable genomic regions conferring FER resistance were identified,which located in bins 3.04/05,7.02/04,9.00/01,9.04,9.06/07,and 10.03/04.The genomic regions in bins 9.00/01 and 9.04 are new.GP produced moderate accuracies with genome-wide markers,and relatively high accuracies with SNP associations detected from GWAS.Moderate prediction accuracies were observed when the training and validation sets were closely related.These results implied that FER resistance in maize is controlled by minor QTL with small effects,and highly influenced by the genetic background of the populations studied.Genomic selection(GS)by incorporating SNP associations detected from GWAS is a promising tool for improving FER resistance in maize.展开更多
The current assembled maize genomes cannot represent the broad genetic diversity of maize germplasms.Acquiring more genome sequences is critical for constructing a pan-genome and elucidating the linkage between genoty...The current assembled maize genomes cannot represent the broad genetic diversity of maize germplasms.Acquiring more genome sequences is critical for constructing a pan-genome and elucidating the linkage between genotype and phenotype in maize.Here we describe the genome sequence and annotation of A188,a maize inbred line with high phenotypic variation relative to other lines,acquired by single-molecule sequencing and optical genome mapping.We assembled a 2210-Mb genome with a scaffold N50 size of 11.61 million bases(Mb),compared to 9.73 Mb for B73 and 10.2 Mb for Mo17.Based on the B73_Ref Gen_V4 genome,295 scaffolds(2084.35 Mb,94.30%of the final genome assembly)were anchored and oriented on ten chromosomes.Comparative analysis revealed that~30%of the predicted A188 genes showed large structural divergence from B73,Mo17,and W22 genomes,which causes high protein divergence and may lead to phenotypic variation among the four inbred lines.As a line with high embryonic callus(EC)induction capacity,A188 provides a convenient tool for elucidating the molecular mechanism underlying the formation of EC in maize.Combining our new A188 genome with previously reported QTL and RNA sequencing data revealed eight genes with large structural variation and two differentially expressed genes playing potential roles in maize EC induction.展开更多
Improved chilling tolerance is important for maize production. Previous efforts in transgenics and marker-assisted breeding have not achieved practical results. In this study, the antifreeze protein(AnAFP) from the su...Improved chilling tolerance is important for maize production. Previous efforts in transgenics and marker-assisted breeding have not achieved practical results. In this study, the antifreeze protein(AnAFP) from the super-xerophyte Ammopiptanthus nanus was aligned to KnS-type dehydrins.Phosphorylation in vitro and subcellular localization showed that AnAFP was phosphorylated by maize casein kinase II and translocated from nucleus to cytoplasm under chilling stress. AnAFP also increased lactate dehydrogenase activity. A parent line of commercial maize hybrids was transformed with the AnAFP gene. Based on thermal asymmetric interlaced PCR, one hemizygous and two homozygous integration sites were identified in one T_(1) line. Ectopic expression of AnAFP in transgenic lines was confirmed by quantitative real-time PCR, RNA-seq, and Western blotting. After chilling treatment, the transgenic lines showed significantly improved phenotype, higher kernel production, survival rate and biomass, and lower relative electrolyte leakage and superoxide dismutation than the untransformed line. Thus, ectopic expression of AnAFP gene improved chilling tolerance in the transgenic lines, which could be used to apply for further safety assessment for commercial breeding.展开更多
基金funded by the CGIAR Research Program(CRP)on MAIZEthe USAID through the Accelerating Genetic Gains Supplemental Project(Amend.No.9 MTO 069033),and the One CGIAR Initiative on Accelerated Breeding+1 种基金funding from the governments of Australia,Belgium,Canada,China,France,India,Japan,the Republic of Korea,Mexico,the Netherlands,New Zealand,Norway,Sweden,Switzerland,the United Kingdom,the United States,and the World Banksupported by the China Scholarship Council。
文摘Maize stalk rot reduces grain yield and quality.Information about the genetics of resistance to maize stalk rot could help breeders design effective breeding strategies for the trait.Genomic prediction may be a more effective breeding strategy for stalk-rot resistance than marker-assisted selection.We performed a genome-wide association study(GWAS)and genomic prediction of resistance in testcross hybrids of 677 inbred lines from the Tuxpe?o and non-Tuxpe?o heterotic pools grown in three environments and genotyped with 200,681 single-nucleotide polymorphisms(SNPs).Eighteen SNPs associated with stalk rot shared genomic regions with gene families previously associated with plant biotic and abiotic responses.More favorable SNP haplotypes traced to tropical than to temperate progenitors of the inbred lines.Incorporating genotype-by-environment(G×E)interaction increased genomic prediction accuracy.
基金The authors gratefully acknowledge the financial support from the MasAgro project funded by Mexico’s Secretary of Agriculture and Rural Development(SADER),the Genomic Open-source Breeding Informatics Initiative(GOBII)(grant number OPP1093167)supported by the Bill&Melinda Gates Foundation,and the CGIAR Research Program(CRP)on maize(MAIZE)MAIZE receives W1&W2 support from the Governments of Australia,Belgium,Canada,China,France,India,Japan,the Republic of Korea,Mexico,Netherlands,New Zealand,Norway,Sweden,Switzerland,the United Kingdom,USA,and the World Bank+2 种基金The authors also thank the National Natural Science Foundation of China(grant number 31801442)the CIMMYT–China Specialty Maize Research Center Project funded by the Shanghai Municipal Finance Bureauthe China Scholarship Council.
文摘Fusarium ear rot(FER)is a destructive maize fungal disease worldwide.In this study,three tropical maize populations consisting of 874 inbred lines were used to perform genomewide association study(GWAS)and genomic prediction(GP)analyses of FER resistance.Broad phenotypic variation and high heritability for FER were observed,although it was highly influenced by large genotype-by-environment interactions.In the 874 inbred lines,GWAS with general linear model(GLM)identified 3034 single-nucleotide polymorphisms(SNPs)significantly associated with FER resistance at the P-value threshold of 1×10^(-5),the average phenotypic variation explained(PVE)by these associations was 3%with a range from 2.33%to 6.92%,and 49 of these associations had PVE values greater than 5%.The GWAS analysis with mixed linear model(MLM)identified 19 significantly associated SNPs at the P-value threshold of 1×10^(-4),the average PVE of these associations was 1.60%with a range from 1.39%to 2.04%.Within each of the three populations,the number of significantly associated SNPs identified by GLM and MLM ranged from 25 to 41,and from 5 to 22,respectively.Overlapping SNP associations across populations were rare.A few stable genomic regions conferring FER resistance were identified,which located in bins 3.04/05,7.02/04,9.00/01,9.04,9.06/07,and 10.03/04.The genomic regions in bins 9.00/01 and 9.04 are new.GP produced moderate accuracies with genome-wide markers,and relatively high accuracies with SNP associations detected from GWAS.Moderate prediction accuracies were observed when the training and validation sets were closely related.These results implied that FER resistance in maize is controlled by minor QTL with small effects,and highly influenced by the genetic background of the populations studied.Genomic selection(GS)by incorporating SNP associations detected from GWAS is a promising tool for improving FER resistance in maize.
基金supported by the National Natural Science Foundation of China(31871637,32072073,and 32001500)the Project of Transgenic New Variety Cultivation(2016ZX08003003)。
文摘The current assembled maize genomes cannot represent the broad genetic diversity of maize germplasms.Acquiring more genome sequences is critical for constructing a pan-genome and elucidating the linkage between genotype and phenotype in maize.Here we describe the genome sequence and annotation of A188,a maize inbred line with high phenotypic variation relative to other lines,acquired by single-molecule sequencing and optical genome mapping.We assembled a 2210-Mb genome with a scaffold N50 size of 11.61 million bases(Mb),compared to 9.73 Mb for B73 and 10.2 Mb for Mo17.Based on the B73_Ref Gen_V4 genome,295 scaffolds(2084.35 Mb,94.30%of the final genome assembly)were anchored and oriented on ten chromosomes.Comparative analysis revealed that~30%of the predicted A188 genes showed large structural divergence from B73,Mo17,and W22 genomes,which causes high protein divergence and may lead to phenotypic variation among the four inbred lines.As a line with high embryonic callus(EC)induction capacity,A188 provides a convenient tool for elucidating the molecular mechanism underlying the formation of EC in maize.Combining our new A188 genome with previously reported QTL and RNA sequencing data revealed eight genes with large structural variation and two differentially expressed genes playing potential roles in maize EC induction.
基金supported by National Key Science and Technology Special Project(2016ZX08003-004)Sichuan Science and Technology Program(2018JY0470)。
文摘Improved chilling tolerance is important for maize production. Previous efforts in transgenics and marker-assisted breeding have not achieved practical results. In this study, the antifreeze protein(AnAFP) from the super-xerophyte Ammopiptanthus nanus was aligned to KnS-type dehydrins.Phosphorylation in vitro and subcellular localization showed that AnAFP was phosphorylated by maize casein kinase II and translocated from nucleus to cytoplasm under chilling stress. AnAFP also increased lactate dehydrogenase activity. A parent line of commercial maize hybrids was transformed with the AnAFP gene. Based on thermal asymmetric interlaced PCR, one hemizygous and two homozygous integration sites were identified in one T_(1) line. Ectopic expression of AnAFP in transgenic lines was confirmed by quantitative real-time PCR, RNA-seq, and Western blotting. After chilling treatment, the transgenic lines showed significantly improved phenotype, higher kernel production, survival rate and biomass, and lower relative electrolyte leakage and superoxide dismutation than the untransformed line. Thus, ectopic expression of AnAFP gene improved chilling tolerance in the transgenic lines, which could be used to apply for further safety assessment for commercial breeding.