Star nonfullerene acceptors like ITIC[1],IDIC[2],O-IDTBR[3],IT-4 F[4],COi8 DFIC[4],Y6[6]etc.continuously emerge and keep pushing the power conversion efficiency(PCE)of organic solar cells forward.These small molecules...Star nonfullerene acceptors like ITIC[1],IDIC[2],O-IDTBR[3],IT-4 F[4],COi8 DFIC[4],Y6[6]etc.continuously emerge and keep pushing the power conversion efficiency(PCE)of organic solar cells forward.These small molecules generally show narrow bandgaps,excellent visible to NIR light-harvesting capability,good electron mobility.展开更多
Mesozoic intermediate-felsic magmatic rocks in the eastern North China Craton commonly show geochemical similarity to adakites.However,the lack of direct constraints from partial melting experiments at high pressures ...Mesozoic intermediate-felsic magmatic rocks in the eastern North China Craton commonly show geochemical similarity to adakites.However,the lack of direct constraints from partial melting experiments at high pressures and temperatures fuels a debate over the origin of these rocks.In this work,we performed partial melting experiments at 1.5 GPa and 800–950℃on amphibolite samples collected from the vicinity of the Mesozoic potassium-rich adakitic rocks in the Zhangjiakou area,northern margin of the North China Craton.The experimental melts range from granitic to granodioritic compositions,with SiO_(2)=56.4–72.6 wt.%,Al_(2)O_(3)=16.1–19.3 wt.%,FeO^(*)=2.4–9.6 wt.%,MgO=0.3–2.0 wt.%,CaO=0.6–3.8 wt.%,Na_(2)O=4.7–5.3 wt.%,and K_(2)O=2.6–3.9 wt.%,which are in the ranges of the surrounding Mesozoic potassium-rich adakitic rocks,except for the higher Al_(2)O_(3)contents and the data point at 1.5 GPa and 800℃.Trace element compositions of the melts measured by LA-ICP-MS are rich in Sr(849–1067 ppm)and light rare earth elements(LREEs)and poor in Y(<10.4 ppm)and Yb(<0.88 ppm),and have high Sr/Y(102–221)and(La/Yb)n(27–41)ratios and strongly fractionated rare earth element(REE)patterns,whereas no obvious negative Eu anomalies are observed.The geochemical characteristics show overall similarity to the Mesozoic potassium-rich adakitic rocks in the area,especially adakites with low Mg#,again except for the data point at 1.5 GPa and 800℃.The results suggest that partial melting of amphibolite can produce potassium-rich adakitic rocks with low Mg#in the eastern North China Craton under the experimental conditions of 1.5 GPa and 850–950℃.The experimental restites consist of hornblende(Hbl)+plagioclase(Pl)+garnet(Grt)±clinopyroxene(Cpx),a mineral assemblage significantly different from that of the nearby Hannuoba mafic granulite xenoliths which consist of Cpx+orthopyroxene(Opx)+Pl±Grt.Chemically,the experimental restites contain higher Al_(2)O_(3)but lower MgO and CaO than the Hannuoba mafic granulite xenoliths.We therefore argue that the Hannuoba mafic granulite xenoliths cannot represent the direct products of partial melting of the experimental amphibolite.展开更多
Wide-bandgap copolymer donors with fused-ring accept-or units(FAUs)present excellent performance in non-fullerene organic solar cells due to their complementary light-absorption with nonfullerene acceptors,deep the hi...Wide-bandgap copolymer donors with fused-ring accept-or units(FAUs)present excellent performance in non-fullerene organic solar cells due to their complementary light-absorption with nonfullerene acceptors,deep the highest occupied molecular orbital(HOMO)levels and high hole mobilities[1−4].展开更多
Epidote is a typical hydrous mineral in subduction zones.Here,we report a synchrotron-based single-crystal X-ray diffraction(XRD)study of natural epidote[Ca1.97Al2.15Fe0.84(SiO4)(Si2O7)O(OH)]under simultaneously high ...Epidote is a typical hydrous mineral in subduction zones.Here,we report a synchrotron-based single-crystal X-ray diffraction(XRD)study of natural epidote[Ca1.97Al2.15Fe0.84(SiO4)(Si2O7)O(OH)]under simultaneously high pressure-temperature(high P-T)conditions to~17.7 GPa and 700 K.No phase transition occurs over this P-T range.Using the third-order Birch-Murnaghan equation of state(EoS),we fitted the pressure-volume-temperature(P-V-T)data and obtained the zero-pressure bulk modulus K_(0)=138(2)GPa,its pressure derivative K'_(0)=3.0(3),the temperature derivative of the bulk modulus((∂K/∂T)P=-0.004(1)GPa/K),and the thermal expansion coefficient at 300 K(α_(0)=3.8(5)×10^(-5)K^(-1)),as the zero-pressure unit-cell volume V_(0)was fixed at 465.2(2)Å^(3)(obtained by a single-crystal XRD experiment at ambient conditions).This study reveals that the bulk moduli of epidote show nonlinear compositional dependence.By discussing the stabilization of epidote and comparing its density with those of other hydrous minerals,we find that epidote,as a significant water transporter in subduction zones,may maintain a metastable state to~14 GPa along the coldest subducting slab geotherm and promote slab subduction into the upper mantle while favoring slab stagnation above the 410 km discontinuity.Furthermore,the water released from epidote near 410 km may potentially affect the properties of the 410 km seismic discontinuity.展开更多
Single-crystal x-ray diffraction(SCXRD)is an important tool to study the crystal structure and phase transitions of crystalline materials at elevated pressures.The Partnership for eXtreme Xtallography(PX^(2))program a...Single-crystal x-ray diffraction(SCXRD)is an important tool to study the crystal structure and phase transitions of crystalline materials at elevated pressures.The Partnership for eXtreme Xtallography(PX^(2))program at the GSECARS 13-BM-C beamline of the Advanced Photon Source aims to provide state-of-the-art experimental capabilities to determine the crystal structures of materials under extreme conditions using SCXRD.PX^(2) provides a focused x-ray beam(12318μm^(2))at a monochromatic energy of 28.6 keV.High-pressure SCXRD experiments are performed with a six-circle diffractometer and a Pilatus3 photon-counting detector,facilitated by a membrane system for remote pressure control and an online ruby fluorescence system for pressure determination.The efficient,high-quality crystal structure determination at PX^(2) is exemplified by a study of pressure-induced phase transitions in natural ilvaite[CaFe^(2+)_(2 )Fe^(3+)Si_(2)O_(7)O(OH),P2_(1)/a space group].Two phase transitions are observed at high pressure.The SCXRD data confirm the already-known ilvaite-I(P2_(1)/a)→ilvaite-II(Pnam)transformation at 0.4(1)GPa,and,a further phase transition is found to occur at 22.8(2)GPa where ilvaite-II transforms into ilvaite-III(P2_(1)/a).The crystal structure of the ilvaite-III is solved and refined in the P2_(1)/a space group.In addition to the ilvaite-I→ilvaite-II→ilvaite-III phase transitions,two minor structural modifications are observed as discontinuities in the evolution of the FeO6 polyhedral geometries with pressure,which are likely associated with magnetic transitions.展开更多
Ferromagnesite(Mg,Fe)CO_(3)with 20 mol%iron is a potential host mineral for carbon transport and storage in the Earth mantle.The high-pressure behavior of synthetic ferromagnesite(Mg_(0.81)Fe_(0.19))CO_(3)up to 53 GPa...Ferromagnesite(Mg,Fe)CO_(3)with 20 mol%iron is a potential host mineral for carbon transport and storage in the Earth mantle.The high-pressure behavior of synthetic ferromagnesite(Mg_(0.81)Fe_(0.19))CO_(3)up to 53 GPa was investigated by synchrotron X-ray diffraction(XRD)and Raman spectroscopy.The iron bearing carbonate underwent spin transition at around 44–46 GPa accompanied by a volume collapse of 1.8%,which also demonstrated a variation in the dνi/dP slope of the Raman modes.The pressure-volume data was fitted by a third-order Birch-Murnaghan equation of state(BM-EoS)for the high spin phase.The best-fit K_(0)=108(1)GPa and K_(0)'=4.2(1).Combining the dνi/dP and the K_(0),the mode Grüneisen parameters of each vibrational mode(T,L,ν4 andν1)were calculated.The effects of iron concentration on the Mg_(1−x)Fe_(x)CO_(3)system related to high-pressure compressibility and vibrational properties are discussed.These results expand the knowledge of the physical properties of carbonates and provide insights to the potential deep carbon host.展开更多
Subducting oceanic sediments and crusts,originating from the Earth's surface and descending into its deep interior,are important carriers of volatiles.The volatiles have significant effects on materials cycling an...Subducting oceanic sediments and crusts,originating from the Earth's surface and descending into its deep interior,are important carriers of volatiles.The volatiles have significant effects on materials cycling and the dynamic evolution of the subduction zones.A simplified Al_(2)O_(3)-SiO_(2)-H_(2)O(ASH)ternary system models the relationship of minerals in the hydrated and alumina-silica rich sedimentary layer.Topaz Al_(2)SiO_(4)(F,OH)_(2)is an important mineral in the ASH system and comprises two volatiles:H_(2)O and fluorine(F).In this study,the thermoelasticity of a natural F-rich topaz was investigated using synchrotron-based single-crystal X-ray diffraction combined with diamond anvil cells up to 29.1 GPa and 750 K.The pressure-volume-temperature data were fitted to a third-order Birch-Murnaghan Equation of state with V_(0)=343.15(7)Å3,K_(0)=166(1)GPa,K_(0)'=3.0(1),(∂K_(0)/∂T)P=-0.015(9)GPa/K andα_(0)=3.9(5)×10^(-5)K^(-1).The isothermal bulk modulus increases with the F content in topaz,and the various F contents present significant effects on its anisotropic compressibility.Our results further reveal that the isothermal bulk modulus K_(0)of the minerals in ASH system increases with density.F and H contents in hydrous minerals might greatly affect their properties(e.g.,compressibility and stability),providing more comprehensive constraints on the subduction zones.展开更多
In 1995,Yu et al.[1]first reported bulk-heterojunction(BHJ)solar cells with a conjugated polymer donor and a fullerene acceptor as the active materials.From then on,BHJ organic solar cells(OSCs)have attracted academic...In 1995,Yu et al.[1]first reported bulk-heterojunction(BHJ)solar cells with a conjugated polymer donor and a fullerene acceptor as the active materials.From then on,BHJ organic solar cells(OSCs)have attracted academic and industrial interests due to the advantages like lightweight,flexibility and roll-to-roll fabrication.Nowadays,17%power conversion efficiencies(PCEs)have been achieved in the state-of-the-art OSCs[2,3].The remarkable progress in OSCs relies on the continuously emerging new materials and device fabrication technologies,and the understanding on film morphology and device physics[4,5].展开更多
The past 5 years have witnessed the rapid development of organic solar cells based on nonfullerene acceptors(NFAs)[1-26].The state-of-the-art NFA-based single-junction and tandem solar cells afforded 18.22%(certified ...The past 5 years have witnessed the rapid development of organic solar cells based on nonfullerene acceptors(NFAs)[1-26].The state-of-the-art NFA-based single-junction and tandem solar cells afforded 18.22%(certified 17.6%)and 17.36%(certified 17.29%)power conversion efficiencies(PCEs),respectively[27,28].Wide-bandgap(WBG)polymer donors are ideal partners for NFAs.They present complementary absorption with that of low-bandgap NFAs and deep the highest occupied molecular orbital(HOMO)levels.Therefore,solar cells based on a WBG polymer and a NFA can generate high short-circuit current density(Jsc)and open-circuit voltage(Voc)[29].Meanwhile,some WBG polymers show high crystallinity and mobility,gifting the solar cells high fill factors(FF)[30].Recently,our group first reported efficient WBG D-A copolymer donors based on fused-ring aromatic lactone(FRAL)acceptor units.展开更多
基金supported by the National Key Research and Development Program of China(2017YFA0206600,SQ2020YFE010701)the National Natural Science Foundation of China(51773045,21772030,51922032,21961160720,51473053)the Natural Science Foundation of Hunan Province(2019JJ50603)。
文摘Star nonfullerene acceptors like ITIC[1],IDIC[2],O-IDTBR[3],IT-4 F[4],COi8 DFIC[4],Y6[6]etc.continuously emerge and keep pushing the power conversion efficiency(PCE)of organic solar cells forward.These small molecules generally show narrow bandgaps,excellent visible to NIR light-harvesting capability,good electron mobility.
基金the National Natural Science Foundation of China(Grant Nos.41772043 and 41802043)the Chinese Academy of Sciences“Light of West China”Program(Dawei Fan,2017 and Jingui Xu,2019)+1 种基金the Youth Innovation Promotion Association CAS(Dawei Fan,2018434)the Innovation and Entrepreneurship Funding of High-Level Overseas Talents of Guizhou Province(Dawei Fan,[2019]10).
文摘Mesozoic intermediate-felsic magmatic rocks in the eastern North China Craton commonly show geochemical similarity to adakites.However,the lack of direct constraints from partial melting experiments at high pressures and temperatures fuels a debate over the origin of these rocks.In this work,we performed partial melting experiments at 1.5 GPa and 800–950℃on amphibolite samples collected from the vicinity of the Mesozoic potassium-rich adakitic rocks in the Zhangjiakou area,northern margin of the North China Craton.The experimental melts range from granitic to granodioritic compositions,with SiO_(2)=56.4–72.6 wt.%,Al_(2)O_(3)=16.1–19.3 wt.%,FeO^(*)=2.4–9.6 wt.%,MgO=0.3–2.0 wt.%,CaO=0.6–3.8 wt.%,Na_(2)O=4.7–5.3 wt.%,and K_(2)O=2.6–3.9 wt.%,which are in the ranges of the surrounding Mesozoic potassium-rich adakitic rocks,except for the higher Al_(2)O_(3)contents and the data point at 1.5 GPa and 800℃.Trace element compositions of the melts measured by LA-ICP-MS are rich in Sr(849–1067 ppm)and light rare earth elements(LREEs)and poor in Y(<10.4 ppm)and Yb(<0.88 ppm),and have high Sr/Y(102–221)and(La/Yb)n(27–41)ratios and strongly fractionated rare earth element(REE)patterns,whereas no obvious negative Eu anomalies are observed.The geochemical characteristics show overall similarity to the Mesozoic potassium-rich adakitic rocks in the area,especially adakites with low Mg#,again except for the data point at 1.5 GPa and 800℃.The results suggest that partial melting of amphibolite can produce potassium-rich adakitic rocks with low Mg#in the eastern North China Craton under the experimental conditions of 1.5 GPa and 850–950℃.The experimental restites consist of hornblende(Hbl)+plagioclase(Pl)+garnet(Grt)±clinopyroxene(Cpx),a mineral assemblage significantly different from that of the nearby Hannuoba mafic granulite xenoliths which consist of Cpx+orthopyroxene(Opx)+Pl±Grt.Chemically,the experimental restites contain higher Al_(2)O_(3)but lower MgO and CaO than the Hannuoba mafic granulite xenoliths.We therefore argue that the Hannuoba mafic granulite xenoliths cannot represent the direct products of partial melting of the experimental amphibolite.
基金the National Key Research and Development Program of China(2017YFA0206600)the National Natural Science Foundation of China(51773045,21772030,51922032 and 21961160720).
文摘Wide-bandgap copolymer donors with fused-ring accept-or units(FAUs)present excellent performance in non-fullerene organic solar cells due to their complementary light-absorption with nonfullerene acceptors,deep the highest occupied molecular orbital(HOMO)levels and high hole mobilities[1−4].
基金the National Natural Science Foundation of China(Grant Nos.41772043 and 41802043)the CAS"Light of West China"Program(2017 and 2019),the Youth Innovation Promotion Association CAS(Dawei Fan,2018434)+4 种基金the Innovation and Entrepreneurship Funding of High-Level Overseas Talents of Guizhou Province(Dawei Fan,[2019]10)GeoSoilEnviroCARS(The University of Chicago,Sector 13)Advanced Photon Source(APS),Argonne National Laboratory.GeoSoilEnviroCARS is supported by the National Science Foundation(EAR-0622171)the Department of Energy(DE-FG02-94ER14466)under Contract No.DE-AC02-06CH11357the Advanced Photon Source,a U.S.Department of Energy(DOE)Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No.DE-AC02-06CH11357.
文摘Epidote is a typical hydrous mineral in subduction zones.Here,we report a synchrotron-based single-crystal X-ray diffraction(XRD)study of natural epidote[Ca1.97Al2.15Fe0.84(SiO4)(Si2O7)O(OH)]under simultaneously high pressure-temperature(high P-T)conditions to~17.7 GPa and 700 K.No phase transition occurs over this P-T range.Using the third-order Birch-Murnaghan equation of state(EoS),we fitted the pressure-volume-temperature(P-V-T)data and obtained the zero-pressure bulk modulus K_(0)=138(2)GPa,its pressure derivative K'_(0)=3.0(3),the temperature derivative of the bulk modulus((∂K/∂T)P=-0.004(1)GPa/K),and the thermal expansion coefficient at 300 K(α_(0)=3.8(5)×10^(-5)K^(-1)),as the zero-pressure unit-cell volume V_(0)was fixed at 465.2(2)Å^(3)(obtained by a single-crystal XRD experiment at ambient conditions).This study reveals that the bulk moduli of epidote show nonlinear compositional dependence.By discussing the stabilization of epidote and comparing its density with those of other hydrous minerals,we find that epidote,as a significant water transporter in subduction zones,may maintain a metastable state to~14 GPa along the coldest subducting slab geotherm and promote slab subduction into the upper mantle while favoring slab stagnation above the 410 km discontinuity.Furthermore,the water released from epidote near 410 km may potentially affect the properties of the 410 km seismic discontinuity.
基金This work was performed at GeoSoilEnviroCARS(The University of Chicago,Sector 13),Partnership for Extreme Crystallography(PX2)program,Advanced Photon Source(APS),and Argonne National LaboratoryThe PX2 program is supported by COMPRES under NSF Cooperative Agreement No.EAR 11-57758+3 种基金The use of the COMPRES-GSECARS gas loading system was supported by COMPRES under NSF Cooperative Agreement No.EAR 11-57758 and by GSECARSGeoSoilEnviroCARS is supported by the National Science Foundation-Earth Sciences(Grant No.EAR-1634415)Department of Energy-GeoSciences(Grant No.DE-FG02-94ER14466)This research used resources of the Advanced Photon Source,a U.S.Department of Energy(DOE)Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No.DE-AC02-06CH11357.
文摘Single-crystal x-ray diffraction(SCXRD)is an important tool to study the crystal structure and phase transitions of crystalline materials at elevated pressures.The Partnership for eXtreme Xtallography(PX^(2))program at the GSECARS 13-BM-C beamline of the Advanced Photon Source aims to provide state-of-the-art experimental capabilities to determine the crystal structures of materials under extreme conditions using SCXRD.PX^(2) provides a focused x-ray beam(12318μm^(2))at a monochromatic energy of 28.6 keV.High-pressure SCXRD experiments are performed with a six-circle diffractometer and a Pilatus3 photon-counting detector,facilitated by a membrane system for remote pressure control and an online ruby fluorescence system for pressure determination.The efficient,high-quality crystal structure determination at PX^(2) is exemplified by a study of pressure-induced phase transitions in natural ilvaite[CaFe^(2+)_(2 )Fe^(3+)Si_(2)O_(7)O(OH),P2_(1)/a space group].Two phase transitions are observed at high pressure.The SCXRD data confirm the already-known ilvaite-I(P2_(1)/a)→ilvaite-II(Pnam)transformation at 0.4(1)GPa,and,a further phase transition is found to occur at 22.8(2)GPa where ilvaite-II transforms into ilvaite-III(P2_(1)/a).The crystal structure of the ilvaite-III is solved and refined in the P2_(1)/a space group.In addition to the ilvaite-I→ilvaite-II→ilvaite-III phase transitions,two minor structural modifications are observed as discontinuities in the evolution of the FeO6 polyhedral geometries with pressure,which are likely associated with magnetic transitions.
基金the support from the National Natural Science Foundation of China(NSFC)(Nos.41772034,42072047,NSFC-41972056,NSFC-41622202 to G.B.Zhangthe National Science Foundation for Young Scientists of China(No.41802044)to W.Liang+2 种基金supported by the National Science Foundation-Earth Sciences(No.EAR-1634415)Department of Energy-Geo Sciences(No.DE-FG0294ER14466)support in part by COMPRES under NSF Cooperative Agreement EAR-1661511.
文摘Ferromagnesite(Mg,Fe)CO_(3)with 20 mol%iron is a potential host mineral for carbon transport and storage in the Earth mantle.The high-pressure behavior of synthetic ferromagnesite(Mg_(0.81)Fe_(0.19))CO_(3)up to 53 GPa was investigated by synchrotron X-ray diffraction(XRD)and Raman spectroscopy.The iron bearing carbonate underwent spin transition at around 44–46 GPa accompanied by a volume collapse of 1.8%,which also demonstrated a variation in the dνi/dP slope of the Raman modes.The pressure-volume data was fitted by a third-order Birch-Murnaghan equation of state(BM-EoS)for the high spin phase.The best-fit K_(0)=108(1)GPa and K_(0)'=4.2(1).Combining the dνi/dP and the K_(0),the mode Grüneisen parameters of each vibrational mode(T,L,ν4 andν1)were calculated.The effects of iron concentration on the Mg_(1−x)Fe_(x)CO_(3)system related to high-pressure compressibility and vibrational properties are discussed.These results expand the knowledge of the physical properties of carbonates and provide insights to the potential deep carbon host.
基金financial support from the National Science Foundation of China(No.41827802)supported by the National Science Foundation-Earth Sciences(No.EAR-1634415)+2 种基金the Department of Energy,Geosciences(No.DE-FG0294ER14466)supported by DOE-BES(No.DE-AC0206CH11357)supported in part by COMPRES under NSF Cooperative Agreement EAR-1661511。
文摘Subducting oceanic sediments and crusts,originating from the Earth's surface and descending into its deep interior,are important carriers of volatiles.The volatiles have significant effects on materials cycling and the dynamic evolution of the subduction zones.A simplified Al_(2)O_(3)-SiO_(2)-H_(2)O(ASH)ternary system models the relationship of minerals in the hydrated and alumina-silica rich sedimentary layer.Topaz Al_(2)SiO_(4)(F,OH)_(2)is an important mineral in the ASH system and comprises two volatiles:H_(2)O and fluorine(F).In this study,the thermoelasticity of a natural F-rich topaz was investigated using synchrotron-based single-crystal X-ray diffraction combined with diamond anvil cells up to 29.1 GPa and 750 K.The pressure-volume-temperature data were fitted to a third-order Birch-Murnaghan Equation of state with V_(0)=343.15(7)Å3,K_(0)=166(1)GPa,K_(0)'=3.0(1),(∂K_(0)/∂T)P=-0.015(9)GPa/K andα_(0)=3.9(5)×10^(-5)K^(-1).The isothermal bulk modulus increases with the F content in topaz,and the various F contents present significant effects on its anisotropic compressibility.Our results further reveal that the isothermal bulk modulus K_(0)of the minerals in ASH system increases with density.F and H contents in hydrous minerals might greatly affect their properties(e.g.,compressibility and stability),providing more comprehensive constraints on the subduction zones.
基金the National Key Research and Development Program of China (2017YFA0206600)the National Natural Science Foundation of China (51773045, 21572041, 21772030 and 51922032)the Youth Association for Promoting Innovation (CAS) for financial support.
文摘In 1995,Yu et al.[1]first reported bulk-heterojunction(BHJ)solar cells with a conjugated polymer donor and a fullerene acceptor as the active materials.From then on,BHJ organic solar cells(OSCs)have attracted academic and industrial interests due to the advantages like lightweight,flexibility and roll-to-roll fabrication.Nowadays,17%power conversion efficiencies(PCEs)have been achieved in the state-of-the-art OSCs[2,3].The remarkable progress in OSCs relies on the continuously emerging new materials and device fabrication technologies,and the understanding on film morphology and device physics[4,5].
基金the National Key Research and Development Program of China(2017YFA0206600)the National Natural Science Foundation of China(51773045,21772030,51922032 and 21961160720)the Youth Association for Promoting Innovation(CAS)for financial support。
文摘The past 5 years have witnessed the rapid development of organic solar cells based on nonfullerene acceptors(NFAs)[1-26].The state-of-the-art NFA-based single-junction and tandem solar cells afforded 18.22%(certified 17.6%)and 17.36%(certified 17.29%)power conversion efficiencies(PCEs),respectively[27,28].Wide-bandgap(WBG)polymer donors are ideal partners for NFAs.They present complementary absorption with that of low-bandgap NFAs and deep the highest occupied molecular orbital(HOMO)levels.Therefore,solar cells based on a WBG polymer and a NFA can generate high short-circuit current density(Jsc)and open-circuit voltage(Voc)[29].Meanwhile,some WBG polymers show high crystallinity and mobility,gifting the solar cells high fill factors(FF)[30].Recently,our group first reported efficient WBG D-A copolymer donors based on fused-ring aromatic lactone(FRAL)acceptor units.