Introduction Virtual reality(VR)and transcutaneous electrical nerve stimulation(TENS)have emerged as effective interventions for pain reduction.However,their standalone applications often yield limited analgesic effec...Introduction Virtual reality(VR)and transcutaneous electrical nerve stimulation(TENS)have emerged as effective interventions for pain reduction.However,their standalone applications often yield limited analgesic effects,particularly in certain painful conditions.Aims Our hypothesis was that the combination of VR with TENS in a synchronous manner could produce the best analgesic effect among the four experimental conditions.Methods To address this challenge,we proposed a novel pain modulation strategy that synchronously combines VR and TENS,aiming to capitalise on both techniques'complementary pain modulation mechanisms.Thirty-two healthy subjects participated in the study and underwent three types of interventions:VR alone,a combination of VR with conventional TENS,and a combination of VR with synchronous TENS.Additionally,a control condition with no intervention was included.Perceived pain intensity,pain unpleasantness,positive and negativeaffect scores,and electroencephalographic(EEG)data were collected before and after the interventions.To delve into the potential moderating role of pain intensity on the analgesic efficacy of VR combined with synchronous TENS,we incorporated two distinct levels of painful stimuli:one representing mild to moderate pain(ie,low pain)and the other representing moderate to severe pain(ie,high pain).Results Our findings revealed that both combination interventions exhibited superior analgesic effects compared with the VR-alone intervention when exposed to low and high pain stimuli.Notably,the combination of VR with synchronous TENS demonstrated greater analgesic efficacy than the combination of VR with conventional TENS.EEG data further supported these results,indicating that both combination interventions elicited a greater reduction in event-related potential magnitude compared with the VR-alone intervention during exposure to low and high pain stimuli.Moreover,the synchronous combination intervention induced a more significant reduction in N2 amplitude than the VR-alone intervention during exposure to low pain stimuli.No significant differences in EEG response changes were detected between the two combination interventions.Both combination interventions resulted in a greater reduction in negative affect compared with the VR-alone intervention.Conclusions Altogether,our study highlights the effectiveness of the synchronous combination of VR and TENS in enhancing pain modulation.These findings offer valuable insights for developing innovative pain treatments,emphasising the importance of tailored and multifaceted therapeutic approaches for various painful conditions.展开更多
The exploration of low-cost and efficient bifunctional electrocatalysts for oxygen evolution reaction and hydrogen evolution reaction through tuning the chemical composition is strongly required for sustainable resour...The exploration of low-cost and efficient bifunctional electrocatalysts for oxygen evolution reaction and hydrogen evolution reaction through tuning the chemical composition is strongly required for sustainable resources. Herein, we developed a bimetallic cobalt–manganese sulfide supported on Ni foam(CMS/Ni) via a solvothermal method. It has discovered that after combining with the pure Co_9S_8 and Mn S, the morphologies of CMS/Ni have modulated. The obtained three-dimensionally hexagram-like CMS/Ni nanosheets have a significant increase in electrochemical active surface area and charge transport ability. More than that, the synergetic effect of Co and Mn has also presented in this composite. Benefiting from these, the CMS/Ni electrode shows great performance toward hydrogen evolution reaction and oxygen evolution reaction in basic medium, comparing favorably to that ofthe pure Co_9S_8/Ni and Mn S/Ni. More importantly, this versatile CMS/Ni can catalyze the water splitting in a twoelectrode system at a potential of 1.47 V, and this electrolyzer can be efficiently driven by a 1.50 V commercial dry battery.展开更多
Designing low-cost, highly efficient, and stable bifunctional electrocatalysts for both hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) is of vital significance for water splitting.Herein, thre...Designing low-cost, highly efficient, and stable bifunctional electrocatalysts for both hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) is of vital significance for water splitting.Herein, three-dimensional lily-like CoNi_2S_4 supported on nickel foam(CoNi_2S_4/Ni) has been fabricated by sulfuration of the Co–Ni precursor. As expected, CoNi_2S_4/Ni possesses such outstanding electrocatalytic properties that it requires an overpotential of only 54 mV at 10 mA cm^(-2) and 328 mV at 100 mA cm^(-2) for HER and OER, respectively. Furthermore, by utilizing the CoNi_2S_4/Ni electrodes as bifunctional electrocatalysts for overall water splitting, a current density of 10 mA cm^(-2) can be obtained at a voltage of only 1.56 V.展开更多
A phosphite ligand modified Rh/SiO2 catalyst has been developed for hydroformylation of internal olefins to linear aldehydes, which showed high activity and regioselectivity and could be separated easily by filtration...A phosphite ligand modified Rh/SiO2 catalyst has been developed for hydroformylation of internal olefins to linear aldehydes, which showed high activity and regioselectivity and could be separated easily by filtration after reaction in an autoclave. Effects of reaction temperature and syngas pressure on the performances of the catalyst in the reaction were also investigated.展开更多
Recovering the iron(Fe)and phosphorus(P)contained in steelmaking slags not only reduces the environmental burden caused by the accumulated slag,but also is the way to develop a circular economy and achieve sustainable...Recovering the iron(Fe)and phosphorus(P)contained in steelmaking slags not only reduces the environmental burden caused by the accumulated slag,but also is the way to develop a circular economy and achieve sustainable development in the steel industry.We had pre-viously found the possibility of recovering Fe and P resources,i.e.,magnetite(Fe_(3)O_(4)) and calcium phosphate(Ca_(10)P_(6)O_(25)),contained in steel-making slags by adjusting oxygen partial pressure and adding modifier B_(2)O_(3).As a fundamental study for efficiently recovering Fe and P from steelmaking slag,in this study,the crystallization behavior of the CaO-SiO_(2)-FeO-P_(2)O_(5)-B_(2)O_(3) melt has been observed in situ,using a confocal scanning laser microscope(CLSM).The kinetics of nucleation and growth of Fe-and P-rich phases have been calculated using a classical crys-tallization kinetic theory.During cooling,a Fe_(3)O_(4) phase with faceted morphology was observed as the 1st precipitated phase in the isothermal interval of 1300-1150℃,while Ca_(10)P_(6)O_(25),with rod-shaped morphology,was found to be the 2nd phase to precipitate in the interval of 1150-1000℃.The crystallization abilities of Fe_(3)O_(4) and Ca_(10)P_(6)O_(25) phases in the CaO-SiO_(2)-FeO-P_(2)O_(5)-B_(2)O_(3) melt were quantified with the in-dex of(T_(U)−T_(I))/T_(I)(where T_(I) represents the peak temperature of the nucleation rate and TU stands for that of growth rate),and the crystalliza-tion ability of Fe_(3)O_(4) was found to be larger than that of Ca_(10)P_(6)O_(25) phase.The range of crystallization temperature for Fe_(3)O_(4) and Ca_(10)P_(6)O_(25) phases was optimized subsequently.The Fe_(3)O_(4) and Ca_(10)P_(6)O_(25) phases are the potential sources for ferrous feedstock and phosphate fertilizer,respectively.展开更多
To remove the key impurity elements,P and B,from primary Si simultaneously,Sr and Zr co-addition to Al-Si alloy systems during solvent refining has been investigated.Sr reacts with Al,Si,and P in the melt to form a P-...To remove the key impurity elements,P and B,from primary Si simultaneously,Sr and Zr co-addition to Al-Si alloy systems during solvent refining has been investigated.Sr reacts with Al,Si,and P in the melt to form a P-containing Al_(2)Si_(2)Sr phase and Zr reacts with B to form a ZrB_(2) phase.In the Al-Si-Sr-Zr system,high removal fractions of P and B in the primary Si,with 84.8%-98.4%and 90.7%-96.7%,respectively,are achieved at the same time,respectively.The best removal effect is obtained in the sample with the addition of Sr-32000+Zr-3000μg·kg^(-1),and the removal fractions of P and B in the purified Si reach 98.4%and 96.1%.Compared with the Sr/Zr single-addition,the removal effects of Sr and Zr co-addition on P and B do not show a significant downward trend,indicating that the nucleation and growth of the B/P-containing impurity phases are mutually independent.Finally,an evolution model is proposed to describe the nucleation and the growth stages of Sr/Zr-containing compound phases,which reveals the interaction between the impurity phases and the primary Si.展开更多
A flexible asymmetric supercapacitor(ASC)based on a Co Al-layered double hydroxide(Co Al-LDH)electrode and a reduced graphene oxide(r GO) electrode was successfully fabricated. The Co Al-LDH electrode as a positive el...A flexible asymmetric supercapacitor(ASC)based on a Co Al-layered double hydroxide(Co Al-LDH)electrode and a reduced graphene oxide(r GO) electrode was successfully fabricated. The Co Al-LDH electrode as a positive electrode was synthesized by directly growing Co Al-LDH nanosheet arrays on a carbon cloth(CC)through a facile hydrothermal method, and it delivered a specific capacitance of 616.9 F g^(-1)at a current density of1 A g^(-1). The r GO electrode as a negative electrode was synthesized by coating r GO on the CC via a simple dipcoating method and revealed a specific capacitance of110.0 F g^(-1)at a current density of 2 A g^(-1). Ultimately,the advanced ASC offered a broad voltage window(1.7 V)and exhibited a high superficial capacitance of1.77 F cm^(-2)at 2 m A cm^(-2)and a high energy density of0.71 m Wh cm^(-2)at a power density of 17.05 m W cm^(-2),along with an excellent cycle stability(92.9% capacitance retention over 8000 charge–discharge cycles).展开更多
As the unique power entrance,the pantograph-catenary electrical contact system maintains the efficiency and reliability of power transmission for the high-speed train.Along with the fast development of high-speed rail...As the unique power entrance,the pantograph-catenary electrical contact system maintains the efficiency and reliability of power transmission for the high-speed train.Along with the fast development of high-speed railways all over the world,some commercialized lines are built for covering the remote places under harsh environment,especially in China;these environmental elements including wind,sand,rain,thunder,ice and snow need to be considered during the design of the pantograph-catenary system.The pantograph-catenary system includes the pantograph,the contact wire and the interface—pantograph slide.As the key component,this pantograph slide plays a critical role in reliable power transmission under dynamic condition.The fundamental material characteristics of the pantograph slide and contact wire such as electrical conductivity,impact resistance,wear resistance,etc.,directly determine the sliding electrical contact performance of the pantograph-catenary system;meanwhile,different detection methods of the pantograph-catenary system are crucial for the reliability of service and maintenance.In addition,the challenges brought from extreme operational conditions are discussed,taking the Sichuan-Tibet Railway currently under construction as a special example with the high-altitude climate.The outlook for developing the ultra-high-speed train equipped with the novel pantograph-catenary system which can address the harsher operational environment is also involved.This paper has provided a comprehensive review of the high-speed railway pantograph-catenary systems,including its progress,challenges,outlooks in the history and future.展开更多
Although Zn metal is an ideal anode candidate for aqueous batteries owing to its high theoretical capacity,lower cost,and safety,its service life and efficiency are damaged by severe hydrogen evolution reaction,self-c...Although Zn metal is an ideal anode candidate for aqueous batteries owing to its high theoretical capacity,lower cost,and safety,its service life and efficiency are damaged by severe hydrogen evolution reaction,self-corrosion,and dendrite growth.Herein,a thickness-controlled ZnS passivation layer was fabricated on the Zn metal surface to obtain Zn@ZnS electrode through oxidation–orientation sulfuration by the liquid-and vapor-phase hydrothermal processes.Benefiting from the chemical inertness of the ZnS interphase,the as-prepared Zn@ZnS electrode presents an excellent anti-corrosion and undesirable hydrogen evolution reaction.Meanwhile,the thickness-optimized ZnS layer with an unbalanced charge distribution represses dendrite growth by guiding Zn plating/stripping,leading to long service life.Consequently,the Zn@Zn S presented 300 cycles in the symmetric cells with a 42 mV overpotential,200 cycles in half cells with a 78 mV overpotential,and superb rate performance in Zn||NH;V;O;full cells.展开更多
Spinel oxides containing Co and Ni are a promising substitute as a noble metal catalyst for methane combustion.Achieving a complete oxidation of methane under 400°C remains challenging,andhydrothermal 60 h NiClit...Spinel oxides containing Co and Ni are a promising substitute as a noble metal catalyst for methane combustion.Achieving a complete oxidation of methane under 400°C remains challenging,andhydrothermal 60 h NiClittle impact on activity,especially at high space velocities due to the long hydrothermal time with less absorbed oxygen species and crystal defects.Overall,these results help clarify methane activa-tion mechanisms and aid the development of more efficient low-cost catalysts.展开更多
This paper concerns an optimal dividend-penalty problem for the risk models with surplus-dependent premiums.The objective is to maximize the difference of the expected cumulative discounted dividend payments received ...This paper concerns an optimal dividend-penalty problem for the risk models with surplus-dependent premiums.The objective is to maximize the difference of the expected cumulative discounted dividend payments received until the moment of ruin and a discounted penalty payment taken at the moment of ruin.Since the value function may be not smooth enough to be the classical solution of the HJB equation,the viscosity solution is involved.The optimal value function can be characterized as the smallest viscosity supersolution of the HJB equation and the optimal dividend-penalty strategy has a band structure.Finally,some numerical examples with gamma distribution for the claims are analyzed.展开更多
Two-dimensional(2D)hexagonal boron nitride(hBN),due to its extraordinary thermal,chemical,and optical properties,has arisen as an enticing material for the research community to explore for various applications,includ...Two-dimensional(2D)hexagonal boron nitride(hBN),due to its extraordinary thermal,chemical,and optical properties,has arisen as an enticing material for the research community to explore for various applications,including the use of site defects in hBN as single photon emitters(SPEs).In this review,we systematically summarize recent advanced strategies towards the controllable synthesis of 2D hBN using chemical vapor deposition,towards a full control of the domain size,orientation,morphology,layer number,and stacking order,etc.Moreover,we review the underlying mechanisms for single photon emission(SPE)in hBN and methods to selectively generate and tune the SPEs.Defects(e.g.,carbon substituted defects)are discussed for the potential use as emission sites.We finally give an outlook of future challenges and opportunities on desirable hBN synthesis and further investigation of SPEs in hBN,targeting to utilize hBN as single photon emitters in an industrial scale.展开更多
There have been hundreds of millions of cases of coronavirus disease 2019(COVID-19),which is caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).With the growing population of recovered patients,it i...There have been hundreds of millions of cases of coronavirus disease 2019(COVID-19),which is caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).With the growing population of recovered patients,it is crucial to understand the long-term consequences of the disease and management strategies.Although COVID-19 was initially considered an acute respiratory illness,recent evidence suggests that manifestations including but not limited to those of the cardiovascular,respiratory,neuropsychiatric,gastrointestinal,reproductive,and musculoskeletal systems may persist long after the acute phase.These persistent manifestations,also referred to as long COVID,could impact all patients with COVID-19 across the full spectrum of illness severity.Herein,we comprehensively review the current literature on long COVID,highlighting its epidemiological understanding,the impact of vaccinations,organ-specific sequelae,pathophysiological mechanisms,and multidisciplinary management strategies.In addition,the impact of psychological and psychosomatic factors is also underscored.Despite these crucial findings on long COVID,the current diagnostic and therapeutic strategies based on previous experience and pilot studies remain inadequate,and well-designed clinical trials should be prioritized to validate existing hypotheses.Thus,we propose the primary challenges concerning biological knowledge gaps and efficient remedies as well as discuss the corresponding recommendations.展开更多
Lung cancer has the highest mortality rate among all cancers in the world.Hence,early diagnosis and personal-ized treatment plans are crucial to improving its 5-year survival rate.Chest computed tomography(CT)serves a...Lung cancer has the highest mortality rate among all cancers in the world.Hence,early diagnosis and personal-ized treatment plans are crucial to improving its 5-year survival rate.Chest computed tomography(CT)serves as an essential tool for lung cancer screening,and pathology images are the gold standard for lung cancer diagnosis.However,medical image evaluation relies on manual labor and suffers from missed diagnosis or misdiagnosis,and physician heterogeneity.The rapid development of artificial intelligence(AI)has brought a whole novel op-portunity for medical task processing,demonstrating the potential for clinical application in lung cancer diagnosis and treatment.AI technologies,including machine learning and deep learning,have been deployed extensively for lung nodule detection,benign and malignant classification,and subtype identification based on CT images.Furthermore,AI plays a role in the non-invasive prediction of genetic mutations and molecular status to provide the optimal treatment regimen,and applies to the assessment of therapeutic efficacy and prognosis of lung cancer patients,enabling precision medicine to become a reality.Meanwhile,histology-based AI models assist patholo-gists in typing,molecular characterization,and prognosis prediction to enhance the efficiency of diagnosis and treatment.However,the leap to extensive clinical application still faces various challenges,such as data sharing,standardized label acquisition,clinical application regulation,and multimodal integration.Nevertheless,AI holds promising potential in the field of lung cancer to improve cancer care.展开更多
The construction of efficient and durable electrocatalysts with highly dispersed metal clusters and hydrophilic surface for alkaline hydrogen evolution reaction(HER)remains a great challenge.Herein,we prepared hydroph...The construction of efficient and durable electrocatalysts with highly dispersed metal clusters and hydrophilic surface for alkaline hydrogen evolution reaction(HER)remains a great challenge.Herein,we prepared hydrophilic nanocomposites of Ru clusters(~1.30 nm)anchored on Na^(+),K^(+)-decorated porous carbon(Ru/Na^(+),K^(+)-PC)through hydrothermal method and subsequent annealing treatment at 500℃.The Ru/Na^(+),K^(+)-PC exhibits ultralow overpotential of 7 mV at 10 mA·cm^(-2),mass activity of 15.7 A·mgRu^(-1)at 100 mV,and long-term durability of 20,000 cycles potential cycling and 200 h chronopotentiometric measurement with a negligible decrease in activity,much superior to benchmarked commercial Pt/C.Density functional theory based calculations show that the energy barrier of H-OH bond breaking is efficiently reduced due to the presence of Na and K ions,thus favoring the Volmer step.Furthermore,the Ru/Na^(+),K^(+)-PC effectively employs solar energy for obtaining H_(2)in both alkaline water and seawater electrolyzer.This finding provides a new strategy to construct high-performance and cost-effective alkaline HER electrocatalyst.展开更多
There is a great demand for high performance rapid repair mortar(RRM)because of the wide use of cement concrete.Solid-waste-based sulfoaluminate cement(WSAC)is very suitable as a green cementitious material for repair...There is a great demand for high performance rapid repair mortar(RRM)because of the wide use of cement concrete.Solid-waste-based sulfoaluminate cement(WSAC)is very suitable as a green cementitious material for repair materials because of its characteristics of high early-age strength and short setting time.However,the influence and optimization of various factors of WSAC-based RRM,such as water-to-RRM ratio,binder-to-sand ratio and additives,as well as the further solid waste replacement of aggregate,remain to be studied.This paper comprehensively studied the influence of the above factors on the performance of WSAC-based RRM and obtained a green high-performance RRM by optimizing these factors.The experimental results showed that the early and late strength of the obtained RRM is excellent,and the setting time and fluidity are appropriate,which reflected good mechanical properties and construction performance.Ordinary Portland cement(OPC)doping could not improve RRM strength.It was feasible to prepare RRM with gold tailing sand replacing part of the quartz sand.This paper provides data and a theoretical basis for the preparation of high-performance RRM based on solid waste,expanding the high value utilization of solid waste,which is conducive to the development of a low carbon society.展开更多
Lyme disease(LD)is a tick-transmitted infection caused by Borrelia burgdorferi sensu lato species,which include B.burgdorferi,Borrelia afzelii and Borrelia garinii.The majority of patients with early LD can be cured b...Lyme disease(LD)is a tick-transmitted infection caused by Borrelia burgdorferi sensu lato species,which include B.burgdorferi,Borrelia afzelii and Borrelia garinii.The majority of patients with early LD can be cured by the standard treatment,yet some still suffer from posttreatment LD syndrome.The presence of Borrelia persisters has been proposed as a contributing factor,because they cannot be completely eradicated by the currently used antibiotics for LD.Finding new pharmaceuticals targeting Borrelia persisters is crucial for developing more effective treatments.Here,we first confirmed the existence of persisters in B.garinii and B.afzelii cultures and then conducted a high-throughput screening of a customdrug library against persister-rich stationary-phase B.garinii and B.afzelii cultures.Among 2427 compounds screened,hypocrellin A(HA),anthracycline class of drugs and topical antibiotics along with some other natural compounds were identified to have strong potential for killing persisters of B.garinii and B.afzelii.HA was the most active anti-Borrelia compound,capable of eradicating stationary-phase Borrelia persisters,in particular when combined with doxycycline and/or ceftriaxone.Liposoluble antioxidant vitamin E was found to antagonize the activity of HA,indicating HA’s target is the cell membrane where HA triggers the generation of reactive oxygen species in the presence of light.HA was found to have distinct bactericidal activity against Borrelia species but had poor or no activity against gram-positive and gram-negative bacteria.Identification of the abovementioned drug candidates may help develop more effective therapies for LD.展开更多
基金supported by the National Natural Science Foundation of China(32071061)and Beijing Natural Science Foundation(JQ22018).
文摘Introduction Virtual reality(VR)and transcutaneous electrical nerve stimulation(TENS)have emerged as effective interventions for pain reduction.However,their standalone applications often yield limited analgesic effects,particularly in certain painful conditions.Aims Our hypothesis was that the combination of VR with TENS in a synchronous manner could produce the best analgesic effect among the four experimental conditions.Methods To address this challenge,we proposed a novel pain modulation strategy that synchronously combines VR and TENS,aiming to capitalise on both techniques'complementary pain modulation mechanisms.Thirty-two healthy subjects participated in the study and underwent three types of interventions:VR alone,a combination of VR with conventional TENS,and a combination of VR with synchronous TENS.Additionally,a control condition with no intervention was included.Perceived pain intensity,pain unpleasantness,positive and negativeaffect scores,and electroencephalographic(EEG)data were collected before and after the interventions.To delve into the potential moderating role of pain intensity on the analgesic efficacy of VR combined with synchronous TENS,we incorporated two distinct levels of painful stimuli:one representing mild to moderate pain(ie,low pain)and the other representing moderate to severe pain(ie,high pain).Results Our findings revealed that both combination interventions exhibited superior analgesic effects compared with the VR-alone intervention when exposed to low and high pain stimuli.Notably,the combination of VR with synchronous TENS demonstrated greater analgesic efficacy than the combination of VR with conventional TENS.EEG data further supported these results,indicating that both combination interventions elicited a greater reduction in event-related potential magnitude compared with the VR-alone intervention during exposure to low and high pain stimuli.Moreover,the synchronous combination intervention induced a more significant reduction in N2 amplitude than the VR-alone intervention during exposure to low pain stimuli.No significant differences in EEG response changes were detected between the two combination interventions.Both combination interventions resulted in a greater reduction in negative affect compared with the VR-alone intervention.Conclusions Altogether,our study highlights the effectiveness of the synchronous combination of VR and TENS in enhancing pain modulation.These findings offer valuable insights for developing innovative pain treatments,emphasising the importance of tailored and multifaceted therapeutic approaches for various painful conditions.
基金supported by National Natural Science Foundation of China(21576113 and 21376105)Foshan Innovative and Entrepreneurial Research Team Program(No.2014IT100062)
文摘The exploration of low-cost and efficient bifunctional electrocatalysts for oxygen evolution reaction and hydrogen evolution reaction through tuning the chemical composition is strongly required for sustainable resources. Herein, we developed a bimetallic cobalt–manganese sulfide supported on Ni foam(CMS/Ni) via a solvothermal method. It has discovered that after combining with the pure Co_9S_8 and Mn S, the morphologies of CMS/Ni have modulated. The obtained three-dimensionally hexagram-like CMS/Ni nanosheets have a significant increase in electrochemical active surface area and charge transport ability. More than that, the synergetic effect of Co and Mn has also presented in this composite. Benefiting from these, the CMS/Ni electrode shows great performance toward hydrogen evolution reaction and oxygen evolution reaction in basic medium, comparing favorably to that ofthe pure Co_9S_8/Ni and Mn S/Ni. More importantly, this versatile CMS/Ni can catalyze the water splitting in a twoelectrode system at a potential of 1.47 V, and this electrolyzer can be efficiently driven by a 1.50 V commercial dry battery.
基金supported by the National Natural Science Foundation of China(21376105,21576113)~~
文摘Designing low-cost, highly efficient, and stable bifunctional electrocatalysts for both hydrogen evolution reaction(HER) and oxygen evolution reaction(OER) is of vital significance for water splitting.Herein, three-dimensional lily-like CoNi_2S_4 supported on nickel foam(CoNi_2S_4/Ni) has been fabricated by sulfuration of the Co–Ni precursor. As expected, CoNi_2S_4/Ni possesses such outstanding electrocatalytic properties that it requires an overpotential of only 54 mV at 10 mA cm^(-2) and 328 mV at 100 mA cm^(-2) for HER and OER, respectively. Furthermore, by utilizing the CoNi_2S_4/Ni electrodes as bifunctional electrocatalysts for overall water splitting, a current density of 10 mA cm^(-2) can be obtained at a voltage of only 1.56 V.
基金supported by the National Key Fundamental Research Development Plan("973"Plan,No.2009CB623503)
文摘A phosphite ligand modified Rh/SiO2 catalyst has been developed for hydroformylation of internal olefins to linear aldehydes, which showed high activity and regioselectivity and could be separated easily by filtration after reaction in an autoclave. Effects of reaction temperature and syngas pressure on the performances of the catalyst in the reaction were also investigated.
基金supported by Jiangsu University(No.19JDG011)the Project of the National Natural Science Foundation of China(Nos.51874272,52111540265)the Open Foundation of State Key Laboratory of Mineral Processing(No.BGRIMM-KJSKL-2022-23).
文摘Recovering the iron(Fe)and phosphorus(P)contained in steelmaking slags not only reduces the environmental burden caused by the accumulated slag,but also is the way to develop a circular economy and achieve sustainable development in the steel industry.We had pre-viously found the possibility of recovering Fe and P resources,i.e.,magnetite(Fe_(3)O_(4)) and calcium phosphate(Ca_(10)P_(6)O_(25)),contained in steel-making slags by adjusting oxygen partial pressure and adding modifier B_(2)O_(3).As a fundamental study for efficiently recovering Fe and P from steelmaking slag,in this study,the crystallization behavior of the CaO-SiO_(2)-FeO-P_(2)O_(5)-B_(2)O_(3) melt has been observed in situ,using a confocal scanning laser microscope(CLSM).The kinetics of nucleation and growth of Fe-and P-rich phases have been calculated using a classical crys-tallization kinetic theory.During cooling,a Fe_(3)O_(4) phase with faceted morphology was observed as the 1st precipitated phase in the isothermal interval of 1300-1150℃,while Ca_(10)P_(6)O_(25),with rod-shaped morphology,was found to be the 2nd phase to precipitate in the interval of 1150-1000℃.The crystallization abilities of Fe_(3)O_(4) and Ca_(10)P_(6)O_(25) phases in the CaO-SiO_(2)-FeO-P_(2)O_(5)-B_(2)O_(3) melt were quantified with the in-dex of(T_(U)−T_(I))/T_(I)(where T_(I) represents the peak temperature of the nucleation rate and TU stands for that of growth rate),and the crystalliza-tion ability of Fe_(3)O_(4) was found to be larger than that of Ca_(10)P_(6)O_(25) phase.The range of crystallization temperature for Fe_(3)O_(4) and Ca_(10)P_(6)O_(25) phases was optimized subsequently.The Fe_(3)O_(4) and Ca_(10)P_(6)O_(25) phases are the potential sources for ferrous feedstock and phosphate fertilizer,respectively.
基金supported by the National Natural Science Foundation of China(Nos.51804294,51874272,52111540265)Anhui Provincial Natural Science Foundation(No.1808085ME121)+4 种基金the Key Laboratory of Photovoltaic and Energy Conservation Materials,Chinese Academy of Science(No.PECL2021QN003)Hefei Institutes of Physical Science,Chinese Academy of Sciences Director’s Fund(No.YZJJZX202018)International Clean Energy Talent Program by China Scholarship CouncilOpen Foundation of State Key Laboratory of Mineral Processing(No.BGRIMM-KJSKL-2022-23)Open Foundation of State Key Laboratory of Complex Nonferrous Metal Resources Clean Utilization(No.CNMRCUKF2205)。
文摘To remove the key impurity elements,P and B,from primary Si simultaneously,Sr and Zr co-addition to Al-Si alloy systems during solvent refining has been investigated.Sr reacts with Al,Si,and P in the melt to form a P-containing Al_(2)Si_(2)Sr phase and Zr reacts with B to form a ZrB_(2) phase.In the Al-Si-Sr-Zr system,high removal fractions of P and B in the primary Si,with 84.8%-98.4%and 90.7%-96.7%,respectively,are achieved at the same time,respectively.The best removal effect is obtained in the sample with the addition of Sr-32000+Zr-3000μg·kg^(-1),and the removal fractions of P and B in the purified Si reach 98.4%and 96.1%.Compared with the Sr/Zr single-addition,the removal effects of Sr and Zr co-addition on P and B do not show a significant downward trend,indicating that the nucleation and growth of the B/P-containing impurity phases are mutually independent.Finally,an evolution model is proposed to describe the nucleation and the growth stages of Sr/Zr-containing compound phases,which reveals the interaction between the impurity phases and the primary Si.
基金supported by National Natural Science Foundation of China(21376105 and 21576113)Foshan Innovative and Entepreneurial Research Team Program(No.2014IT100062)
文摘A flexible asymmetric supercapacitor(ASC)based on a Co Al-layered double hydroxide(Co Al-LDH)electrode and a reduced graphene oxide(r GO) electrode was successfully fabricated. The Co Al-LDH electrode as a positive electrode was synthesized by directly growing Co Al-LDH nanosheet arrays on a carbon cloth(CC)through a facile hydrothermal method, and it delivered a specific capacitance of 616.9 F g^(-1)at a current density of1 A g^(-1). The r GO electrode as a negative electrode was synthesized by coating r GO on the CC via a simple dipcoating method and revealed a specific capacitance of110.0 F g^(-1)at a current density of 2 A g^(-1). Ultimately,the advanced ASC offered a broad voltage window(1.7 V)and exhibited a high superficial capacitance of1.77 F cm^(-2)at 2 m A cm^(-2)and a high energy density of0.71 m Wh cm^(-2)at a power density of 17.05 m W cm^(-2),along with an excellent cycle stability(92.9% capacitance retention over 8000 charge–discharge cycles).
基金supported by the National Natural Science Foundation of China(Nos.U19A20105,51837009,51807167,51922090,U1966602 and 52077182)the Scientific and Technological Funds for Young Scientists of Sichuan(No.2019JDJQ0019)。
文摘As the unique power entrance,the pantograph-catenary electrical contact system maintains the efficiency and reliability of power transmission for the high-speed train.Along with the fast development of high-speed railways all over the world,some commercialized lines are built for covering the remote places under harsh environment,especially in China;these environmental elements including wind,sand,rain,thunder,ice and snow need to be considered during the design of the pantograph-catenary system.The pantograph-catenary system includes the pantograph,the contact wire and the interface—pantograph slide.As the key component,this pantograph slide plays a critical role in reliable power transmission under dynamic condition.The fundamental material characteristics of the pantograph slide and contact wire such as electrical conductivity,impact resistance,wear resistance,etc.,directly determine the sliding electrical contact performance of the pantograph-catenary system;meanwhile,different detection methods of the pantograph-catenary system are crucial for the reliability of service and maintenance.In addition,the challenges brought from extreme operational conditions are discussed,taking the Sichuan-Tibet Railway currently under construction as a special example with the high-altitude climate.The outlook for developing the ultra-high-speed train equipped with the novel pantograph-catenary system which can address the harsher operational environment is also involved.This paper has provided a comprehensive review of the high-speed railway pantograph-catenary systems,including its progress,challenges,outlooks in the history and future.
基金supported by the National Research Foundation funded by the government of the Republic of Korea (Nos. 2020R1I1A1A01072996 and 2021K 2A9A2A06044652)the National Natural Science Foundation of China (Nos. 52111540265 and 51874272)
文摘Although Zn metal is an ideal anode candidate for aqueous batteries owing to its high theoretical capacity,lower cost,and safety,its service life and efficiency are damaged by severe hydrogen evolution reaction,self-corrosion,and dendrite growth.Herein,a thickness-controlled ZnS passivation layer was fabricated on the Zn metal surface to obtain Zn@ZnS electrode through oxidation–orientation sulfuration by the liquid-and vapor-phase hydrothermal processes.Benefiting from the chemical inertness of the ZnS interphase,the as-prepared Zn@ZnS electrode presents an excellent anti-corrosion and undesirable hydrogen evolution reaction.Meanwhile,the thickness-optimized ZnS layer with an unbalanced charge distribution represses dendrite growth by guiding Zn plating/stripping,leading to long service life.Consequently,the Zn@Zn S presented 300 cycles in the symmetric cells with a 42 mV overpotential,200 cycles in half cells with a 78 mV overpotential,and superb rate performance in Zn||NH;V;O;full cells.
基金supported by the National Key Research and Development Program of China (2016YFC0204301)~~
文摘Spinel oxides containing Co and Ni are a promising substitute as a noble metal catalyst for methane combustion.Achieving a complete oxidation of methane under 400°C remains challenging,andhydrothermal 60 h NiClittle impact on activity,especially at high space velocities due to the long hydrothermal time with less absorbed oxygen species and crystal defects.Overall,these results help clarify methane activa-tion mechanisms and aid the development of more efficient low-cost catalysts.
基金supported by National Natural Science Foundation of China(11471218)Hebei Higher School Science and Technology Research Projects(ZD20131017)Joint Doctoral Training Foundation of HEBUT(2018GN0001)。
文摘This paper concerns an optimal dividend-penalty problem for the risk models with surplus-dependent premiums.The objective is to maximize the difference of the expected cumulative discounted dividend payments received until the moment of ruin and a discounted penalty payment taken at the moment of ruin.Since the value function may be not smooth enough to be the classical solution of the HJB equation,the viscosity solution is involved.The optimal value function can be characterized as the smallest viscosity supersolution of the HJB equation and the optimal dividend-penalty strategy has a band structure.Finally,some numerical examples with gamma distribution for the claims are analyzed.
基金Z.L.acknowledge the support from Research Grant Council of Hong Kong SAR(16304518),NSFC-RGC Joint Research Scheme(N_HKUST607/17)the Innovation and Technology Commission(ITCCNERC14SC01)+3 种基金the Zhongshan City Burea of Science and Technology(2019AG018)the IER foundation(HT-JD-CXY-201907)research fund of Guangdong-Hong Kong-Macao Intelligent Micro-Nano Optoelectronic Technology Joint Laboratory(NO.2020B1212030010)Guangdong Provincial Department of Science and Technology(grants 2020A0505090003).
文摘Two-dimensional(2D)hexagonal boron nitride(hBN),due to its extraordinary thermal,chemical,and optical properties,has arisen as an enticing material for the research community to explore for various applications,including the use of site defects in hBN as single photon emitters(SPEs).In this review,we systematically summarize recent advanced strategies towards the controllable synthesis of 2D hBN using chemical vapor deposition,towards a full control of the domain size,orientation,morphology,layer number,and stacking order,etc.Moreover,we review the underlying mechanisms for single photon emission(SPE)in hBN and methods to selectively generate and tune the SPEs.Defects(e.g.,carbon substituted defects)are discussed for the potential use as emission sites.We finally give an outlook of future challenges and opportunities on desirable hBN synthesis and further investigation of SPEs in hBN,targeting to utilize hBN as single photon emitters in an industrial scale.
基金supported by the Science and Technology Project of Sichuan(2022ZDZX0018,2020YFG0473,2023NSFSC1889)Science and Technology Project of Chengdu(2023-YF09-00007-SN)Sichuan University from“0”to“1”Innovation Project.
文摘There have been hundreds of millions of cases of coronavirus disease 2019(COVID-19),which is caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2).With the growing population of recovered patients,it is crucial to understand the long-term consequences of the disease and management strategies.Although COVID-19 was initially considered an acute respiratory illness,recent evidence suggests that manifestations including but not limited to those of the cardiovascular,respiratory,neuropsychiatric,gastrointestinal,reproductive,and musculoskeletal systems may persist long after the acute phase.These persistent manifestations,also referred to as long COVID,could impact all patients with COVID-19 across the full spectrum of illness severity.Herein,we comprehensively review the current literature on long COVID,highlighting its epidemiological understanding,the impact of vaccinations,organ-specific sequelae,pathophysiological mechanisms,and multidisciplinary management strategies.In addition,the impact of psychological and psychosomatic factors is also underscored.Despite these crucial findings on long COVID,the current diagnostic and therapeutic strategies based on previous experience and pilot studies remain inadequate,and well-designed clinical trials should be prioritized to validate existing hypotheses.Thus,we propose the primary challenges concerning biological knowledge gaps and efficient remedies as well as discuss the corresponding recommendations.
基金This work was supported by the National Natural Science Foun-dation of China(Nos.82100119,92159302)the Science and Tech-nology Project of Sichuan(Nos.2020YFG0473,2022ZDZX0018,2023NSFSC1889)+1 种基金the Chinese Postdoctoral Science Foundation(No.2021M692309)Postdoctoral Interdisciplinary Innovation Fund of Sichuan University,and the Science and Technology Achievements Transformation Foundation and Postdoctoral Program of West China Hospital,Sichuan University(Nos.CGZH21009 and 2020HXBH084).
文摘Lung cancer has the highest mortality rate among all cancers in the world.Hence,early diagnosis and personal-ized treatment plans are crucial to improving its 5-year survival rate.Chest computed tomography(CT)serves as an essential tool for lung cancer screening,and pathology images are the gold standard for lung cancer diagnosis.However,medical image evaluation relies on manual labor and suffers from missed diagnosis or misdiagnosis,and physician heterogeneity.The rapid development of artificial intelligence(AI)has brought a whole novel op-portunity for medical task processing,demonstrating the potential for clinical application in lung cancer diagnosis and treatment.AI technologies,including machine learning and deep learning,have been deployed extensively for lung nodule detection,benign and malignant classification,and subtype identification based on CT images.Furthermore,AI plays a role in the non-invasive prediction of genetic mutations and molecular status to provide the optimal treatment regimen,and applies to the assessment of therapeutic efficacy and prognosis of lung cancer patients,enabling precision medicine to become a reality.Meanwhile,histology-based AI models assist patholo-gists in typing,molecular characterization,and prognosis prediction to enhance the efficiency of diagnosis and treatment.However,the leap to extensive clinical application still faces various challenges,such as data sharing,standardized label acquisition,clinical application regulation,and multimodal integration.Nevertheless,AI holds promising potential in the field of lung cancer to improve cancer care.
基金This work was supported by the National Natural Science Foundation of China(No.21571038)Education Department of Guizhou Province(No.2021312)+4 种基金Foundation of Guizhou Province(No.2019-5666)State Key Laboratory of Coal Mine Disaster Dynamics and Control(Chongqing University,No.2011DA105287-ZR202101)Science Foundation for After graduated Students of Guizhou Province(No.YJSKYJJ2021023)State Key Laboratory of Physical Chemistry of Solid Surfaces(Xiamen University,No.202009)the Open Fund of the Key Lab of Organic Optoelectronics and Molecular Engineering(Tsinghua University).
文摘The construction of efficient and durable electrocatalysts with highly dispersed metal clusters and hydrophilic surface for alkaline hydrogen evolution reaction(HER)remains a great challenge.Herein,we prepared hydrophilic nanocomposites of Ru clusters(~1.30 nm)anchored on Na^(+),K^(+)-decorated porous carbon(Ru/Na^(+),K^(+)-PC)through hydrothermal method and subsequent annealing treatment at 500℃.The Ru/Na^(+),K^(+)-PC exhibits ultralow overpotential of 7 mV at 10 mA·cm^(-2),mass activity of 15.7 A·mgRu^(-1)at 100 mV,and long-term durability of 20,000 cycles potential cycling and 200 h chronopotentiometric measurement with a negligible decrease in activity,much superior to benchmarked commercial Pt/C.Density functional theory based calculations show that the energy barrier of H-OH bond breaking is efficiently reduced due to the presence of Na and K ions,thus favoring the Volmer step.Furthermore,the Ru/Na^(+),K^(+)-PC effectively employs solar energy for obtaining H_(2)in both alkaline water and seawater electrolyzer.This finding provides a new strategy to construct high-performance and cost-effective alkaline HER electrocatalyst.
基金National Key R&D Program of China(No.2020YFC1910000)the Shandong Natural Science Foundation Youth Project(No.ZR2020QE201).
文摘There is a great demand for high performance rapid repair mortar(RRM)because of the wide use of cement concrete.Solid-waste-based sulfoaluminate cement(WSAC)is very suitable as a green cementitious material for repair materials because of its characteristics of high early-age strength and short setting time.However,the influence and optimization of various factors of WSAC-based RRM,such as water-to-RRM ratio,binder-to-sand ratio and additives,as well as the further solid waste replacement of aggregate,remain to be studied.This paper comprehensively studied the influence of the above factors on the performance of WSAC-based RRM and obtained a green high-performance RRM by optimizing these factors.The experimental results showed that the early and late strength of the obtained RRM is excellent,and the setting time and fluidity are appropriate,which reflected good mechanical properties and construction performance.Ordinary Portland cement(OPC)doping could not improve RRM strength.It was feasible to prepare RRM with gold tailing sand replacing part of the quartz sand.This paper provides data and a theoretical basis for the preparation of high-performance RRM based on solid waste,expanding the high value utilization of solid waste,which is conducive to the development of a low carbon society.
基金the National Natural Science Foundation of China(no.81902099)the State Key Laboratory of Veterinary Etiological Biology,Lanzhou Veterinary Research Institute,Chinese Academy of Agricultural Sciences(no.SKLVEB2020KFKT005).
文摘Lyme disease(LD)is a tick-transmitted infection caused by Borrelia burgdorferi sensu lato species,which include B.burgdorferi,Borrelia afzelii and Borrelia garinii.The majority of patients with early LD can be cured by the standard treatment,yet some still suffer from posttreatment LD syndrome.The presence of Borrelia persisters has been proposed as a contributing factor,because they cannot be completely eradicated by the currently used antibiotics for LD.Finding new pharmaceuticals targeting Borrelia persisters is crucial for developing more effective treatments.Here,we first confirmed the existence of persisters in B.garinii and B.afzelii cultures and then conducted a high-throughput screening of a customdrug library against persister-rich stationary-phase B.garinii and B.afzelii cultures.Among 2427 compounds screened,hypocrellin A(HA),anthracycline class of drugs and topical antibiotics along with some other natural compounds were identified to have strong potential for killing persisters of B.garinii and B.afzelii.HA was the most active anti-Borrelia compound,capable of eradicating stationary-phase Borrelia persisters,in particular when combined with doxycycline and/or ceftriaxone.Liposoluble antioxidant vitamin E was found to antagonize the activity of HA,indicating HA’s target is the cell membrane where HA triggers the generation of reactive oxygen species in the presence of light.HA was found to have distinct bactericidal activity against Borrelia species but had poor or no activity against gram-positive and gram-negative bacteria.Identification of the abovementioned drug candidates may help develop more effective therapies for LD.