Geometrical configurations play a crucial role in dual-atom catalysts(DACs)for electrocatalytic applications.Significant progress has been made to design DACs electrocatalysts with various geometri-cal configurations,...Geometrical configurations play a crucial role in dual-atom catalysts(DACs)for electrocatalytic applications.Significant progress has been made to design DACs electrocatalysts with various geometri-cal configurations,but in-depth understanding the relationship between geometrical configurations and metal-metal interaction mechanisms for designing targeted DACs is still required.In this review,the recent progress in engineering of geometrical configurations of DACs is systematically summarized.Based on the polarity of geometrical configuration,DACs can be classified into two different types that are homonuclear and heteronuclear DACs.Furthermore,with regard to the geometrical configurations of the active sites,homonuclear DACs are identified into adjacent and bridged configurations,and heteronuclear DACs can be classified into adjacent,bridged,and separated configurations.Subsequently,metal-metal interactions in DACs with different geometrical configurations are introduced.Additionally,the applications of DACs in different electrocatalytic reactions are discussed,including the oxygen reduction reaction(ORR),oxygen evolution reaction(OER),hydrogen evolution reaction(HER),and other catalysis.Finally,the future challenges and perspectives for advancements in DACs are high-lighted.This review aims to provide inspiration for the design of highly effcient DACs towards energy relatedapplications.展开更多
The molybdenum carbide(Mo_(2)C)has been regarded as one of the most cost-efficient and stable electrocatalyst for the hydrogen evolution reaction(HER)by the virtue of its Pt-like electronic structures.However,the inhe...The molybdenum carbide(Mo_(2)C)has been regarded as one of the most cost-efficient and stable electrocatalyst for the hydrogen evolution reaction(HER)by the virtue of its Pt-like electronic structures.However,the inherent limitation of high density of empty valence band significantly reduces its catalytic reactivity by reason of strong hydrogen desorption resistance.Herein,we propose a multiscale confinement synthesis method to design the nitrogen-rich Mo_(2)C for modulating the band structure via decomposing the pre-coordination bonded polymer in a pressure-tight tube sealing system.Pre-bonded c/N-Mo in the coordination precursor constructs a micro-confinement space,enabling the homogeneous nitrogenization in-situ happened during the formation of Mo_(2)C.Simultaneously,the evolved gases from the precursor decomposition in tube sealing system establish a macro-confinement environment,preventing the lattice N escape and further endowing a continuous nitridation.Combining the multiscale confinement effects,the nitrogen-rich Mo2C displays as high as 25%N-Mo concentration in carbide lattice,leading to a satisfactory band structure.Accordingly,the constructed nitrogen-rich Mo_(2)C reveals an adorable catalytic activity for HER in both alkaline and acid solution.It is anticipated that the multiscale confinement synthesis strategy presents guideline for the rational design of electrocatalysts and beyond.展开更多
Graphitic carbon nitride(g-C3N4)-based photocatalysts have shown great potential in the splitting of water.However,the intrinsic drawbacks of g-C3N4,such as low surface area,poor diffusion,and charge separation effici...Graphitic carbon nitride(g-C3N4)-based photocatalysts have shown great potential in the splitting of water.However,the intrinsic drawbacks of g-C3N4,such as low surface area,poor diffusion,and charge separation efficiency,remain as the bottleneck to achieve highly efficient hydrogen evolution.Here,a hollow oxygen-incorporated g-C3N4 nanosheet(OCN)with an improved surface area of 148.5 m2 g^−1 is fabricated by the multiple thermal treatments under the N2/O2 atmosphere,wherein the C–O bonds are formed through two ways of physical adsorption and doping.The physical characterization and theoretical calculation indicate that the O-adsorption can promote the generation of defects,leading to the formation of hollow morphology,while the O-doping results in reduced band gap of g-C3N4.The optimized OCN shows an excellent photocatalytic hydrogen evolution activity of 3519.6μmol g^−1 h^−1 for~20 h,which is over four times higher than that of g-C3N4(850.1μmol g^−1 h^−1)and outperforms most of the reported g-C3N4 catalysts.展开更多
The photocatalytic activity of carbon nitride(CN)materials is mainly limited to small specific surface areas,limited solar absorption,and low separation and mobility of photoinduced carriers.In this study,we developed...The photocatalytic activity of carbon nitride(CN)materials is mainly limited to small specific surface areas,limited solar absorption,and low separation and mobility of photoinduced carriers.In this study,we developed a precursor-modified strategy for the synthesis of graphitic CN with highly efficient photocatalytic performance.The precursor dicyandiamide reformed by different acids undergoes a basic structural change and transforms into diverse new precursors.The thin porous amino-rich HNO_(3)-CN(5H-CN)was calcined by dicyandiamidine nitrate,formed by concentrated nitric acid modified dicyandiamide,and presented the best photocatalytic degradation rate of Rh B,more than 34 times that of bulk graphitic CN.Moreover,the photocatalytic hydrogen evolution rate of 5H-CN significantly improved.The TG-DSC-FTIR analyses indicated that the distinguishing thermal polymerization process of 5H-CN led to its thin porous amino-rich structure,and the theoretical calculations revealed that the negative conduction band potential of 5H-CN was attributed to its amino-rich structure.It is anticipated that the thin porous structure and the negative conduction band position of 5H-CN play important roles in the improvement of the photocatalytic performance.This study demonstrates that precursor modification is a promising project to induce a new thermal polycondensation process for the synthesis of CN with enhanced photocatalytic performance.展开更多
Seismologists have found that the first arrival frequencies of P waves at different seismic stations have different widths,that is,different periods or frequencies,and they think that this phenomenon can be used to id...Seismologists have found that the first arrival frequencies of P waves at different seismic stations have different widths,that is,different periods or frequencies,and they think that this phenomenon can be used to identify whether a Doppler effect is induced by earthquakes.However,the fault rupture process of a real earthquake is so complex that it is difficult to identify a frequency shift similar to the Doppler effect.A method to identify whether a Doppler effect is induced by an earthquake is proposed here.If a seismic station is in the direction of fault rupture propagation,this station could observe a Doppler effect induced by the earthquake.The Doppler effect causes the frequency of the seismic wave to shift from low frequency to high frequency,and the high frequency amplitudes become mutually superimposed.Under the combined influences of the absorption effect,geometric spreading effect and Doppler effect,the high frequency amplitude of the seismic wave will gradually become higher than the low frequency amplitude with increasing epicentral distance.If we find that the high frequency amplitude is higher than the low frequency amplitude with increasing epicentral distance in the direction of fault rupture propagation,then there is a Doppler effect.The fault that generated the Wenchuan earthquake is a reverse fault,and its horizontal rupture propagation velocity was low.To link fault rupture propagation velocity with the Doppler effect and identify the Doppler effect more easily,we decompose three-component records into two directions:the direction of fault rupture propagation and the direction perpendicular to the fault rupture propagation along the fault plane.The initial components of the two directions are processed by wavelet transform.Several seismic stations in the direction of fault rupture propagation of the Wenchuan earthquake were selected,and it was found that with increasing epicentral distance,the high frequency amplitudes of the wavelet spectra become obviously higher than the low frequency amplitudes.It can be concluded that due to the existence of the Doppler effect,high frequency amplitudes can overcome the influences of the absorption and geometric spreading effects on seismic waves in the fault rupture propagation process.展开更多
Water evaporation-induced electricity generation is a promising technology for renewable energy harvesting.However,the output power of some reported two-dimensional(2D)nanofluidic films is still restricted by the rela...Water evaporation-induced electricity generation is a promising technology for renewable energy harvesting.However,the output power of some reported two-dimensional(2D)nanofluidic films is still restricted by the relatively weak water–solid interactions within the tortuous nanochannels.To further enhance the comprehension and utilization of water–solid interactions,it is of utmost importance to conduct an in-depth investigation and propose a regulatory concept encompassing ion transport.Herein,we propose tortuosity regulation of 2D nanofluidic titanium oxide(Ti_(0.87)O_(2))films to optimize the ion transport within the interlayer nanochannel for enhanced efficiency in water evaporation-induced electricity generation for the first time.The significance of tortuosity in ion transport is elucidated by designing three 2D nanofluidic films with different tortuosity.Tortuosity analysis and in situ Raman measurement demonstrate that low tortuosity can facilitate the formation of efficient pathways for hydrated proton transport and promote water–solid interactions.Consequently,devices fabricated with the optimized 2D nanofluidic films exhibited a significantly enhanced output power density of approximately 204.01μW·cm^(−2),far exceeding those prepared by the high-tortuosity 2D nanofluidic films.This work highlights the significance of the construction of low tortuosity channels for 2D nanofluidic films with excellent performance.展开更多
Popularization of lithium-sulfur batteries(LSBs) is still hindered by shuttle effect and volume expansion.Herein, a new modularized sulfur storage strategy is proposed to solve above problems and accomplished via empl...Popularization of lithium-sulfur batteries(LSBs) is still hindered by shuttle effect and volume expansion.Herein, a new modularized sulfur storage strategy is proposed to solve above problems and accomplished via employing 100% space utilization host material of cobalt loaded carbon nanoparticles derived from ZIF-67. The modular dispersed storage of sulfur not only greatly increases the proportion of active sulfur,but also inhibits the occurrence of volume expansion. Meanwhile, 100% space utilization host material can greatly improve the conductivity of the cathode, provide a larger electrolyte wetting interface and effectively suppress the shuttle effect. Moreover, loaded cobalt particles have high catalytic activity for electrochemical reaction and can effectively improve the redox kinetics. The cell with new cathode host material carbonized at 650 ℃(ZIF-67(650 ℃)) exhibits superior rate performance and can maintain a high specific capacity of 950 m Ah/g after 100 cycles at 0.2 C, showing a good cycle stability.展开更多
Previous studies have confirmed that acupuncture for irritable bowel syndrome(IBS)provided an additional benefit over usual care alone.Therefore,we performed a multicenter,randomized,sham-controlled trial to assess th...Previous studies have confirmed that acupuncture for irritable bowel syndrome(IBS)provided an additional benefit over usual care alone.Therefore,we performed a multicenter,randomized,sham-controlled trial to assess the efficacy and safety of acupuncture versus sham acupuncture for refractory IBS in patients in the context of conventional treatments.Patients in the acupuncture and sham acupuncture groups received real or sham acupuncture treatment in 3 sessions per week for a total of 12 sessions.The primary outcome was a change in the IBS–Symptom Severity Scale(IBS-SSS)score from baseline to week 4.A total of 521 participants were screened,and 170 patients(85 patients per group)were enrolled and included in the intention-to-treat analysis.Baseline characteristics were comparable across the two groups.From baseline to 4 weeks,the IBS-SSS total score decreased by 140.0(95%CI:126.0 to 153.9)in the acupuncture group and 64.4(95%CI:50.4 to 78.3)in the sham acupuncture group.The between-group difference was 75.6(95%CI:55.8 to 95.4).Acupuncture efficacy was maintained during the 4-week follow-up period.There were no serious adverse events.In conclusion,acupuncture provided benefits when combined with treatment as usual,providing more options for the treatment of refractory IBS.展开更多
Nickel cobalt bimetallic heterogeneous sulfides are attractive battery-type materials for electrochemical energy storage.However,the precise synthesis of electrode materials that integrate highly efficient ions/electr...Nickel cobalt bimetallic heterogeneous sulfides are attractive battery-type materials for electrochemical energy storage.However,the precise synthesis of electrode materials that integrate highly efficient ions/electrons diffusion with abundant charge transfer channels has always been challenging.Herein,an effective and concise controllable hydrothermal approach is reported for tuning the crystalline and integrated structures of MOF-derived bimetallic sulfides to accelerate the charge transfer kinetics,and thus enabling rich Faradaic redox reaction.The as-obtained low-crystalline heterogeneous NiCo_(2)S_(4)/Co_(3)S_(4)nanocages exhibit a high specific capacity(1023 C/g at 1 A/g),remarkable rate performance(560 C/g at 10A/g),and outstanding cycling stability(89.6%retention after 5000 cycles).Furthermore,hybrid supercapacitors fabricated with NiCo_(2)S_(4)/Co_(3)S_(4)and nitrogen-doped reduced graphene oxide display an outstanding energy density of 40.8 Wh/kg at a power density of 806.3 W/kg,with an excellent capacity retention of 88.3%after 10000 charge-discharge cycles.展开更多
Supramolecular chemistry during the synthesis of carbon-nitrogen-based materials has recently experienced a renaissance in the arena of photocatalysis and electrocatalysis.In this review,we start with the discussion o...Supramolecular chemistry during the synthesis of carbon-nitrogen-based materials has recently experienced a renaissance in the arena of photocatalysis and electrocatalysis.In this review,we start with the discussion of supramolecular assemblies-derived carbon-nitrogen-based materials’regulation from the aspect of morphology,chemical composition,and micro/nanostructural control.Afterwards the recent advances of these materials in energy and environment related applications,including degradation of pollutants,water splitting,oxygen reduction reactions,CO_(2) reduction reactions along with organic synthesis are summarized.The correlations between the structural features and physicochemical properties of the carbonnitrogen-based materials and the specific catalytic activity are discussed in depth.By highlighting the opportunities and challenges of supramolecular assembly strategies,we attempt an outlook on possible future developments for highly efficient carbon-based photo/electrocatalysts.展开更多
基金supported by the Natural Science Foundation of China (22179062,52125202,and U2004209)the Natural Science Foundation of Jiangsu Province (BK20230035)+1 种基金the Fundamental Research Funds for the Central Universities (30922010303)the Intergovernmental Cooperation Projects in the National Key Research and Development Plan of the Ministry of Science and Technology of PRC (2022YFE0196800)
文摘Geometrical configurations play a crucial role in dual-atom catalysts(DACs)for electrocatalytic applications.Significant progress has been made to design DACs electrocatalysts with various geometri-cal configurations,but in-depth understanding the relationship between geometrical configurations and metal-metal interaction mechanisms for designing targeted DACs is still required.In this review,the recent progress in engineering of geometrical configurations of DACs is systematically summarized.Based on the polarity of geometrical configuration,DACs can be classified into two different types that are homonuclear and heteronuclear DACs.Furthermore,with regard to the geometrical configurations of the active sites,homonuclear DACs are identified into adjacent and bridged configurations,and heteronuclear DACs can be classified into adjacent,bridged,and separated configurations.Subsequently,metal-metal interactions in DACs with different geometrical configurations are introduced.Additionally,the applications of DACs in different electrocatalytic reactions are discussed,including the oxygen reduction reaction(ORR),oxygen evolution reaction(OER),hydrogen evolution reaction(HER),and other catalysis.Finally,the future challenges and perspectives for advancements in DACs are high-lighted.This review aims to provide inspiration for the design of highly effcient DACs towards energy relatedapplications.
基金supported by the National Natural Science Foundation of China(52372201,52125202,52202247)the Natural Science Foundation of Jiangsu Province(1192261031693)the Fundamental Research Funds for the Central Universities(30919011110,1191030558)。
文摘The molybdenum carbide(Mo_(2)C)has been regarded as one of the most cost-efficient and stable electrocatalyst for the hydrogen evolution reaction(HER)by the virtue of its Pt-like electronic structures.However,the inherent limitation of high density of empty valence band significantly reduces its catalytic reactivity by reason of strong hydrogen desorption resistance.Herein,we propose a multiscale confinement synthesis method to design the nitrogen-rich Mo_(2)C for modulating the band structure via decomposing the pre-coordination bonded polymer in a pressure-tight tube sealing system.Pre-bonded c/N-Mo in the coordination precursor constructs a micro-confinement space,enabling the homogeneous nitrogenization in-situ happened during the formation of Mo_(2)C.Simultaneously,the evolved gases from the precursor decomposition in tube sealing system establish a macro-confinement environment,preventing the lattice N escape and further endowing a continuous nitridation.Combining the multiscale confinement effects,the nitrogen-rich Mo2C displays as high as 25%N-Mo concentration in carbide lattice,leading to a satisfactory band structure.Accordingly,the constructed nitrogen-rich Mo_(2)C reveals an adorable catalytic activity for HER in both alkaline and acid solution.It is anticipated that the multiscale confinement synthesis strategy presents guideline for the rational design of electrocatalysts and beyond.
基金This work was supported by the National Science Foundation of China(51772152,51702129,51572114,51972150,21908110,and 51902161)Fundamental Research Funds for the Central Universities(30919011269,30919011110,and 1191030558)+3 种基金Y.W.thanks the Key University Science Research Project of Jiangsu province(16KJB430009)Y.Z.thanks for the support from the Postdoctoral Science Foundation(2018M630527)China Scholarship Council(201708320150)J.S.thanks the Natural Science Foundation of Jiangsu Province(BK20190479,1192261031693).
文摘Graphitic carbon nitride(g-C3N4)-based photocatalysts have shown great potential in the splitting of water.However,the intrinsic drawbacks of g-C3N4,such as low surface area,poor diffusion,and charge separation efficiency,remain as the bottleneck to achieve highly efficient hydrogen evolution.Here,a hollow oxygen-incorporated g-C3N4 nanosheet(OCN)with an improved surface area of 148.5 m2 g^−1 is fabricated by the multiple thermal treatments under the N2/O2 atmosphere,wherein the C–O bonds are formed through two ways of physical adsorption and doping.The physical characterization and theoretical calculation indicate that the O-adsorption can promote the generation of defects,leading to the formation of hollow morphology,while the O-doping results in reduced band gap of g-C3N4.The optimized OCN shows an excellent photocatalytic hydrogen evolution activity of 3519.6μmol g^−1 h^−1 for~20 h,which is over four times higher than that of g-C3N4(850.1μmol g^−1 h^−1)and outperforms most of the reported g-C3N4 catalysts.
文摘The photocatalytic activity of carbon nitride(CN)materials is mainly limited to small specific surface areas,limited solar absorption,and low separation and mobility of photoinduced carriers.In this study,we developed a precursor-modified strategy for the synthesis of graphitic CN with highly efficient photocatalytic performance.The precursor dicyandiamide reformed by different acids undergoes a basic structural change and transforms into diverse new precursors.The thin porous amino-rich HNO_(3)-CN(5H-CN)was calcined by dicyandiamidine nitrate,formed by concentrated nitric acid modified dicyandiamide,and presented the best photocatalytic degradation rate of Rh B,more than 34 times that of bulk graphitic CN.Moreover,the photocatalytic hydrogen evolution rate of 5H-CN significantly improved.The TG-DSC-FTIR analyses indicated that the distinguishing thermal polymerization process of 5H-CN led to its thin porous amino-rich structure,and the theoretical calculations revealed that the negative conduction band potential of 5H-CN was attributed to its amino-rich structure.It is anticipated that the thin porous structure and the negative conduction band position of 5H-CN play important roles in the improvement of the photocatalytic performance.This study demonstrates that precursor modification is a promising project to induce a new thermal polycondensation process for the synthesis of CN with enhanced photocatalytic performance.
文摘Seismologists have found that the first arrival frequencies of P waves at different seismic stations have different widths,that is,different periods or frequencies,and they think that this phenomenon can be used to identify whether a Doppler effect is induced by earthquakes.However,the fault rupture process of a real earthquake is so complex that it is difficult to identify a frequency shift similar to the Doppler effect.A method to identify whether a Doppler effect is induced by an earthquake is proposed here.If a seismic station is in the direction of fault rupture propagation,this station could observe a Doppler effect induced by the earthquake.The Doppler effect causes the frequency of the seismic wave to shift from low frequency to high frequency,and the high frequency amplitudes become mutually superimposed.Under the combined influences of the absorption effect,geometric spreading effect and Doppler effect,the high frequency amplitude of the seismic wave will gradually become higher than the low frequency amplitude with increasing epicentral distance.If we find that the high frequency amplitude is higher than the low frequency amplitude with increasing epicentral distance in the direction of fault rupture propagation,then there is a Doppler effect.The fault that generated the Wenchuan earthquake is a reverse fault,and its horizontal rupture propagation velocity was low.To link fault rupture propagation velocity with the Doppler effect and identify the Doppler effect more easily,we decompose three-component records into two directions:the direction of fault rupture propagation and the direction perpendicular to the fault rupture propagation along the fault plane.The initial components of the two directions are processed by wavelet transform.Several seismic stations in the direction of fault rupture propagation of the Wenchuan earthquake were selected,and it was found that with increasing epicentral distance,the high frequency amplitudes of the wavelet spectra become obviously higher than the low frequency amplitudes.It can be concluded that due to the existence of the Doppler effect,high frequency amplitudes can overcome the influences of the absorption and geometric spreading effects on seismic waves in the fault rupture propagation process.
基金supported by the National Natural Science Foundation of China(Nos.22179062,52125202,and U2004209)the Natural Science Foundation of Jiangsu Province(No.BK2023010081)Fundamental Research Funds for the Central Universities(No.30922010303).
文摘Water evaporation-induced electricity generation is a promising technology for renewable energy harvesting.However,the output power of some reported two-dimensional(2D)nanofluidic films is still restricted by the relatively weak water–solid interactions within the tortuous nanochannels.To further enhance the comprehension and utilization of water–solid interactions,it is of utmost importance to conduct an in-depth investigation and propose a regulatory concept encompassing ion transport.Herein,we propose tortuosity regulation of 2D nanofluidic titanium oxide(Ti_(0.87)O_(2))films to optimize the ion transport within the interlayer nanochannel for enhanced efficiency in water evaporation-induced electricity generation for the first time.The significance of tortuosity in ion transport is elucidated by designing three 2D nanofluidic films with different tortuosity.Tortuosity analysis and in situ Raman measurement demonstrate that low tortuosity can facilitate the formation of efficient pathways for hydrated proton transport and promote water–solid interactions.Consequently,devices fabricated with the optimized 2D nanofluidic films exhibited a significantly enhanced output power density of approximately 204.01μW·cm^(−2),far exceeding those prepared by the high-tortuosity 2D nanofluidic films.This work highlights the significance of the construction of low tortuosity channels for 2D nanofluidic films with excellent performance.
基金supported by the National Natural Science Foundation of China (No.52173255)the Opening Project of the Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials (No.JSKC20021)the Collaborative Innovation Center for Advanced Micro/nanomaterials and Equipment (Co-constructed by Jiangsu Province and Ministry of Education)。
文摘Popularization of lithium-sulfur batteries(LSBs) is still hindered by shuttle effect and volume expansion.Herein, a new modularized sulfur storage strategy is proposed to solve above problems and accomplished via employing 100% space utilization host material of cobalt loaded carbon nanoparticles derived from ZIF-67. The modular dispersed storage of sulfur not only greatly increases the proportion of active sulfur,but also inhibits the occurrence of volume expansion. Meanwhile, 100% space utilization host material can greatly improve the conductivity of the cathode, provide a larger electrolyte wetting interface and effectively suppress the shuttle effect. Moreover, loaded cobalt particles have high catalytic activity for electrochemical reaction and can effectively improve the redox kinetics. The cell with new cathode host material carbonized at 650 ℃(ZIF-67(650 ℃)) exhibits superior rate performance and can maintain a high specific capacity of 950 m Ah/g after 100 cycles at 0.2 C, showing a good cycle stability.
基金supported by the National Key R&D Program of China(No.2019YFC1709004).
文摘Previous studies have confirmed that acupuncture for irritable bowel syndrome(IBS)provided an additional benefit over usual care alone.Therefore,we performed a multicenter,randomized,sham-controlled trial to assess the efficacy and safety of acupuncture versus sham acupuncture for refractory IBS in patients in the context of conventional treatments.Patients in the acupuncture and sham acupuncture groups received real or sham acupuncture treatment in 3 sessions per week for a total of 12 sessions.The primary outcome was a change in the IBS–Symptom Severity Scale(IBS-SSS)score from baseline to week 4.A total of 521 participants were screened,and 170 patients(85 patients per group)were enrolled and included in the intention-to-treat analysis.Baseline characteristics were comparable across the two groups.From baseline to 4 weeks,the IBS-SSS total score decreased by 140.0(95%CI:126.0 to 153.9)in the acupuncture group and 64.4(95%CI:50.4 to 78.3)in the sham acupuncture group.The between-group difference was 75.6(95%CI:55.8 to 95.4).Acupuncture efficacy was maintained during the 4-week follow-up period.There were no serious adverse events.In conclusion,acupuncture provided benefits when combined with treatment as usual,providing more options for the treatment of refractory IBS.
基金supported by National Natural Science Foundation of China(Nos.52173255 and 52125202)the Opening Project of the Jiangsu Key Laboratory for Chemistry of Low-Dimensional Materials(No.JSKC20021)PAPD of Jiangsu and the Collaborative Innovation Center for Advanced Micro/nanomaterials and Equipment(Co-constructed by Jiangsu Province and Ministry of Education)。
文摘Nickel cobalt bimetallic heterogeneous sulfides are attractive battery-type materials for electrochemical energy storage.However,the precise synthesis of electrode materials that integrate highly efficient ions/electrons diffusion with abundant charge transfer channels has always been challenging.Herein,an effective and concise controllable hydrothermal approach is reported for tuning the crystalline and integrated structures of MOF-derived bimetallic sulfides to accelerate the charge transfer kinetics,and thus enabling rich Faradaic redox reaction.The as-obtained low-crystalline heterogeneous NiCo_(2)S_(4)/Co_(3)S_(4)nanocages exhibit a high specific capacity(1023 C/g at 1 A/g),remarkable rate performance(560 C/g at 10A/g),and outstanding cycling stability(89.6%retention after 5000 cycles).Furthermore,hybrid supercapacitors fabricated with NiCo_(2)S_(4)/Co_(3)S_(4)and nitrogen-doped reduced graphene oxide display an outstanding energy density of 40.8 Wh/kg at a power density of 806.3 W/kg,with an excellent capacity retention of 88.3%after 10000 charge-discharge cycles.
基金This work was supported by the National Natural Science Foundation of China(52125202,21908110,U2004209)the Natural Science Foundation of Jiangsu Province(BK20190479)the Fundamental Research Funds for the Central Universities(30922010707).
文摘Supramolecular chemistry during the synthesis of carbon-nitrogen-based materials has recently experienced a renaissance in the arena of photocatalysis and electrocatalysis.In this review,we start with the discussion of supramolecular assemblies-derived carbon-nitrogen-based materials’regulation from the aspect of morphology,chemical composition,and micro/nanostructural control.Afterwards the recent advances of these materials in energy and environment related applications,including degradation of pollutants,water splitting,oxygen reduction reactions,CO_(2) reduction reactions along with organic synthesis are summarized.The correlations between the structural features and physicochemical properties of the carbonnitrogen-based materials and the specific catalytic activity are discussed in depth.By highlighting the opportunities and challenges of supramolecular assembly strategies,we attempt an outlook on possible future developments for highly efficient carbon-based photo/electrocatalysts.