Understanding laser induced ultrafast processes with complex three-dimensional(3D)geometries and extreme property evolution offers a unique opportunity to explore novel physical phenomena and to overcome the manufactu...Understanding laser induced ultrafast processes with complex three-dimensional(3D)geometries and extreme property evolution offers a unique opportunity to explore novel physical phenomena and to overcome the manufacturing limitations.Ultrafast imaging offers exceptional spatiotemporal resolution and thus has been considered an effective tool.However,in conventional single-view imaging techniques,3D information is projected on a two-dimensional plane,which leads to significant information loss that is detrimental to understanding the full ultrafast process.Here,we propose a quasi-3D imaging method to describe the ultrafast process and further analyze spatial asymmetries of laser induced plasma.Orthogonally polarized laser pulses are adopted to illuminate reflection-transmission views,and binarization techniques are employed to extract contours,forming the corresponding two-dimensional matrix.By rotating and multiplying the two-dimensional contour matrices obtained from the dual views,a quasi-3D image can be reconstructed.This successfully reveals dual-phase transition mechanisms and elucidates the diffraction phenomena occurring outside the plasma.Furthermore,the quasi-3D image confirms the spatial asymmetries of the picosecond plasma,which is difficult to achieve with two-dimensional images.Our findings demonstrate that quasi-3D imaging not only offers a more comprehensive understanding of plasma dynamics than previous imaging methods,but also has wide potential in revealing various complex ultrafast phenomena in related fields including strong-field physics,fluid dynamics,and cutting-edge manufacturing.展开更多
Femtosecond laser technology has attracted significant attention from the viewpoints of fundamental and application;especially femtosecond laser processing materials present the unique mechanism of laser-material inte...Femtosecond laser technology has attracted significant attention from the viewpoints of fundamental and application;especially femtosecond laser processing materials present the unique mechanism of laser-material interaction.Under the extreme nonequilibrium conditions imposed by femtosecond laser irradiation,many fundamental questions concerning the physical origin of the material removal process remain unanswered.In this review,cutting-edge ultrafast dynamic observation techniques for investigating the fundamental questions,including timeresolved pump-probe shadowgraphy,ultrafast continuous optical imaging,and four-dimensional ultrafast scanning electron microscopy,are comprehensively surveyed.Each technique is described in depth,beginning with its basic principle,followed by a description of its representative applications in laser-material interaction and its strengths and limitations.The consideration of temporal and spatial resolutions and panoramic measurement at different scales are two major challenges.Hence,the prospects for technical advancement in this field are discussed finally.展开更多
The pollution level of diuron in seawater and sediments in the west coastal sea area of Zhoushan Island from 2011 to 2013 was investigated. Results revealed that the concentration of diuron in seawater varies from les...The pollution level of diuron in seawater and sediments in the west coastal sea area of Zhoushan Island from 2011 to 2013 was investigated. Results revealed that the concentration of diuron in seawater varies from less than (3.0 to 52.1) ng·L-1, with an average level of less than 11.1 ng.L-1. The annual average content was less than 7.9 ng.L-1, 13.9 ng.L-1, and 12.3 ng.L-1 in 2011, 2012, and 2013, respectively. The concentrations of diuron in marine sediments also varied from less than (0.3 to 3.9) ng.g-1 (dry weight), with an average concentration of less than 1.13 ng g-1 (dry weight). The annual average concentration was less than 0.851 ng.g-1, 1.328 ng.g-1, and 1.202 ng.g-1 in 2011, 2012, and 2013, respectively. The accumulation of diuron in seawater and sediments may pose a potential risk to the marine ecosystem of the investigated sea area.展开更多
A bicyclic depsipeptide, chromopeptide A(1), was isolated from a deep-sea-derived bacterium Chromobacterium sp. HS-13-94. Its structure was determined by extensive spectroscopic analysis and by comparison with a relat...A bicyclic depsipeptide, chromopeptide A(1), was isolated from a deep-sea-derived bacterium Chromobacterium sp. HS-13-94. Its structure was determined by extensive spectroscopic analysis and by comparison with a related known compound. The absolute configuration of chromopeptide A was established by X-ray diffraction analysis employing graphite monochromated Mo K_α radiation(λ ? 0.71073 ?) with small Flack parameter 0.03. Chromopeptide A suppressed the proliferation of HL-60, K-562, and Ramos cells with average IC_(50) values of 7.7, 7.0, and 16.5 nmol/L, respectively.展开更多
Numerous valuable studies on electron dynamics have focussed on the extraordinary properties of molybdenum disulfide(MoS_(2));however,most of them were confined to the level below the damage threshold.Here the electro...Numerous valuable studies on electron dynamics have focussed on the extraordinary properties of molybdenum disulfide(MoS_(2));however,most of them were confined to the level below the damage threshold.Here the electron dynamics of MoS_(2) under intense ultrafast laser irradiation was investigated by experiments and simulations.Two kinds of ablation mechanisms were revealed,which led to two distinct types of electron dynamics and final ablation morphology.At a higher fluence,the emergence of superheated liquid induced a dramatic change in the transient reflectivity and micro-honeycomb structures.At a lower fluence,the material was just removed by sublimation,and the ablation structure was relatively flat.X-ray photoelectron spectroscopic(XPS)measurements demonstrated that thermal decomposition only occurred at the higher fluence.Furthermore,a theoretical model was developed to deeply reveal the ultrafast dynamics of MoS_(2) ablation.The simulation results were in good agreement with the temporal and spatial reflectivity distribution obtained from the experiment.The electron and lattice temperature evolution was also obtained to prove the ablation mechanism.Our results revealed ultrafast dynamics of MoS_(2) above the damage threshold and are helpful for understanding the interaction mechanism between MoS_(2) and intense ultrafast lasers,as well as for MoS_(2) processing applications.展开更多
Femtosecond laser-induced surface structures upon multiple pulses irradiation are strongly correlated with the pulse number,which in turn signifcantly afects successive laser-material interactions.By recording the dyn...Femtosecond laser-induced surface structures upon multiple pulses irradiation are strongly correlated with the pulse number,which in turn signifcantly afects successive laser-material interactions.By recording the dynamics of femtosecond laser ablation of silicon using time-resolved shadowgraphy,here we present direct visualization of the excitation of air plasma induced by the refected laser during the second pulse irradiation.Te interaction of the air plasma and silicon plasma is found to enhance the shockwave expansion induced by silicon ablation in the longitudinal direction,showing anisotropic expansion dynamics in diferent directions.We further demonstrate the vanishing of air plasma as the pulse number increases because of the generation of a rough surface without light focusing ability.In the scenario,the interaction of air plasma and silicon plasma disappears;the expansion of the silicon plasma and shockwave restores its original characteristic that is dominated by the laser-material coupling.Te results show that the excitation of air plasma and the laser-material coupling involved in laser-induced plasma and shockwave expansion are structure mediated and dependent on the pulse number,which is of fundamental importance for deep insight into the nature of laser-material interactions during multiple pulses ablation.展开更多
The dynamics of plasma and shockwave expansion during two femtosecond laser pulse ablation of fused silica are studied using a time-resolved shadowgraph imaging technique. The experimental results reveal that during t...The dynamics of plasma and shockwave expansion during two femtosecond laser pulse ablation of fused silica are studied using a time-resolved shadowgraph imaging technique. The experimental results reveal that during the second pulse irradiation on the crater induced by the first pulse, the expansion of the plasma and shockwave is enhanced in the longitudinal direction. The plasma model and Fresnel diffraction theory are combined to calculate the laser intensity distribution by considering the change in surface morphology and transient material properties. The theoretical results show that after the free electron density induced by the rising edge of the pulse reaches the critical density, the originally transparent surface is transformed into a transient high-reflectivity surface(metallic state). Thus, the crater with a concave-lens-like morphology can tremendously reflect and refocus the latter part of the laser pulse, leading to a strong laser field with an intensity even higher than the incident intensity. This strong refocused laser pulse results in a stronger laser-induced air breakdown and enhances the subsequent expansion of the plasma and shockwave. In addition, similar shadowgraphs are also recorded in the single-pulse ablation of a concave microlens, providing experimental evidence for the enhancement mechanism.展开更多
Cylindrical shockwaves inside polymethyl methacrylate(PMMA) generated simultaneously with two hemispherical shockwaves induced by a femtosecond Gaussian beam laser were investigated using an ultrafast pump–probe imag...Cylindrical shockwaves inside polymethyl methacrylate(PMMA) generated simultaneously with two hemispherical shockwaves induced by a femtosecond Gaussian beam laser were investigated using an ultrafast pump–probe imaging technique. The evolutions of these three shockwaves with probe delay and incident pulse number have been systematically analyzed. The plasma intensity and filament length in the center of cylindrical shockwave both decayed with pulse number. Moreover, the self-focused filament moved downstream towards the output surface with an increased pulse number. The experimental results and mechanism illustrated that energy deposition was suppressed by a degraded nonlinear effect due to a pre-ablated structure in multi-pulse irradiation.展开更多
Microscale charge and energy transfer is an ultrafast process that can determine the photoelectrochemical performance of devices.However,nonlinear and nonequilibrium properties hinder our understanding of ultrafast pr...Microscale charge and energy transfer is an ultrafast process that can determine the photoelectrochemical performance of devices.However,nonlinear and nonequilibrium properties hinder our understanding of ultrafast processes;thus,the direct imaging strategy has become an effective means to uncover ultrafast charge and energy transfer processes.Due to diffraction limits of optical imaging,the obtained optical image has insufficient spatial resolution.Therefore,electron beam imaging combined with a pulse laser showing high spatial–temporal resolution has become a popular area of research,and numerous breakthroughs have been achieved in recent years.In this review,we cover three typical ultrafast electron beam imaging techniques,namely,time-resolved photoemission electron microscopy,scanning ultrafast electron microscopy,and ultrafast transmission electron microscopy,in addition to the principles and characteristics of these three techniques.Some outstanding results related to photon–electron interactions,charge carrier transport and relaxation,electron–lattice coupling,and lattice oscillation are also reviewed.In summary,ultrafast electron beam imaging with high spatial–temporal resolution and multidimensional imaging abilities can promote the fundamental under-standing of physics,chemistry,and optics,as well as guide the development of advanced semiconductors and electronics.展开更多
文摘Understanding laser induced ultrafast processes with complex three-dimensional(3D)geometries and extreme property evolution offers a unique opportunity to explore novel physical phenomena and to overcome the manufacturing limitations.Ultrafast imaging offers exceptional spatiotemporal resolution and thus has been considered an effective tool.However,in conventional single-view imaging techniques,3D information is projected on a two-dimensional plane,which leads to significant information loss that is detrimental to understanding the full ultrafast process.Here,we propose a quasi-3D imaging method to describe the ultrafast process and further analyze spatial asymmetries of laser induced plasma.Orthogonally polarized laser pulses are adopted to illuminate reflection-transmission views,and binarization techniques are employed to extract contours,forming the corresponding two-dimensional matrix.By rotating and multiplying the two-dimensional contour matrices obtained from the dual views,a quasi-3D image can be reconstructed.This successfully reveals dual-phase transition mechanisms and elucidates the diffraction phenomena occurring outside the plasma.Furthermore,the quasi-3D image confirms the spatial asymmetries of the picosecond plasma,which is difficult to achieve with two-dimensional images.Our findings demonstrate that quasi-3D imaging not only offers a more comprehensive understanding of plasma dynamics than previous imaging methods,but also has wide potential in revealing various complex ultrafast phenomena in related fields including strong-field physics,fluid dynamics,and cutting-edge manufacturing.
基金supported by the National Natural Science Foundation of China under Grant Nos.51975054,61605140 and 11704028the National Key R&D Program of China(2017YFB1104300)。
文摘Femtosecond laser technology has attracted significant attention from the viewpoints of fundamental and application;especially femtosecond laser processing materials present the unique mechanism of laser-material interaction.Under the extreme nonequilibrium conditions imposed by femtosecond laser irradiation,many fundamental questions concerning the physical origin of the material removal process remain unanswered.In this review,cutting-edge ultrafast dynamic observation techniques for investigating the fundamental questions,including timeresolved pump-probe shadowgraphy,ultrafast continuous optical imaging,and four-dimensional ultrafast scanning electron microscopy,are comprehensively surveyed.Each technique is described in depth,beginning with its basic principle,followed by a description of its representative applications in laser-material interaction and its strengths and limitations.The consideration of temporal and spatial resolutions and panoramic measurement at different scales are two major challenges.Hence,the prospects for technical advancement in this field are discussed finally.
文摘The pollution level of diuron in seawater and sediments in the west coastal sea area of Zhoushan Island from 2011 to 2013 was investigated. Results revealed that the concentration of diuron in seawater varies from less than (3.0 to 52.1) ng·L-1, with an average level of less than 11.1 ng.L-1. The annual average content was less than 7.9 ng.L-1, 13.9 ng.L-1, and 12.3 ng.L-1 in 2011, 2012, and 2013, respectively. The concentrations of diuron in marine sediments also varied from less than (0.3 to 3.9) ng.g-1 (dry weight), with an average concentration of less than 1.13 ng g-1 (dry weight). The annual average concentration was less than 0.851 ng.g-1, 1.328 ng.g-1, and 1.202 ng.g-1 in 2011, 2012, and 2013, respectively. The accumulation of diuron in seawater and sediments may pose a potential risk to the marine ecosystem of the investigated sea area.
基金financially supported by the National Marine ‘863’ Project (Nos. 2012AA092105 and 2013AA092902)the National Natural Science Foundation of China (No. 81273430)
文摘A bicyclic depsipeptide, chromopeptide A(1), was isolated from a deep-sea-derived bacterium Chromobacterium sp. HS-13-94. Its structure was determined by extensive spectroscopic analysis and by comparison with a related known compound. The absolute configuration of chromopeptide A was established by X-ray diffraction analysis employing graphite monochromated Mo K_α radiation(λ ? 0.71073 ?) with small Flack parameter 0.03. Chromopeptide A suppressed the proliferation of HL-60, K-562, and Ramos cells with average IC_(50) values of 7.7, 7.0, and 16.5 nmol/L, respectively.
基金supported by the National Natural Science Foundation of China(Grant No.11704028)the National Key R&D Program of China(Grant No.2017YFB1104300).
文摘Numerous valuable studies on electron dynamics have focussed on the extraordinary properties of molybdenum disulfide(MoS_(2));however,most of them were confined to the level below the damage threshold.Here the electron dynamics of MoS_(2) under intense ultrafast laser irradiation was investigated by experiments and simulations.Two kinds of ablation mechanisms were revealed,which led to two distinct types of electron dynamics and final ablation morphology.At a higher fluence,the emergence of superheated liquid induced a dramatic change in the transient reflectivity and micro-honeycomb structures.At a lower fluence,the material was just removed by sublimation,and the ablation structure was relatively flat.X-ray photoelectron spectroscopic(XPS)measurements demonstrated that thermal decomposition only occurred at the higher fluence.Furthermore,a theoretical model was developed to deeply reveal the ultrafast dynamics of MoS_(2) ablation.The simulation results were in good agreement with the temporal and spatial reflectivity distribution obtained from the experiment.The electron and lattice temperature evolution was also obtained to prove the ablation mechanism.Our results revealed ultrafast dynamics of MoS_(2) above the damage threshold and are helpful for understanding the interaction mechanism between MoS_(2) and intense ultrafast lasers,as well as for MoS_(2) processing applications.
基金Tis research was supported by the National Key R&D Program of China(grant no.2017YFB1104300)and the National Natural Science Foundation of China(grant nos.91323301,11704028).
文摘Femtosecond laser-induced surface structures upon multiple pulses irradiation are strongly correlated with the pulse number,which in turn signifcantly afects successive laser-material interactions.By recording the dynamics of femtosecond laser ablation of silicon using time-resolved shadowgraphy,here we present direct visualization of the excitation of air plasma induced by the refected laser during the second pulse irradiation.Te interaction of the air plasma and silicon plasma is found to enhance the shockwave expansion induced by silicon ablation in the longitudinal direction,showing anisotropic expansion dynamics in diferent directions.We further demonstrate the vanishing of air plasma as the pulse number increases because of the generation of a rough surface without light focusing ability.In the scenario,the interaction of air plasma and silicon plasma disappears;the expansion of the silicon plasma and shockwave restores its original characteristic that is dominated by the laser-material coupling.Te results show that the excitation of air plasma and the laser-material coupling involved in laser-induced plasma and shockwave expansion are structure mediated and dependent on the pulse number,which is of fundamental importance for deep insight into the nature of laser-material interactions during multiple pulses ablation.
基金National Natural Science Foundation of China(NSFC)(51605029,91323301)
文摘The dynamics of plasma and shockwave expansion during two femtosecond laser pulse ablation of fused silica are studied using a time-resolved shadowgraph imaging technique. The experimental results reveal that during the second pulse irradiation on the crater induced by the first pulse, the expansion of the plasma and shockwave is enhanced in the longitudinal direction. The plasma model and Fresnel diffraction theory are combined to calculate the laser intensity distribution by considering the change in surface morphology and transient material properties. The theoretical results show that after the free electron density induced by the rising edge of the pulse reaches the critical density, the originally transparent surface is transformed into a transient high-reflectivity surface(metallic state). Thus, the crater with a concave-lens-like morphology can tremendously reflect and refocus the latter part of the laser pulse, leading to a strong laser field with an intensity even higher than the incident intensity. This strong refocused laser pulse results in a stronger laser-induced air breakdown and enhances the subsequent expansion of the plasma and shockwave. In addition, similar shadowgraphs are also recorded in the single-pulse ablation of a concave microlens, providing experimental evidence for the enhancement mechanism.
基金supported by the National Key R&D Program of China(No.2018YFB1107200)the National Natural Science Foundation of China(Nos.51675048 and 11704028)
文摘Cylindrical shockwaves inside polymethyl methacrylate(PMMA) generated simultaneously with two hemispherical shockwaves induced by a femtosecond Gaussian beam laser were investigated using an ultrafast pump–probe imaging technique. The evolutions of these three shockwaves with probe delay and incident pulse number have been systematically analyzed. The plasma intensity and filament length in the center of cylindrical shockwave both decayed with pulse number. Moreover, the self-focused filament moved downstream towards the output surface with an increased pulse number. The experimental results and mechanism illustrated that energy deposition was suppressed by a degraded nonlinear effect due to a pre-ablated structure in multi-pulse irradiation.
文摘Microscale charge and energy transfer is an ultrafast process that can determine the photoelectrochemical performance of devices.However,nonlinear and nonequilibrium properties hinder our understanding of ultrafast processes;thus,the direct imaging strategy has become an effective means to uncover ultrafast charge and energy transfer processes.Due to diffraction limits of optical imaging,the obtained optical image has insufficient spatial resolution.Therefore,electron beam imaging combined with a pulse laser showing high spatial–temporal resolution has become a popular area of research,and numerous breakthroughs have been achieved in recent years.In this review,we cover three typical ultrafast electron beam imaging techniques,namely,time-resolved photoemission electron microscopy,scanning ultrafast electron microscopy,and ultrafast transmission electron microscopy,in addition to the principles and characteristics of these three techniques.Some outstanding results related to photon–electron interactions,charge carrier transport and relaxation,electron–lattice coupling,and lattice oscillation are also reviewed.In summary,ultrafast electron beam imaging with high spatial–temporal resolution and multidimensional imaging abilities can promote the fundamental under-standing of physics,chemistry,and optics,as well as guide the development of advanced semiconductors and electronics.