The purpose of this analysis is to delve into the application of color psychology in the logo design of Korean cosmetic brands,using Etude House as an example for an exhaustive analysis.By examining the history of the...The purpose of this analysis is to delve into the application of color psychology in the logo design of Korean cosmetic brands,using Etude House as an example for an exhaustive analysis.By examining the history of the Etude House brand,the evolution of the logo design,and the changes in color choices,we analyze the traditional concepts of color symbolism in Korean culture and the culture of color in contemporary society in order to reveal the important role of color in cosmetic brand image.Through an in-depth analysis of the use of color in Etude House’s brand identity,we further analyze the impact of color on consumer emotions and purchasing behavior,as well as the potential impact of brand identity changes on market performance.Finally,the conclusions of the analysis summarize the practical application of color psychology in Etude House’s brand logo design,suggest recommendations for other Korean cosmetic brands to draw upon in their logo design,and discuss future directions.展开更多
[Objectives]This study was conducted to investigate the toxicity of heavy metal antimony(Sb) to ramie(Boehmeria nivea(L.) Gaudich.) and the tolerance response in ramie. [Methods] A pot experiment was conducted to stud...[Objectives]This study was conducted to investigate the toxicity of heavy metal antimony(Sb) to ramie(Boehmeria nivea(L.) Gaudich.) and the tolerance response in ramie. [Methods] A pot experiment was conducted to study the effects of Sb stress on root growth and Sb accumulation and transport of the root system of cultivated ramie Zhongzhu No.1, as well as on the physiological characteristics of ramie leaves. [Results] The plant height and root dry weight and volume of Zhongzhu No.1 showed an effect of "promoting at low concentrations and inhibiting at high concentrations" with the increase of Sb concentration, and decreased significantly at the concentration of 4 000 mg/kg, but no obvious toxic growth symptoms were observed. The content of Sb in roots(289.7-508.6 mg/kg) and the root-shoot transfer factor(0.09-0.57) of Zhongzhu No.1 increased with the increase of soil Sb concentration, but the change of Sb bioconcentration factor in roots was opposite, indicating that high concentrations of Sb in soil could promote the absorption of Sb in roots and the transport of Sb to the aboveground part, but the Sb enrichment capacity of roots was relatively reduced with the increase of soil Sb. Sb stress had a certain impact on the physiological characteristics of ramie leaves. With the increase of Sb treatment concentration, MDA, POD and SOD showed a change trend of "first increasing and then decreasing", while CAT gradually increased, indicating that Sb stress caused changes in the physiological characteristics of ramie leaves, thereby affecting plant growth and development. [Conclusions] This study provides a theoretical basis for ecological restoration of ramie in mining areas.展开更多
Using a convective scale WRF-GSI system and a reflectivity observation operator based on the double-moment microphysics(Thompson)scheme,simulated radar reflectivity data are produced and then directly assimilated with E...Using a convective scale WRF-GSI system and a reflectivity observation operator based on the double-moment microphysics(Thompson)scheme,simulated radar reflectivity data are produced and then directly assimilated with EnKF through Observing System Simulation Experi-ments(OSSEs)for the case of typhoon In-Fa(2021).We examined the ability of the EnKF to simultaneously estimate state variables and conducted sensitivity tests to evaluate the impact of updating different state variables.The results show that updating a full set of analysis variables can help obtain highly precise initialfields in the model and improve typhoon forecast skills.Excluding the horizontal wind update will affect the adjustment of the temperaturefield and the sea level pressurefield during the cyclic assimilation process.Updating the variables directly related to the reflectivity operator alone could adjust hydrometers well,but the positive impact arising from the assimilation quickly vanishes during the forecast.In addition,this study also includes a quantitative RMSE analysis for each variable during the assimilation cycle and compares the effect of each schemes on different variables.展开更多
This study explores the effect of the initial axisymmetric wind structure and moisture on the predictability of the peak intensity of Typhoon Lekima(2019)through a 20-member ensemble forecast using the WRF model.The e...This study explores the effect of the initial axisymmetric wind structure and moisture on the predictability of the peak intensity of Typhoon Lekima(2019)through a 20-member ensemble forecast using the WRF model.The ensemble members are separated into Strong and Weak groups according to the maximum 10-m wind speed at 48 h.In our study of Lekima(2019),the initial intensity defined by maximum 10-m wind speed is not a good predictor of the intensity forecast.The peak intensity uncertainty is sensitive to the initial primary circulation outside the radius of maximum wind(RMW)and the initial secondary circulation.With greater absolute angular momentum(AAM)beyond the RMW directly related to stronger primary circulation,and stronger radial inflow,Strong group is found to have larger AAM import in lowlevel,helping to spin up the TC.Initial moisture in innercore is also critical to the intensity predictability through the development of inner-core convection.The aggregation and merger of convection,leading to the TC intensification,is influenced by both radial advection and gradient of system-scale vortex vorticity.Three sensitivity experiments are conducted to study the effect of model uncertainty in terms of model horizontal grid resolution on intensity forecast.The horizontal grid resolution greatly impacts the predictability of Lekima’s intensity,and the finer resolution is helpful to simulate the intensification and capture the observed peak value.展开更多
The initial condition accuracy is a major concern for tropical cyclone(TC)numerical forecast.The ensemble-based data assimilation techniques have shown great promise to initialize TC forecast.In addition to initial co...The initial condition accuracy is a major concern for tropical cyclone(TC)numerical forecast.The ensemble-based data assimilation techniques have shown great promise to initialize TC forecast.In addition to initial condition uncertainty,representing model errors(e.g.physics deficiencies)is another important issue in an ensemble forecasting system.To improve TC prediction from both deterministic and probabilistic standpoints,a Typhoon Ensemble Data Assimilation and Prediction System(TEDAPS)using an ensemble-based data assimilation scheme and a multi-physics approach based on Weather Research and Forecasting(WRF)model,has been developed in Shanghai Typhoon Institute and running realtime since 2015.Performance of TED APS in the prediction of track,intensity and associated disaster has been evaluated for the Western North Pacific TCs in the years of 2015-2018,and compared against the NCEP GEFS.TED APS produces markedly better intensity forecast by effectively reducing the weak biases and therefore the degree of underdispersion compared to GEFS.The errors of TED APS track forecasts are comparative with(slightly worse than)those of GEFS at longer(shorter)forecast leads.TEDAPS ensemble-mean exhibits advantage over deterministic forecast in track forecasts at long lead times,whereas this superiority is limited to typhoon or weaker TCs in intensity forecasts due to systematical underestimation.Four case-studies for three landfalling cyclones and one recurving cyclone demonstrate the capacities of TEDAPS in predicting some challenging TCs,as well as in capturing the forecast uncertainty and the potential threat from TC-associated hazards.展开更多
文摘The purpose of this analysis is to delve into the application of color psychology in the logo design of Korean cosmetic brands,using Etude House as an example for an exhaustive analysis.By examining the history of the Etude House brand,the evolution of the logo design,and the changes in color choices,we analyze the traditional concepts of color symbolism in Korean culture and the culture of color in contemporary society in order to reveal the important role of color in cosmetic brand image.Through an in-depth analysis of the use of color in Etude House’s brand identity,we further analyze the impact of color on consumer emotions and purchasing behavior,as well as the potential impact of brand identity changes on market performance.Finally,the conclusions of the analysis summarize the practical application of color psychology in Etude House’s brand logo design,suggest recommendations for other Korean cosmetic brands to draw upon in their logo design,and discuss future directions.
基金Supported by Hunan Provincial Postgraduate Education Innovation Project and Professional Ability Improvement Project (CX20211220)Scientific Research Project of Hunan Provincial Department of Education (20A278)+1 种基金Undergraduate Innovation and Entrepreneurship Training Program of Hunan Province (XJT[2021]197,No. 3705)School-level Postgraduate Innovation Experiment Project (24520012)。
文摘[Objectives]This study was conducted to investigate the toxicity of heavy metal antimony(Sb) to ramie(Boehmeria nivea(L.) Gaudich.) and the tolerance response in ramie. [Methods] A pot experiment was conducted to study the effects of Sb stress on root growth and Sb accumulation and transport of the root system of cultivated ramie Zhongzhu No.1, as well as on the physiological characteristics of ramie leaves. [Results] The plant height and root dry weight and volume of Zhongzhu No.1 showed an effect of "promoting at low concentrations and inhibiting at high concentrations" with the increase of Sb concentration, and decreased significantly at the concentration of 4 000 mg/kg, but no obvious toxic growth symptoms were observed. The content of Sb in roots(289.7-508.6 mg/kg) and the root-shoot transfer factor(0.09-0.57) of Zhongzhu No.1 increased with the increase of soil Sb concentration, but the change of Sb bioconcentration factor in roots was opposite, indicating that high concentrations of Sb in soil could promote the absorption of Sb in roots and the transport of Sb to the aboveground part, but the Sb enrichment capacity of roots was relatively reduced with the increase of soil Sb. Sb stress had a certain impact on the physiological characteristics of ramie leaves. With the increase of Sb treatment concentration, MDA, POD and SOD showed a change trend of "first increasing and then decreasing", while CAT gradually increased, indicating that Sb stress caused changes in the physiological characteristics of ramie leaves, thereby affecting plant growth and development. [Conclusions] This study provides a theoretical basis for ecological restoration of ramie in mining areas.
基金the Program of Shanghai Academic/Technology Research Leader (21XD1404500)the National Key R&D Program of China (2018YFC1506404)the National Key R&D Program of China (2022YFC3080500).
文摘Using a convective scale WRF-GSI system and a reflectivity observation operator based on the double-moment microphysics(Thompson)scheme,simulated radar reflectivity data are produced and then directly assimilated with EnKF through Observing System Simulation Experi-ments(OSSEs)for the case of typhoon In-Fa(2021).We examined the ability of the EnKF to simultaneously estimate state variables and conducted sensitivity tests to evaluate the impact of updating different state variables.The results show that updating a full set of analysis variables can help obtain highly precise initialfields in the model and improve typhoon forecast skills.Excluding the horizontal wind update will affect the adjustment of the temperaturefield and the sea level pressurefield during the cyclic assimilation process.Updating the variables directly related to the reflectivity operator alone could adjust hydrometers well,but the positive impact arising from the assimilation quickly vanishes during the forecast.In addition,this study also includes a quantitative RMSE analysis for each variable during the assimilation cycle and compares the effect of each schemes on different variables.
基金supported by National Key R&D Program of China(No.2018YFC1506404)National Natural Science Foundation of China(Grant No.41575107)+3 种基金in part by Shanghai Sailing Program(No.19YF1458700)the Research Program from Science and Technology Committee of Shanghai(No.19dz1200101)Science and Technology Project of Shanghai Meteorological Service(No.QM202006)Typhoon Scientific and Technological Innovation Group of Shanghai Meteorological Service.
文摘This study explores the effect of the initial axisymmetric wind structure and moisture on the predictability of the peak intensity of Typhoon Lekima(2019)through a 20-member ensemble forecast using the WRF model.The ensemble members are separated into Strong and Weak groups according to the maximum 10-m wind speed at 48 h.In our study of Lekima(2019),the initial intensity defined by maximum 10-m wind speed is not a good predictor of the intensity forecast.The peak intensity uncertainty is sensitive to the initial primary circulation outside the radius of maximum wind(RMW)and the initial secondary circulation.With greater absolute angular momentum(AAM)beyond the RMW directly related to stronger primary circulation,and stronger radial inflow,Strong group is found to have larger AAM import in lowlevel,helping to spin up the TC.Initial moisture in innercore is also critical to the intensity predictability through the development of inner-core convection.The aggregation and merger of convection,leading to the TC intensification,is influenced by both radial advection and gradient of system-scale vortex vorticity.Three sensitivity experiments are conducted to study the effect of model uncertainty in terms of model horizontal grid resolution on intensity forecast.The horizontal grid resolution greatly impacts the predictability of Lekima’s intensity,and the finer resolution is helpful to simulate the intensification and capture the observed peak value.
基金The authors would like to thank Dr.Lina Bai in STI for providing the best-track data.This research was primarily supported by National Key R&D Program of China(Grant No.2018YFC1506404)the National Basic Research Program of China(Grant No.2015CB452806)+4 种基金National Natural Science Foundation of China(Grant No.41575107)in part by Shanghai Sailing Program(Grant No.19YF1458700)Scientific Research Program of Shanghai Science&Technology Commission(Grant No.19dz1200101)National Programme on Global Change and Air-Sea Interaction(Grant No.GASI-IPOVAI-04)Shanghai Typhoon Innovation Team grants to Shanghai Typhoon Institute.
文摘The initial condition accuracy is a major concern for tropical cyclone(TC)numerical forecast.The ensemble-based data assimilation techniques have shown great promise to initialize TC forecast.In addition to initial condition uncertainty,representing model errors(e.g.physics deficiencies)is another important issue in an ensemble forecasting system.To improve TC prediction from both deterministic and probabilistic standpoints,a Typhoon Ensemble Data Assimilation and Prediction System(TEDAPS)using an ensemble-based data assimilation scheme and a multi-physics approach based on Weather Research and Forecasting(WRF)model,has been developed in Shanghai Typhoon Institute and running realtime since 2015.Performance of TED APS in the prediction of track,intensity and associated disaster has been evaluated for the Western North Pacific TCs in the years of 2015-2018,and compared against the NCEP GEFS.TED APS produces markedly better intensity forecast by effectively reducing the weak biases and therefore the degree of underdispersion compared to GEFS.The errors of TED APS track forecasts are comparative with(slightly worse than)those of GEFS at longer(shorter)forecast leads.TEDAPS ensemble-mean exhibits advantage over deterministic forecast in track forecasts at long lead times,whereas this superiority is limited to typhoon or weaker TCs in intensity forecasts due to systematical underestimation.Four case-studies for three landfalling cyclones and one recurving cyclone demonstrate the capacities of TEDAPS in predicting some challenging TCs,as well as in capturing the forecast uncertainty and the potential threat from TC-associated hazards.