The integrity of retinal ganglion cells is tightly associated with diabetic macular degeneration that leads to damage and death of retinal ganglion cells,affecting vision.The major clinical treatments for diabetic mac...The integrity of retinal ganglion cells is tightly associated with diabetic macular degeneration that leads to damage and death of retinal ganglion cells,affecting vision.The major clinical treatments for diabetic macular edema are anti-vascular endothelial growth factor drugs and laser photocoagulation.However,although the macular thickness can be normalized with each of these two therapies used alone,the vision does not improve in many patients.This might result from the incomplete recovery of retinal ganglion cell injury.Therefore,a prospective,non-randomized,controlled clinical trial was designed to investigate the effect of anti-vascular endothelial growth factor drugs combined with laser photocoagulation on the integrity of retinal ganglion cells in patients with diabetic macular edema and its relationship with vision recovery.In this trial,150 patients with diabetic macular edema will be equally divided into three groups according to therapeutic methods,followed by treatment with anti-vascular endothelial growth factor drugs,laser photocoagulation therapy,and their combination.All patients will be followed up for 12 months.The primary outcome measure is retinal ganglion cell-inner plexiform layer thickness at 12 months after treatment.The secondary outcome measures include retinal ganglion cell-inner plexiform layer thickness before and 1,3,6,and 9 months after treatment,retinal nerve fiber layer thickness,best-corrected visual acuity,macular area thickness,and choroidal thickness before and 1,3,6,9,and 12 months after treatment.Safety measure is the incidence of adverse events at 1,3,6,9,and 12 months after treatment.The study protocol hopes to validate the better efficacy and safety of the combined treatment in patients with diabetic macula compared with the other two monotherapies alone during the 12-month follow-up period.The trial is designed to focus on clarifying the time-effect relationship between imaging measures related to the integrity of retinal ganglion cells and best-corrected visual acuity.The trial protocol was approved by the Medical Ethics Committee of the Affiliated Hospital of Beihua University with approval No.(2023)(26)on April 25,2023,and was registered with the Chinese Clinical Trial Registry(registration number:ChiCTR2300072478,June 14,2023,protocol version:2.0).展开更多
With the expansion and implementation of rural revitalization strategies,there is a constant need for new energy sources for the construction of new townships.Consequently,integrated energy systems with the interconne...With the expansion and implementation of rural revitalization strategies,there is a constant need for new energy sources for the construction of new townships.Consequently,integrated energy systems with the interconnection and interaction of multiple energy sources are developing rapidly.Biomass energy,a renewable green energy source with low pollution and wide distribution,has significant application potential in integrated energy systems.Considering the application of biomass energy in townships,this study established an integrated biomass energy system and proposed a model to optimize its operation.Lowest economic cost and highest clean energy utilization rate were considered as the objective functions.In addition,a plan was suggested to adjust the heat-electricity ratio based on the characteristics of the combined heat and power of the biomass.Finally,a simulation analysis conducted for a town in China was discussed,demonstrating that the construction of a township integrated-energy system and the use of biomass can significantly reduce operating costs and improve the energy utilization rate.Moreover,by adjusting the heat-electricity ratio,the economic cost was further reduced by 6.70%,whereas the clean energy utilization rate was increased by 5.14%.展开更多
Global Cancer Statistics 2022 reported the prevalence and high mortality rate of lung cancer.Notably,non-small cell lung cancer(NSCLC)accounts for the majority of the histologic types1.Precision therapy for lung cance...Global Cancer Statistics 2022 reported the prevalence and high mortality rate of lung cancer.Notably,non-small cell lung cancer(NSCLC)accounts for the majority of the histologic types1.Precision therapy for lung cancer has progressed rapidly and immune checkpoint inhibitors(ICIs)have become a leading research topic.Indeed,ICI therapy has been shown to improve the prognosis of lung cancer patients.展开更多
BACKGROUND:Emergency patients with sepsis or septic shock are at high risk of death.Despite increasing attention to microhemodynamics,the clinical use of advanced microcirculatory assessment is limited due to its shor...BACKGROUND:Emergency patients with sepsis or septic shock are at high risk of death.Despite increasing attention to microhemodynamics,the clinical use of advanced microcirculatory assessment is limited due to its shortcomings.Since blood gas analysis is a widely used technique reflecting global oxygen supply and consumption,it may serve as a surrogate for microcirculation monitoring in septic treatment.METHODS:We performed a search using PubMed,Web of Science,and Google scholar.The studies and reviews that were most relevant to septic microcirculatory dysfunctions and blood gas parameters were identified and included.RESULTS:Based on the pathophysiology of oxygen metabolism,the included articles provided a general overview of employing blood gas analysis and its derived set of indicators for microhemodynamic monitoring in septic care.Notwithstanding flaws,several parameters are linked to changes in the microcirculation.A comprehensive interpretation of blood gas parameters can be used in order to achieve hemodynamic optimization in septic patients.CONCLUSION:Blood gas analysis in combination with clinical performance is a reliable alternative for microcirculatory assessments.A deep understanding of oxygen metabolism in septic settings may help emergency physicians to better use blood gas analysis in the evaluation and treatment of sepsis and septic shock.展开更多
Fibroblast activation protein(Fap)is a serine protease that degrades denatured type I collagen,α2-antiplasmin and FGF21.Fap is highly expressed in bone marrow stromal cells and functions as an osteogenic suppressor a...Fibroblast activation protein(Fap)is a serine protease that degrades denatured type I collagen,α2-antiplasmin and FGF21.Fap is highly expressed in bone marrow stromal cells and functions as an osteogenic suppressor and can be inhibited by the bone growth factor Osteolectin(Oln).Fap is also expressed in synovial fibroblasts and positively correlated with the severity of rheumatoid arthritis(RA).However,whether Fap plays a critical role in osteoarthritis(OA)remains poorly understood.Here,we found that Fap is significantly elevated in osteoarthritic synovium,while the genetic deletion or pharmacological inhibition of Fap significantly ameliorated posttraumatic OA in mice.Mechanistically,we found that Fap degrades denatured type II collagen(Col II)and Mmp13-cleaved native Col II.Intra-articular injection of r Fap significantly accelerated Col II degradation and OA progression.In contrast,Oln is expressed in the superficial layer of articular cartilage and is significantly downregulated in OA.Genetic deletion of Oln significantly exacerbated OA progression,which was partially rescued by Fap deletion or inhibition.Intra-articular injection of r Oln significantly ameliorated OA progression.Taken together,these findings identify Fap as a critical pathogenic factor in OA that could be targeted by both synthetic and endogenous inhibitors to ameliorate articular cartilage degradation.展开更多
Efficient and stable oxygen evolution electrocatalysts are indispensable for industrial applications of water splitting and hydrogen production.Herein,a simple and practical method was applied to fabricate(Mo,Fe)P2O7@...Efficient and stable oxygen evolution electrocatalysts are indispensable for industrial applications of water splitting and hydrogen production.Herein,a simple and practical method was applied to fabricate(Mo,Fe)P2O7@NF electrocatalyst by directly growing Mo/Fe bimetallic pyrophosphate derived from Prussian blue analogues on three-dimensional porous current collector.In alkaline media,the developed material possesses good hydrophilic features and exhibits best-in-class oxygen evolution reaction(OER)performances.Surprisingly,the(Mo,Fe)P_(2)O_(7)@NF only requires overpotentials of 250 and 290 mV to deliver 100 and 600 mA cm^(-2)in 1 mol L^(-1)KOH,respectively.Furthermore,the(Mo,Fe)P_(2)O_(7)@NF shows outstanding performances in alkaline salty water and 1 mol L^(-1)high purity KOH.A worthwhile pathway is provided to combine bimetallic pyrophosphate with commercial Ni foam to form robust electrocatalysts for stable electrocatalytic OER,which has a positive impact on both hydrogen energy application and environmental restoration.展开更多
Abutment pressure distribution is different when a longwall panel is passing through the abandoned gate roads in a damaged coal seam. According to the geological condition of panel E13103 in Cuijiazhai Coal Mine in Ch...Abutment pressure distribution is different when a longwall panel is passing through the abandoned gate roads in a damaged coal seam. According to the geological condition of panel E13103 in Cuijiazhai Coal Mine in China, theoretical analysis and finite element numerical simulation were used to determine the front pressure distribution characteristics when the longwall face is 70, 50, 30, 20, 10, and 5 m from the abandoned roadways. The research results show that the influence range of abutment pressure is 40 to 45 m outby the face, and the peak value of front abutment pressure is related to the distance between the face and abandoned roadways. When the distance between the longwall face and abandoned roadways is reduced from 50 to 10 m, the front abutment pressure peak value kept increasing. When the distance is 10 m, it has reached the maximum. The peak value is located in 5 to 6 m outby the faceline. When the distance between the longwall face and abandoned roadways is reduced from 10 to 5 m, the front abutment pressure sharply decreases, the intact coal yields and is even in plastic state. The peak value transfers to the other side of the abandoned roadways. The research results provide a theoretical basis for determining the advance support distance of two roadways in the panel and the reinforcement for face stability when the longwall face is passing through the abandoned roadways.展开更多
With the establishment of the carbon-peak target by 2030,the direction of carbon emission reduction in China’s energy system has been further clarified.As the industry with the largest proportion of carbon emissions ...With the establishment of the carbon-peak target by 2030,the direction of carbon emission reduction in China’s energy system has been further clarified.As the industry with the largest proportion of carbon emissions in China,the lowcarbon transformation of the electric power industry is critical to realize the carbon-peak target.Current research mostly focuses on technical analysis or system cost accounting of the carbon-peak realization path at the national level.There is a lack of targeted research on regional power systems with complex inter-regional power flow exchange and limited energy resource development.Simultaneously,the calculation of the system cost lacks the perspective of the life cycle and ignores the inertia of the stock and change inertia of incremental disturbance.From the perspective of the life cycle,this study proposes a calculation model of power supply cost for regional power systems according to the carbon-peak target,analyzes the realization path of the carbon target from an economic perspective,and provides references for the path selection and policy formulation of system transformation.展开更多
One of the important indicators of shale gas reservoir excavation is capacity evaluation,which directly affects whether large-scale shale gas reservoirs can be excavated.Capacity evaluation is the basis of system anal...One of the important indicators of shale gas reservoir excavation is capacity evaluation,which directly affects whether large-scale shale gas reservoirs can be excavated.Capacity evaluation is the basis of system analysis and dynamic prediction.Therefore,it is particularly important to conduct capacity evaluation studies on shale gas horizontal wells.In order to accurately evaluate the horizontal well productivity of shale gas staged fracturing,this paper uses a new method to evaluate the productivity of Fuling shale gas.The new method is aimed at the dynamic difference of horizontal wells and effectively analyzes the massive data,which are factors affecting the productivity of shale gas horizontal wells.According to the pressure system,production dynamic characteristics,well trajectory position,fracturing transformation mode and penetration depth,32 wells were divided into four types.Then,based on the classification,the principal component analysis methods can be used to evaluate the horizontal well productivity of shale gas.The new method of capacity evaluation has improved the accuracy by 10.25%compared with the traditional method,which provides a theoretical basis for guiding the efficient development of the horizontal wells of Fuling shale gas.展开更多
With the rapid development of mobile devices and deep learning,mobile smart applications using deep learning technology have sprung up.It satisfies multiple needs of users,network operators and service providers,and r...With the rapid development of mobile devices and deep learning,mobile smart applications using deep learning technology have sprung up.It satisfies multiple needs of users,network operators and service providers,and rapidly becomes a main research focus.In recent years,deep learning has achieved tremendous success in image processing,natural language processing,language analysis and other research fields.Despite the task performance has been greatly improved,the resources required to run these models have increased significantly.This poses a major challenge for deploying such applications on resource-restricted mobile devices.Mobile intelligence needs faster mobile processors,more storage space,smaller but more accurate models,and even the assistance of other network nodes.To help the readers establish a global concept of the entire research direction concisely,we classify the latest works in this field into two categories,which are local optimization on mobile devices and distributed optimization based on the computational position of machine learning tasks.We also list a few typical scenarios to make readers realize the importance and indispensability of mobile deep learning applications.Finally,we conjecture what the future may hold for deploying deep learning applications on mobile devices research,which may help to stimulate new ideas.展开更多
This study considers P.O42.5 cement from different sources and evaluates the related surplus coefficient(defined as the proportionality factor linking the measured compressive strength value of the cement after 28 day...This study considers P.O42.5 cement from different sources and evaluates the related surplus coefficient(defined as the proportionality factor linking the measured compressive strength value of the cement after 28 days to the“standard”value of cement strength).The needed tests have been conducted using a mixer,a pressure testing machine,a flexural testing machine,a vibrating table a ramming rod,a feeder and a metal ruler.The average value of the measured cement strength surplus coefficient of cement produced by five distinct cement manufacturers has been found to be 1.16.These results can be used as the basis to reduce the production cost and improve the performance of commercial concrete.展开更多
Background Patients with C0VID-19 are at high risk of developing mental health problems;however,the prevalence and management of mental disorders and how psychiatrists coordinate the treatment are unclear.Aims We aime...Background Patients with C0VID-19 are at high risk of developing mental health problems;however,the prevalence and management of mental disorders and how psychiatrists coordinate the treatment are unclear.Aims We aimed to investigate the mental health problems of patients infected with C0VID-19 and to identify the role of psychiatrists in the clinical treatment team during the pandemic.We also share the experience of psychiatric consultations of patients with COVID-19 in Shanghai,China.Methods We analysed data from the psychiatric medical records of 329 patients with COVID-19 in the Shanghai Public Health Clinical Center from 20 January to 8 March 2020.We collected information including sociodemographic characteristics,whether patients received psychiatric consultation,mental health symptoms,psychiatric diagnoses,psychiatric treatments and severity level of COVID-19.Results Psychiatric consultations were received by 84(25.5%)patients with COVID-19.The most common symptoms of mental health problems were sleep disorders(75%),anxiety(58.3%)and depressive symptoms(11.9%).The psychiatric consultation rate was highest in critically ill patients(69.2%),with affective symptoms or disturbed behaviour as their main mental health problems.Psychiatric diagnoses for patients who received consultation included acute stress reaction(39.3%),sleep disorders(33.3%),anxiety(15.5%),depression(7.1%)and delirium(4.8%).In terms of psychiatric treatments,86.9%of patients who received psychiatric consultation were treated with psychotropic medications,including non-benzodiazepine sedative-hypnotic agents(54.8%),antidepressants(26.2%),benzodiazepines(22.6%)and antipsychotics(10.7%).Among the 76 patients who were discharged from the hospital,79%had recovered from mental health problems and were not prescribed any psychotropic medications.The symptoms of the remaining 21%of patients had improved and they were prescribed medications to continue the treatment.Conclusions This is the first study to report psychiatric consultations for patients with COVID-19.Our study indicated that a considerable proportion of patients with COVID-19,especially critically ill cases,experienced mental health problems.Given the remarkable effect of psychiatric treatments,we recommend that psychiatrists be timely and actively involved in the treatment of COVID-19.展开更多
The Hongseong area of the Hongseong-Imjingang Belt in the central-western Korean Peninsula forms part of a subduction-collision system that is correlated with the Qinling-Dabie-Sulu Belt in China. Several serpentinize...The Hongseong area of the Hongseong-Imjingang Belt in the central-western Korean Peninsula forms part of a subduction-collision system that is correlated with the Qinling-Dabie-Sulu Belt in China. Several serpentinized ultramafic bodies carrying blocks of metamorphosed mafic rocks occur in this area. Here we investigate zircon grains in serpentinites from Bibong(BB) and Wonnojeon(WNJ), and high-pressure(HP) mafic granulite from Baekdong(BD) localities based on U-Pb, REE and Lu-Hf analyses. The zircons from BD HP mafic granulite show distinct age peaks at 838 Ma, 617 Ma and 410 Ma, with minor peaks at1867 Ma, 1326 Ma and 167 Ma. The Neoproterozoic age peaks in these rocks as well as in the serpentinites suggest subduction-related melt-fluid interaction in the mantle wedge at this time. The older zircon grains ranging in age from the Early to Middle Paleoproterozoic might represent detrital grains from the basement rocks transferred to the wedge mantle through sediment subduction. The BD HP mafic granulite shows a Middle Paleozoic age peak(Devonian; 410 Ma). The 242-245 Ma age peaks in the compiled age data of zircon grains serpentinites from BB and WNJ correspond to a major Triassic event that further added melts and fluids into the ancient mantle wedge to crystallize new zircons. In the chondrite normalized rare earth element diagram, the magmatic zircon grains from the studied rocks show LREE depletion and HREE enrichment with sharply negative Eu and Pr anomalies and positive Ce and Sm anomalies. The REE patterns of hydrothermal zircons show LREE enrichment, and relatively flat patterns with negative Eu anomaly. Zircon Hf signature from the WNJ serpentinite show negative εHf(t)(-18.5 and-23.5) values indicating an enriched mantle source with TDM in the range of 1614 Ma and1862 Ma. Zircons from the BD HP mafic granulite also show slightly negative εHf(t)(average-4.3) and TDM in the range of 1365-1935 Ma. Our study provides evidence for multiple zircon growth in an evolving mantle wedge that witnessed melt and fluid interaction during different orogenic cycles.展开更多
This article is a summary of the research progress of the maternal-fetal interface immune microenvironment regulated by traditional Chinese medicine in the treatment of recurrent spontaneous abortion.The imbalance of ...This article is a summary of the research progress of the maternal-fetal interface immune microenvironment regulated by traditional Chinese medicine in the treatment of recurrent spontaneous abortion.The imbalance of the immune microenvironment at the maternal-fetal interface is closely related to the occurrence of recurrent spontaneous abortion.Traditional Chinese medicine can maintain the homeostasis of the immune microenvironment at the maternal-fetal interface by regulating the function of immune cells and the expression of related cytokines.展开更多
In this paper,an image processing method for improving the quality of optical coherence tomography(OCT)images is proposed.Wavelet denoising based on context modeling and contrast enhancement by means of the contrast m...In this paper,an image processing method for improving the quality of optical coherence tomography(OCT)images is proposed.Wavelet denoising based on context modeling and contrast enhancement by means of the contrast measure in the wavelet domain is carried out on the OCT images in succession.Three parameters are selected to assess the effectiveness of the method.It is shown from the results that the proposed method can not only enhance the contrast of images,but also improve signal-to-noise ratio.Compared with two other typical algorithms,it has the best visual effect.展开更多
As one of the most important economic crops for both staple food and fruit widely cultivated in the tropics and subtropics,banana(Musa spp.)is susceptible to a plethora of abiotic and biotic stresses.Breeding cultivar...As one of the most important economic crops for both staple food and fruit widely cultivated in the tropics and subtropics,banana(Musa spp.)is susceptible to a plethora of abiotic and biotic stresses.Breeding cultivars resistant to abiotic and biotic stressors without adverse effects on yield and fruit quality are the objectives of banana improvement programs.However,conventional breeding approaches are time-consuming and severely hampered by inherent banana problems(polyploidy and sterility).Therefore,genetic transformation is becoming increasingly popular and can provide rapid solutions.Numerous efforts have been made to develop superior banana cultivars with better resistance to abiotic and biotic stresses and optimum yields using genetic modification strategies.Somatic embryogenesis(SE)through embryogenic cell suspension(ECS)cultures is an ideal recipient system for genetic transformation in banana.The purpose of this paper is to review the current status of banana somatic embryo research,clarify the process of banana somatic embryo induction and culture,and summarize the main influencing factors in the process of somatic embryogenesis.At the same time,their applications in breeding technologies such as cryopreservation,protoplast culture,genetic transformation and gene editing were also summarized,in order to provide reference for the research and practical application of banana somatic embryogenesis in the future.展开更多
基金supported by Science and Technology Research Project of Jilin Provincial Department of Education,No.JJKH20220072KJ(to XL)Science and Technology Development Program of Jilin Province,No.20200201495JC(to YL)。
文摘The integrity of retinal ganglion cells is tightly associated with diabetic macular degeneration that leads to damage and death of retinal ganglion cells,affecting vision.The major clinical treatments for diabetic macular edema are anti-vascular endothelial growth factor drugs and laser photocoagulation.However,although the macular thickness can be normalized with each of these two therapies used alone,the vision does not improve in many patients.This might result from the incomplete recovery of retinal ganglion cell injury.Therefore,a prospective,non-randomized,controlled clinical trial was designed to investigate the effect of anti-vascular endothelial growth factor drugs combined with laser photocoagulation on the integrity of retinal ganglion cells in patients with diabetic macular edema and its relationship with vision recovery.In this trial,150 patients with diabetic macular edema will be equally divided into three groups according to therapeutic methods,followed by treatment with anti-vascular endothelial growth factor drugs,laser photocoagulation therapy,and their combination.All patients will be followed up for 12 months.The primary outcome measure is retinal ganglion cell-inner plexiform layer thickness at 12 months after treatment.The secondary outcome measures include retinal ganglion cell-inner plexiform layer thickness before and 1,3,6,and 9 months after treatment,retinal nerve fiber layer thickness,best-corrected visual acuity,macular area thickness,and choroidal thickness before and 1,3,6,9,and 12 months after treatment.Safety measure is the incidence of adverse events at 1,3,6,9,and 12 months after treatment.The study protocol hopes to validate the better efficacy and safety of the combined treatment in patients with diabetic macula compared with the other two monotherapies alone during the 12-month follow-up period.The trial is designed to focus on clarifying the time-effect relationship between imaging measures related to the integrity of retinal ganglion cells and best-corrected visual acuity.The trial protocol was approved by the Medical Ethics Committee of the Affiliated Hospital of Beihua University with approval No.(2023)(26)on April 25,2023,and was registered with the Chinese Clinical Trial Registry(registration number:ChiCTR2300072478,June 14,2023,protocol version:2.0).
基金supported by the National Natural Science Foundation of China(U2066211)。
文摘With the expansion and implementation of rural revitalization strategies,there is a constant need for new energy sources for the construction of new townships.Consequently,integrated energy systems with the interconnection and interaction of multiple energy sources are developing rapidly.Biomass energy,a renewable green energy source with low pollution and wide distribution,has significant application potential in integrated energy systems.Considering the application of biomass energy in townships,this study established an integrated biomass energy system and proposed a model to optimize its operation.Lowest economic cost and highest clean energy utilization rate were considered as the objective functions.In addition,a plan was suggested to adjust the heat-electricity ratio based on the characteristics of the combined heat and power of the biomass.Finally,a simulation analysis conducted for a town in China was discussed,demonstrating that the construction of a township integrated-energy system and the use of biomass can significantly reduce operating costs and improve the energy utilization rate.Moreover,by adjusting the heat-electricity ratio,the economic cost was further reduced by 6.70%,whereas the clean energy utilization rate was increased by 5.14%.
基金the Hunan Lung Cancer Clinical Medical Research Center(Grant No.2023SK4024 to LW)the Hunan Science and Technology Innovation Program(Grant No.2021SK51121 to LW)the Hunan Cancer Hospital Climb plan(Grant No.ZX2020005-5 to LW)。
文摘Global Cancer Statistics 2022 reported the prevalence and high mortality rate of lung cancer.Notably,non-small cell lung cancer(NSCLC)accounts for the majority of the histologic types1.Precision therapy for lung cancer has progressed rapidly and immune checkpoint inhibitors(ICIs)have become a leading research topic.Indeed,ICI therapy has been shown to improve the prognosis of lung cancer patients.
基金supported by the grants from Innovation Fund for Medical Sciences (CIFMS) from Chinese Academy of Medical Sciences (No.2021-I2M-1-062)National Key R&D Program of China from Ministry of Science and Technology of the People’s Republic of China (No.2022YFC2304601,2021YFC2500801)+1 种基金National High Level Hospital Clinical Research Funding (2022-PUMCH-D-005,2022-PUMCH-D-111,2022-PUMCH-B-126)National key clinical specialty construction projects from National Health Commission。
文摘BACKGROUND:Emergency patients with sepsis or septic shock are at high risk of death.Despite increasing attention to microhemodynamics,the clinical use of advanced microcirculatory assessment is limited due to its shortcomings.Since blood gas analysis is a widely used technique reflecting global oxygen supply and consumption,it may serve as a surrogate for microcirculation monitoring in septic treatment.METHODS:We performed a search using PubMed,Web of Science,and Google scholar.The studies and reviews that were most relevant to septic microcirculatory dysfunctions and blood gas parameters were identified and included.RESULTS:Based on the pathophysiology of oxygen metabolism,the included articles provided a general overview of employing blood gas analysis and its derived set of indicators for microhemodynamic monitoring in septic care.Notwithstanding flaws,several parameters are linked to changes in the microcirculation.A comprehensive interpretation of blood gas parameters can be used in order to achieve hemodynamic optimization in septic patients.CONCLUSION:Blood gas analysis in combination with clinical performance is a reliable alternative for microcirculatory assessments.A deep understanding of oxygen metabolism in septic settings may help emergency physicians to better use blood gas analysis in the evaluation and treatment of sepsis and septic shock.
基金National Key R&D Program of China(2022YFA1103200,2017YFA0106400,2021YFA1100900)Ministry of Science and Technology of China(2020YFC2002804)+3 种基金National Natural Science Foundation of China(91749124,81772389,82070108)Major Program of Development Fund for Shanghai Zhangjiang National Innovation Demonstration Zone(ZJ2018-ZD-004)Fundamental Research Funds for the Central Universities(22120190149 and kx0200020173386)Peak Disciplines(Type IV)of Institutions of Higher Learning in Shanghai。
文摘Fibroblast activation protein(Fap)is a serine protease that degrades denatured type I collagen,α2-antiplasmin and FGF21.Fap is highly expressed in bone marrow stromal cells and functions as an osteogenic suppressor and can be inhibited by the bone growth factor Osteolectin(Oln).Fap is also expressed in synovial fibroblasts and positively correlated with the severity of rheumatoid arthritis(RA).However,whether Fap plays a critical role in osteoarthritis(OA)remains poorly understood.Here,we found that Fap is significantly elevated in osteoarthritic synovium,while the genetic deletion or pharmacological inhibition of Fap significantly ameliorated posttraumatic OA in mice.Mechanistically,we found that Fap degrades denatured type II collagen(Col II)and Mmp13-cleaved native Col II.Intra-articular injection of r Fap significantly accelerated Col II degradation and OA progression.In contrast,Oln is expressed in the superficial layer of articular cartilage and is significantly downregulated in OA.Genetic deletion of Oln significantly exacerbated OA progression,which was partially rescued by Fap deletion or inhibition.Intra-articular injection of r Oln significantly ameliorated OA progression.Taken together,these findings identify Fap as a critical pathogenic factor in OA that could be targeted by both synthetic and endogenous inhibitors to ameliorate articular cartilage degradation.
基金This work was supported by National Natural Science Foundation of China(No.51873198)the Engineering and Physical Sciences Research Council(EPSRC,EP/V027433/1)the Royal Society(RGSyR1y211080)。
文摘Efficient and stable oxygen evolution electrocatalysts are indispensable for industrial applications of water splitting and hydrogen production.Herein,a simple and practical method was applied to fabricate(Mo,Fe)P2O7@NF electrocatalyst by directly growing Mo/Fe bimetallic pyrophosphate derived from Prussian blue analogues on three-dimensional porous current collector.In alkaline media,the developed material possesses good hydrophilic features and exhibits best-in-class oxygen evolution reaction(OER)performances.Surprisingly,the(Mo,Fe)P_(2)O_(7)@NF only requires overpotentials of 250 and 290 mV to deliver 100 and 600 mA cm^(-2)in 1 mol L^(-1)KOH,respectively.Furthermore,the(Mo,Fe)P_(2)O_(7)@NF shows outstanding performances in alkaline salty water and 1 mol L^(-1)high purity KOH.A worthwhile pathway is provided to combine bimetallic pyrophosphate with commercial Ni foam to form robust electrocatalysts for stable electrocatalytic OER,which has a positive impact on both hydrogen energy application and environmental restoration.
基金supported by National Key R&D Program of China (No. 2017YFC060300204)Yue Qi Young Scholar Project,CUMTB and Yue Qi Distinguished Scholar Project (No. 800015Z1138)China University of Mining & Technology, Beijing
文摘Abutment pressure distribution is different when a longwall panel is passing through the abandoned gate roads in a damaged coal seam. According to the geological condition of panel E13103 in Cuijiazhai Coal Mine in China, theoretical analysis and finite element numerical simulation were used to determine the front pressure distribution characteristics when the longwall face is 70, 50, 30, 20, 10, and 5 m from the abandoned roadways. The research results show that the influence range of abutment pressure is 40 to 45 m outby the face, and the peak value of front abutment pressure is related to the distance between the face and abandoned roadways. When the distance between the longwall face and abandoned roadways is reduced from 50 to 10 m, the front abutment pressure peak value kept increasing. When the distance is 10 m, it has reached the maximum. The peak value is located in 5 to 6 m outby the faceline. When the distance between the longwall face and abandoned roadways is reduced from 10 to 5 m, the front abutment pressure sharply decreases, the intact coal yields and is even in plastic state. The peak value transfers to the other side of the abandoned roadways. The research results provide a theoretical basis for determining the advance support distance of two roadways in the panel and the reinforcement for face stability when the longwall face is passing through the abandoned roadways.
基金supported by National Key R&D Program of China(2018YFB0905000).
文摘With the establishment of the carbon-peak target by 2030,the direction of carbon emission reduction in China’s energy system has been further clarified.As the industry with the largest proportion of carbon emissions in China,the lowcarbon transformation of the electric power industry is critical to realize the carbon-peak target.Current research mostly focuses on technical analysis or system cost accounting of the carbon-peak realization path at the national level.There is a lack of targeted research on regional power systems with complex inter-regional power flow exchange and limited energy resource development.Simultaneously,the calculation of the system cost lacks the perspective of the life cycle and ignores the inertia of the stock and change inertia of incremental disturbance.From the perspective of the life cycle,this study proposes a calculation model of power supply cost for regional power systems according to the carbon-peak target,analyzes the realization path of the carbon target from an economic perspective,and provides references for the path selection and policy formulation of system transformation.
文摘One of the important indicators of shale gas reservoir excavation is capacity evaluation,which directly affects whether large-scale shale gas reservoirs can be excavated.Capacity evaluation is the basis of system analysis and dynamic prediction.Therefore,it is particularly important to conduct capacity evaluation studies on shale gas horizontal wells.In order to accurately evaluate the horizontal well productivity of shale gas staged fracturing,this paper uses a new method to evaluate the productivity of Fuling shale gas.The new method is aimed at the dynamic difference of horizontal wells and effectively analyzes the massive data,which are factors affecting the productivity of shale gas horizontal wells.According to the pressure system,production dynamic characteristics,well trajectory position,fracturing transformation mode and penetration depth,32 wells were divided into four types.Then,based on the classification,the principal component analysis methods can be used to evaluate the horizontal well productivity of shale gas.The new method of capacity evaluation has improved the accuracy by 10.25%compared with the traditional method,which provides a theoretical basis for guiding the efficient development of the horizontal wells of Fuling shale gas.
基金supported by the National Key Research and Development Program of China with grant number 2020AAA0108800the National Science Foundation of China under Grant Nos.61772414,61532015,61532004,61721002,61472317,and 61502379+1 种基金the MOE Innovation Research Team No.IRT 17R86the Project of China Knowledge Centre for Engineering Science and Technology.
文摘With the rapid development of mobile devices and deep learning,mobile smart applications using deep learning technology have sprung up.It satisfies multiple needs of users,network operators and service providers,and rapidly becomes a main research focus.In recent years,deep learning has achieved tremendous success in image processing,natural language processing,language analysis and other research fields.Despite the task performance has been greatly improved,the resources required to run these models have increased significantly.This poses a major challenge for deploying such applications on resource-restricted mobile devices.Mobile intelligence needs faster mobile processors,more storage space,smaller but more accurate models,and even the assistance of other network nodes.To help the readers establish a global concept of the entire research direction concisely,we classify the latest works in this field into two categories,which are local optimization on mobile devices and distributed optimization based on the computational position of machine learning tasks.We also list a few typical scenarios to make readers realize the importance and indispensability of mobile deep learning applications.Finally,we conjecture what the future may hold for deploying deep learning applications on mobile devices research,which may help to stimulate new ideas.
文摘This study considers P.O42.5 cement from different sources and evaluates the related surplus coefficient(defined as the proportionality factor linking the measured compressive strength value of the cement after 28 days to the“standard”value of cement strength).The needed tests have been conducted using a mixer,a pressure testing machine,a flexural testing machine,a vibrating table a ramming rod,a feeder and a metal ruler.The average value of the measured cement strength surplus coefficient of cement produced by five distinct cement manufacturers has been found to be 1.16.These results can be used as the basis to reduce the production cost and improve the performance of commercial concrete.
基金This work was supported by Shanghai Clinical Research Center for Mental Health,Shanghai,China(SCRC-MH(19MC1911100)).
文摘Background Patients with C0VID-19 are at high risk of developing mental health problems;however,the prevalence and management of mental disorders and how psychiatrists coordinate the treatment are unclear.Aims We aimed to investigate the mental health problems of patients infected with C0VID-19 and to identify the role of psychiatrists in the clinical treatment team during the pandemic.We also share the experience of psychiatric consultations of patients with COVID-19 in Shanghai,China.Methods We analysed data from the psychiatric medical records of 329 patients with COVID-19 in the Shanghai Public Health Clinical Center from 20 January to 8 March 2020.We collected information including sociodemographic characteristics,whether patients received psychiatric consultation,mental health symptoms,psychiatric diagnoses,psychiatric treatments and severity level of COVID-19.Results Psychiatric consultations were received by 84(25.5%)patients with COVID-19.The most common symptoms of mental health problems were sleep disorders(75%),anxiety(58.3%)and depressive symptoms(11.9%).The psychiatric consultation rate was highest in critically ill patients(69.2%),with affective symptoms or disturbed behaviour as their main mental health problems.Psychiatric diagnoses for patients who received consultation included acute stress reaction(39.3%),sleep disorders(33.3%),anxiety(15.5%),depression(7.1%)and delirium(4.8%).In terms of psychiatric treatments,86.9%of patients who received psychiatric consultation were treated with psychotropic medications,including non-benzodiazepine sedative-hypnotic agents(54.8%),antidepressants(26.2%),benzodiazepines(22.6%)and antipsychotics(10.7%).Among the 76 patients who were discharged from the hospital,79%had recovered from mental health problems and were not prescribed any psychotropic medications.The symptoms of the remaining 21%of patients had improved and they were prescribed medications to continue the treatment.Conclusions This is the first study to report psychiatric consultations for patients with COVID-19.Our study indicated that a considerable proportion of patients with COVID-19,especially critically ill cases,experienced mental health problems.Given the remarkable effect of psychiatric treatments,we recommend that psychiatrists be timely and actively involved in the treatment of COVID-19.
基金supported by funding from Korea Institute of Geoscience and Mineral ResourcesChina University of Geosciences Beijing to M. Santosh+3 种基金supported by a Basic Research Project (GP2017-021Development of integrated geological information based on digital mapping) of the Korea Institute of Geoscience and Mineral Resources (KIGAM)funded by the Ministry of Science, ICTFuture Planning, Korea to S.W. Kim
文摘The Hongseong area of the Hongseong-Imjingang Belt in the central-western Korean Peninsula forms part of a subduction-collision system that is correlated with the Qinling-Dabie-Sulu Belt in China. Several serpentinized ultramafic bodies carrying blocks of metamorphosed mafic rocks occur in this area. Here we investigate zircon grains in serpentinites from Bibong(BB) and Wonnojeon(WNJ), and high-pressure(HP) mafic granulite from Baekdong(BD) localities based on U-Pb, REE and Lu-Hf analyses. The zircons from BD HP mafic granulite show distinct age peaks at 838 Ma, 617 Ma and 410 Ma, with minor peaks at1867 Ma, 1326 Ma and 167 Ma. The Neoproterozoic age peaks in these rocks as well as in the serpentinites suggest subduction-related melt-fluid interaction in the mantle wedge at this time. The older zircon grains ranging in age from the Early to Middle Paleoproterozoic might represent detrital grains from the basement rocks transferred to the wedge mantle through sediment subduction. The BD HP mafic granulite shows a Middle Paleozoic age peak(Devonian; 410 Ma). The 242-245 Ma age peaks in the compiled age data of zircon grains serpentinites from BB and WNJ correspond to a major Triassic event that further added melts and fluids into the ancient mantle wedge to crystallize new zircons. In the chondrite normalized rare earth element diagram, the magmatic zircon grains from the studied rocks show LREE depletion and HREE enrichment with sharply negative Eu and Pr anomalies and positive Ce and Sm anomalies. The REE patterns of hydrothermal zircons show LREE enrichment, and relatively flat patterns with negative Eu anomaly. Zircon Hf signature from the WNJ serpentinite show negative εHf(t)(-18.5 and-23.5) values indicating an enriched mantle source with TDM in the range of 1614 Ma and1862 Ma. Zircons from the BD HP mafic granulite also show slightly negative εHf(t)(average-4.3) and TDM in the range of 1365-1935 Ma. Our study provides evidence for multiple zircon growth in an evolving mantle wedge that witnessed melt and fluid interaction during different orogenic cycles.
基金supported by the Discipline Innovation Team Construction Project of Shaanxi University of Chinese Medicine-Infertility Innovation Team of Shaanxi University of Chinese Medicine(Number:2019-QN03).
文摘This article is a summary of the research progress of the maternal-fetal interface immune microenvironment regulated by traditional Chinese medicine in the treatment of recurrent spontaneous abortion.The imbalance of the immune microenvironment at the maternal-fetal interface is closely related to the occurrence of recurrent spontaneous abortion.Traditional Chinese medicine can maintain the homeostasis of the immune microenvironment at the maternal-fetal interface by regulating the function of immune cells and the expression of related cytokines.
基金supported by the National Natural Science Foundation of China(Grant Nos.60637020 and 60677012)the Tianjin Foundation of Natural Science(No.09JCZDJC18300).
文摘In this paper,an image processing method for improving the quality of optical coherence tomography(OCT)images is proposed.Wavelet denoising based on context modeling and contrast enhancement by means of the contrast measure in the wavelet domain is carried out on the OCT images in succession.Three parameters are selected to assess the effectiveness of the method.It is shown from the results that the proposed method can not only enhance the contrast of images,but also improve signal-to-noise ratio.Compared with two other typical algorithms,it has the best visual effect.
基金supported by the specific research fund of The Innovation Platform for Academicians of Hainan Province(YSPTZX202101)the Hainan Provincial Natural Science Foundation(321RC638),the National Natural Science Foundation of China(32172269,31501043)the Earmarked Fund for Modern Agro-industry Technology Research System(CARS-31).
文摘As one of the most important economic crops for both staple food and fruit widely cultivated in the tropics and subtropics,banana(Musa spp.)is susceptible to a plethora of abiotic and biotic stresses.Breeding cultivars resistant to abiotic and biotic stressors without adverse effects on yield and fruit quality are the objectives of banana improvement programs.However,conventional breeding approaches are time-consuming and severely hampered by inherent banana problems(polyploidy and sterility).Therefore,genetic transformation is becoming increasingly popular and can provide rapid solutions.Numerous efforts have been made to develop superior banana cultivars with better resistance to abiotic and biotic stresses and optimum yields using genetic modification strategies.Somatic embryogenesis(SE)through embryogenic cell suspension(ECS)cultures is an ideal recipient system for genetic transformation in banana.The purpose of this paper is to review the current status of banana somatic embryo research,clarify the process of banana somatic embryo induction and culture,and summarize the main influencing factors in the process of somatic embryogenesis.At the same time,their applications in breeding technologies such as cryopreservation,protoplast culture,genetic transformation and gene editing were also summarized,in order to provide reference for the research and practical application of banana somatic embryogenesis in the future.