期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Light-emitting devices based on atomically thin MoSe_(2)
1
作者 Xinyu Zhang Xuewen Zhang +7 位作者 Hanwei Hu Vanessa Li Zhang Weidong Xiao Guangchao Shi jingyuan qiao Nan Huang Ting Yu Jingzhi Shang 《Journal of Semiconductors》 EI CAS CSCD 2024年第4期19-35,共17页
Atomically thin MoSe_(2) layers,as a core member of the transition metal dichalcogenides(TMDs)family,benefit from their appealing properties,including tunable band gaps,high exciton binding energies,and giant oscillat... Atomically thin MoSe_(2) layers,as a core member of the transition metal dichalcogenides(TMDs)family,benefit from their appealing properties,including tunable band gaps,high exciton binding energies,and giant oscillator strengths,thus pro-viding an intriguing platform for optoelectronic applications of light-emitting diodes(LEDs),field-effect transistors(FETs),sin-gle-photon emitters(SPEs),and coherent light sources(CLSs).Moreover,these MoSe_(2) layers can realize strong excitonic emis-sion in the near-infrared wavelengths,which can be combined with the silicon-based integration technologies and further encourage the development of the new generation technologies of on-chip optical interconnection,quantum computing,and quantum information processing.Herein,we overview the state-of-the-art applications of light-emitting devices based on two-dimensional MoSe_(2) layers.Firstly,we introduce recent developments in excitonic emission features from atomically thin MoSe_(2) and their dependences on typical physical fields.Next,we focus on the exciton-polaritons and plasmon-exciton polaritons in MoSe_(2) coupled to the diverse forms of optical microcavities.Then,we highlight the promising applications of LEDs,SPEs,and CLSs based on MoSe_(2) and their heterostructures.Finally,we summarize the challenges and opportunities for high-quality emis-sion of MoSe_(2) and high-performance light-emitting devices. 展开更多
关键词 MoSe_(2) light-matter interaction EXCITON POLARITON light-emitting device
下载PDF
MOF-derived heterostructure CoNi/CoNiP anchored on MXene framework as a superior bifunctional electrocatalyst for zinc-air batteries 被引量:1
2
作者 jingyuan qiao Zhuoheng Bao +6 位作者 Lingqiao Kong Xingyu Liu Chengjie Lu Meng Ni Wei He Min Zhou ZhengMing Sun 《Chinese Chemical Letters》 SCIE CAS CSCD 2023年第12期409-414,共6页
Zinc-air batteries(ZABs)are regarded as promising next-generation energy storage devices but limited by their sluggish oxygen reduction/evolution reactions(ORR/OER).Herein,the bifunctional catalyst consisting of MXene... Zinc-air batteries(ZABs)are regarded as promising next-generation energy storage devices but limited by their sluggish oxygen reduction/evolution reactions(ORR/OER).Herein,the bifunctional catalyst consisting of MXene and metal compounds has been constructed via a controllable strategy.For demonstration,a 3D MXene framework with anchored heterostructure CoNi/CoNiP and nitrogen-doped carbon(NC)called H-CNP@M is constructed by metal-ion inducement and phosphorization.The bimetal-semiconductor heterostructure greatly enhances the catalytic performance.The H-CNP@M exhibits superior activities to-Ward ORR(E_(i/2)=0.833V)and OER(η_(10)=294 mV).Both aqueous and all-solid-state ZAB assembled with H-CNP@M demonstrate superior performance(peak power density of 166.5 mW/cm^(2)in aqueous case).This work provides a facile and general strategy to prepare MXene-supported bimetallic heterostructure for high-performance electrochemical energy devices. 展开更多
关键词 HETEROSTRUCTURE Metal-organic frameworks MXene Bifunctional electrocatalyst Zn-air battery
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部