Defect engineering can give birth to novel properties for adsorption and photocatalysis in the control of antibiotics and heavy metal combined pollution with photocatalytic composites.However,the role of defects and t...Defect engineering can give birth to novel properties for adsorption and photocatalysis in the control of antibiotics and heavy metal combined pollution with photocatalytic composites.However,the role of defects and the process mechanism are complicated and indefinable.Herein,TiO_(2)/CN/3DC was fabricated and defects were introduced into the tripartite structure with separate O_(2)plasma treatment for the single component.We find that defect engineering can improve the photocatalytic activity,attributing to the increase of the contribution from h^(+)and OH.In contrast to TiO_(2)/CN/3DC with a photocatalytic tetracycline removal rate of 75.2%,the removal rate of TC with D-TiO_(2)/CN/3DC has increased to 88.5%.Moreover,the reactive sites of tetracycline can be increased by adsorbing on the defective composites.The defect construction on TiO_(2)shows the advantages in tetracycline degradation and Cu^(2+)adsorption,but also suffers significant inhibition for the tetracycline degradation in a tetracycline/Cu^(2+)combined system.In contrast,the defect construction on graphene can achieve the cooperative removal of tetracycline and Cu^(2+).These findings can provide new insights into water treatment strategies with defect engineering.展开更多
Plant architecture is an important factor for crop production. Some members of microRNA156 (miR156) and their target genes SQUAMOSA Promoter-Binding Protein-Like (SPL) were identified to play essential roles in the es...Plant architecture is an important factor for crop production. Some members of microRNA156 (miR156) and their target genes SQUAMOSA Promoter-Binding Protein-Like (SPL) were identified to play essential roles in the establishment of plant architecture. However, the roles and regulation of miR156 is not well understood yet. Here, we identified a T-DNA insertion mutant Osmtd1 (Oryza sativa multi-tillering and dwarf mutant). Osmtd1 produced more tillers and displayed short stature phenotype. We determined that the dramatic morphological changes were caused by a single T-DNA insertion in Osmtd1. Further analysis revealed that the T-DNA insertion was located in the gene Os08g34258 encoding a putative inhibitor I family protein. Os08g34258 was knocked out and OsmiR156f was significantly upregulated in Osmtd1. Overexpression of Os08g34258 in Osmtd1 complemented the defects of the mutant architecture, while overexpression of OsmiR156f in wild-type rice phenocopied Osmtd1. We showed that the expression of OsSPL3, OsSPL12, and OsSPL14 were significantly downregulated in Osmtd1 or OsmiR156f overexpressed lines, indicating that OsSPL3, OsSPL12, and OsSPL14 were possibly direct target genes of OsmiR156f. Our results suggested that OsmiR156f controlled plant architecture by mediating plant stature and tiller outgrowth and may be regulated by an unknown protease inhibitor I family protein.展开更多
Green petals pose a challenge for pollinators to distinguish flowers from leaves,but they are valuable as a specialty flower trait.However,little is understood about the molecular mechanisms that underlie the developm...Green petals pose a challenge for pollinators to distinguish flowers from leaves,but they are valuable as a specialty flower trait.However,little is understood about the molecular mechanisms that underlie the development of green petals.Here,we report that CINCINNATA(CIN)-like TEOSINTE BRANCHED 1/CYCLOIDEA/PCF(TCP)proteins play key roles in the control of petal color.The septuple tcp2/3/4/5/10/13/17 mutant produced flowers with green petals due to chlorophyll accumulation.Expression of TCP4 complemented the petal phenotype of tcp2/3/4/5/10/13/17.We found that chloroplasts were converted into leucoplasts in the distal parts of wild-type petals but not in the proximal parts during flower development,whereas plastid conversion was compromised in the distal parts of tcp2/3/4/5/10/13/17 petals.TCP4 and most CIN-like TCPs were predominantly expressed in distal petal regions,consistent with the green–white pattern in wild-type petals and the petal greening observed in the distal parts of tcp2/3/4/5/10/13/17 petals.RNA-sequencing data revealed that most chlorophyll biosynthesis genes were downregulated in the white distal parts of wild-type petals,but these genes had elevated expression in the distal green parts of tcp2/3/4/5/10/13/17 petals and the green proximal parts of wild-type petals.We revealed that TCP4 repressed chlorophyll biosynthesis by directly binding to the promoters of PROTOCHLOROPHYLLIDE REDUCTASE(PORB),DIVINYL REDUCTASE(DVR),and SUPPRESSOR OF OVEREXPRESSION OF CO 1(SOC1),which are known to promote petal greening.We found that the conversion of chloroplasts to leucoplasts and the green coloration in the proximal parts of petals appeared to be conserved among plant species.Our findings uncover a major molecular mechanism that underpins the formation of petal color patterns and provide a foundation for the breeding of plants with green flowers.展开更多
Herein,g-C_(3)N_(4)quantum-dot-modified TiO_(2)nanofibers were fabricated and used as an efficient photocatalyst for the investigation of the influence of Cu^(2+)and the interaction mechanism between Cu^(2+)and surfac...Herein,g-C_(3)N_(4)quantum-dot-modified TiO_(2)nanofibers were fabricated and used as an efficient photocatalyst for the investigation of the influence of Cu^(2+)and the interaction mechanism between Cu^(2+)and surface defects in tetracycline degradation.Results showed that the effect of Cu^(2+)switched from promoting to inhibiting the tetracycline degradation as the amount of Cu^(2+)accumulated on the catalyst surface increased.The introduction of surface defects can prevent the inhibiting effect of Cu^(2+),resulting in the more complete degradation of tetracycline in contrast to the non-defective sample.Theoretical calculations further revealed that the defects can be used to tune the conduction band of the composite,inducing the reduction reaction of Cu^(2+)and inhibiting the accumulation of Cu on the surface of catalysts.Moreover,the Cu introduced to the catalyst surface provided new active sites,thereby promoting photocatalytic degradation.These findings provide new insights into the design of advanced fiber materials for water purification in complex environments.展开更多
基金support of this research by the National Natural Science Foundation of China(Grant No.51909165,42177438)the Start-up Research Funding of Southwest Jiaotong University(YH1100312372222)+4 种基金the Fundamental Research Funds for the Central Universities(XJ2022003201)Science and Technology Program of Guangzhou(2019050001)National Key Research and Development Program of China(2019YFE0198000)the High-End Foreign Experts Project(G2021030016L)Pearl River Talent Program(2019QN01L951)
文摘Defect engineering can give birth to novel properties for adsorption and photocatalysis in the control of antibiotics and heavy metal combined pollution with photocatalytic composites.However,the role of defects and the process mechanism are complicated and indefinable.Herein,TiO_(2)/CN/3DC was fabricated and defects were introduced into the tripartite structure with separate O_(2)plasma treatment for the single component.We find that defect engineering can improve the photocatalytic activity,attributing to the increase of the contribution from h^(+)and OH.In contrast to TiO_(2)/CN/3DC with a photocatalytic tetracycline removal rate of 75.2%,the removal rate of TC with D-TiO_(2)/CN/3DC has increased to 88.5%.Moreover,the reactive sites of tetracycline can be increased by adsorbing on the defective composites.The defect construction on TiO_(2)shows the advantages in tetracycline degradation and Cu^(2+)adsorption,but also suffers significant inhibition for the tetracycline degradation in a tetracycline/Cu^(2+)combined system.In contrast,the defect construction on graphene can achieve the cooperative removal of tetracycline and Cu^(2+).These findings can provide new insights into water treatment strategies with defect engineering.
基金supported by the National Natural Science Foundation of China (no. 91317312 and 91117006)Open Foundation Project for Hunan Provincial Higher Institutional Innovation Platform (no. 09K052)Hunan Provincial Key Laboratory for Crop Germplasm Innovation and Utilization (no. 12KFXM05)
文摘Plant architecture is an important factor for crop production. Some members of microRNA156 (miR156) and their target genes SQUAMOSA Promoter-Binding Protein-Like (SPL) were identified to play essential roles in the establishment of plant architecture. However, the roles and regulation of miR156 is not well understood yet. Here, we identified a T-DNA insertion mutant Osmtd1 (Oryza sativa multi-tillering and dwarf mutant). Osmtd1 produced more tillers and displayed short stature phenotype. We determined that the dramatic morphological changes were caused by a single T-DNA insertion in Osmtd1. Further analysis revealed that the T-DNA insertion was located in the gene Os08g34258 encoding a putative inhibitor I family protein. Os08g34258 was knocked out and OsmiR156f was significantly upregulated in Osmtd1. Overexpression of Os08g34258 in Osmtd1 complemented the defects of the mutant architecture, while overexpression of OsmiR156f in wild-type rice phenocopied Osmtd1. We showed that the expression of OsSPL3, OsSPL12, and OsSPL14 were significantly downregulated in Osmtd1 or OsmiR156f overexpressed lines, indicating that OsSPL3, OsSPL12, and OsSPL14 were possibly direct target genes of OsmiR156f. Our results suggested that OsmiR156f controlled plant architecture by mediating plant stature and tiller outgrowth and may be regulated by an unknown protease inhibitor I family protein.
基金supported by the National Science Fund for Distinguished Young Scholars of China(grant 31725005)the Science Fund for the Creative Research Groups of the National Natural Science Foundation of China(grant 31621001)the National Key R&D Program of China(2018YFE0204700).
文摘Green petals pose a challenge for pollinators to distinguish flowers from leaves,but they are valuable as a specialty flower trait.However,little is understood about the molecular mechanisms that underlie the development of green petals.Here,we report that CINCINNATA(CIN)-like TEOSINTE BRANCHED 1/CYCLOIDEA/PCF(TCP)proteins play key roles in the control of petal color.The septuple tcp2/3/4/5/10/13/17 mutant produced flowers with green petals due to chlorophyll accumulation.Expression of TCP4 complemented the petal phenotype of tcp2/3/4/5/10/13/17.We found that chloroplasts were converted into leucoplasts in the distal parts of wild-type petals but not in the proximal parts during flower development,whereas plastid conversion was compromised in the distal parts of tcp2/3/4/5/10/13/17 petals.TCP4 and most CIN-like TCPs were predominantly expressed in distal petal regions,consistent with the green–white pattern in wild-type petals and the petal greening observed in the distal parts of tcp2/3/4/5/10/13/17 petals.RNA-sequencing data revealed that most chlorophyll biosynthesis genes were downregulated in the white distal parts of wild-type petals,but these genes had elevated expression in the distal green parts of tcp2/3/4/5/10/13/17 petals and the green proximal parts of wild-type petals.We revealed that TCP4 repressed chlorophyll biosynthesis by directly binding to the promoters of PROTOCHLOROPHYLLIDE REDUCTASE(PORB),DIVINYL REDUCTASE(DVR),and SUPPRESSOR OF OVEREXPRESSION OF CO 1(SOC1),which are known to promote petal greening.We found that the conversion of chloroplasts to leucoplasts and the green coloration in the proximal parts of petals appeared to be conserved among plant species.Our findings uncover a major molecular mechanism that underpins the formation of petal color patterns and provide a foundation for the breeding of plants with green flowers.
基金support of this research by the National Natural Science Foundation of China(Grant nos.51909165,42177438)China Postdoctoral Science Foundation(2020TQ0109,2020M682753).Science and Technology Program of Guangzhou(2019050001)+1 种基金National Key Research and Development Program of China(2019YFE0198000)F.Chen acknowledges the Pearl River Talent Program(2019QN01L951).
文摘Herein,g-C_(3)N_(4)quantum-dot-modified TiO_(2)nanofibers were fabricated and used as an efficient photocatalyst for the investigation of the influence of Cu^(2+)and the interaction mechanism between Cu^(2+)and surface defects in tetracycline degradation.Results showed that the effect of Cu^(2+)switched from promoting to inhibiting the tetracycline degradation as the amount of Cu^(2+)accumulated on the catalyst surface increased.The introduction of surface defects can prevent the inhibiting effect of Cu^(2+),resulting in the more complete degradation of tetracycline in contrast to the non-defective sample.Theoretical calculations further revealed that the defects can be used to tune the conduction band of the composite,inducing the reduction reaction of Cu^(2+)and inhibiting the accumulation of Cu on the surface of catalysts.Moreover,the Cu introduced to the catalyst surface provided new active sites,thereby promoting photocatalytic degradation.These findings provide new insights into the design of advanced fiber materials for water purification in complex environments.