Substantially glazed facades are extensively used in contemporary high-rise buildings to achieve attractive architectural aesthetics.Inherent conflicts exist among architectural aesthetics,building energy consumption,...Substantially glazed facades are extensively used in contemporary high-rise buildings to achieve attractive architectural aesthetics.Inherent conflicts exist among architectural aesthetics,building energy consumption,and solar energy harvesting for glazed facades.In this study,we addressed these conflicts by introducing a new dynamic and vertical photovoltaic integrated building envelope(dvPVBE)that offers extraordinary flexibility with weather-responsive slat angles and blind positions,superior architectural aesthetics,and notable energy-saving potential.Three hierarchical control strategies were proposed for different scenarios of the dvPVBE:power generation priority(PGP),natural daylight priority(NDP),and energy-saving priority(ESP).Moreover,the PGP and ESP strategies were further analyzed in the simulation of a dvPVBE.An office room integrated with a dvPVBE was modeled using EnergyPlus.The influence of the dvPVBE in improving the building energy efficiency and corresponding optimal slat angles was investigated under the PGP and ESP control strategies.The results indicate that the application of dvPVBEs in Beijing can provide up to 131%of the annual energy demand of office rooms and significantly increase the annual net energy output by at least 226%compared with static photovoltaic(PV)blinds.The concept of this novel dvPVBE offers a viable approach by which the thermal load,daylight penetration,and energy generation can be effectively regulated.展开更多
The diffusive uptake rate is essential for using passive samplers to measure indoor volatile organic compounds(VOCs).The traditional theoretical model of passive samplers requires available regression formulas of upta...The diffusive uptake rate is essential for using passive samplers to measure indoor volatile organic compounds(VOCs).The traditional theoretical model of passive samplers requires available regression formulas of uptake rates and physicochemical properties of adsorbents to predict the uptake rate.However,it is difficult to obtain the uptake rates of different VOCs under different sampling periods,and it is also difficult to obtain the physical parameters of adsorbents accurately and effectively.This study provides a reliable numerical prediction method of diffusive uptake rates of VOCs.The modeling was based on the standard automated thermal desorption(ATD)tubes packed with Tenax TA and the mass transfer process during adsorption.The experimental determinations of toluene uptake rate are carried out to verify the prediction model.Diffusive uptake rates of typical indoor VOCs are obtained from the literature to calibrate the key apparent parameters in the model by statistical regression fitting.The predicted model can provide the VOC diffusive uptake rates under different sampling duration with an average deviation of less than 5%.This study can provide the basis for fast and accurate prediction of diffusive uptake rates for various VOC pollutants in built environments.展开更多
Sandstorm,which injects generous newly emerging microbes into the atmosphere covering cities,adversely affects the air quality in built environments.However,few studies have examined the change of airborne bacteria du...Sandstorm,which injects generous newly emerging microbes into the atmosphere covering cities,adversely affects the air quality in built environments.However,few studies have examined the change of airborne bacteria during severe sandstorm events.In this work,we analyzed the airborne bacteria during one of the strongest sandstorms in East Asia onMarch 15th,2021,which affected large areas of China and Mongolia.The characteristics of the sandstorm were compared with those of the subsequent clean and haze days.The composition of the bacterial community of air samples was investigated using quantitative polymerase chain reaction(qPCR)and high-throughput sequencing technology.During the sandstorm,the particulate matter(PM)concentration and bacterial richnesswere extremely high(PM_(2.5):207μg/m^(3);PM_(10):1630μg/m^(3);5700 amplicon sequence variants/m^(3)).In addition,the sandstorm brought 10 pathogenic bacterial genera to the atmosphere,posing a grave hazard to human health.As the sandstorm subsided,small bioaerosols(0.65–1.1μm)with a similar bacterial community remained suspended in the atmosphere,bringing possible long-lasting health risks.展开更多
High concentration particulate matter(PM)has been a serious environmental problem in China and other devel-oping countries.Electrostatic-based purification technology is a method to remove airborne particles,and can r...High concentration particulate matter(PM)has been a serious environmental problem in China and other devel-oping countries.Electrostatic-based purification technology is a method to remove airborne particles,and can reduce the energy consumption of ventilation fans in buildings because of its low pressure drop.In this study,we developed a new pin-to-plate corona discharger with particle-free external air protection to prevent particles polluting the surface of discharge pins.By using an optical microscope,we observed a certain number of parti-cles deposited on the non-protected(exposed pins)and few particles deposited on the protected pins after they operating for 3 weeks.We experimentally studied the long-term performances of the exposed and protected pins in single-pass PM removal efficiency and ozone production.The results showed that the protected pins produce less ozone and have higher breakdown voltage than the exposed pins.Experimental results indicated that the im-proved pin-to-plate corona discharger has better long-term performance and is safer than the exposed one.The results of the research can give an understanding of how to improve electrostatic-based purification technologies toward stable discharging for high removal efficiency of particles.展开更多
Considering that people spend more than 80%of their time indoors,ambient particulate matter(PM)in the built environment could pose severe environmental health risks to public health.PM sampling,a technique for the enr...Considering that people spend more than 80%of their time indoors,ambient particulate matter(PM)in the built environment could pose severe environmental health risks to public health.PM sampling,a technique for the enrichment of PM in the air,is essential for ambient PM composition analysis to understand its environmental and health effect.The filtering method that is widely used features a complex post-processing and carries the risk of pore clogging.It is a great challenge to sample airborne PM efficiently for subsequent analysis.Here,we proposed a novel miniaturized electrostatic sampler based on corona discharge and a modified vertically focused electric field for efficient PM sampling.Four intercoupling physical fields in the developed sampler were analyzed,including corona discharge,airflow,particle charging and particle deposition.The collection efficiencies for particles with various sizes(0.01–10μm)were conducted by simulation and the lowest efficiency occurs at about 0.3–0.5μm.With an increase in discharging voltage from−6 kV to−9 kV,the lowest efficiency rises from 88.2%to 96.6%.An electrostatic sampler entity was manufactured to test the collection efficiency of PM and the results are in good agreement with the simulation.The induced ring plate can significantly improve the total collection efficiency from 35%to 90%under−6 kV discharging voltage in the experiment.The novel electrostatic sampler exhibits potential and enlightenment for efficient and convenient PM sampling.展开更多
基金supported by the National Natural Science Foundation of China(52078269 and 52325801).
文摘Substantially glazed facades are extensively used in contemporary high-rise buildings to achieve attractive architectural aesthetics.Inherent conflicts exist among architectural aesthetics,building energy consumption,and solar energy harvesting for glazed facades.In this study,we addressed these conflicts by introducing a new dynamic and vertical photovoltaic integrated building envelope(dvPVBE)that offers extraordinary flexibility with weather-responsive slat angles and blind positions,superior architectural aesthetics,and notable energy-saving potential.Three hierarchical control strategies were proposed for different scenarios of the dvPVBE:power generation priority(PGP),natural daylight priority(NDP),and energy-saving priority(ESP).Moreover,the PGP and ESP strategies were further analyzed in the simulation of a dvPVBE.An office room integrated with a dvPVBE was modeled using EnergyPlus.The influence of the dvPVBE in improving the building energy efficiency and corresponding optimal slat angles was investigated under the PGP and ESP control strategies.The results indicate that the application of dvPVBEs in Beijing can provide up to 131%of the annual energy demand of office rooms and significantly increase the annual net energy output by at least 226%compared with static photovoltaic(PV)blinds.The concept of this novel dvPVBE offers a viable approach by which the thermal load,daylight penetration,and energy generation can be effectively regulated.
基金financially supported by the National Natural Sci-ence Foundation of China(No.52078269)the special funding from Wuhan Second Ship Design and Research Institute.
文摘The diffusive uptake rate is essential for using passive samplers to measure indoor volatile organic compounds(VOCs).The traditional theoretical model of passive samplers requires available regression formulas of uptake rates and physicochemical properties of adsorbents to predict the uptake rate.However,it is difficult to obtain the uptake rates of different VOCs under different sampling periods,and it is also difficult to obtain the physical parameters of adsorbents accurately and effectively.This study provides a reliable numerical prediction method of diffusive uptake rates of VOCs.The modeling was based on the standard automated thermal desorption(ATD)tubes packed with Tenax TA and the mass transfer process during adsorption.The experimental determinations of toluene uptake rate are carried out to verify the prediction model.Diffusive uptake rates of typical indoor VOCs are obtained from the literature to calibrate the key apparent parameters in the model by statistical regression fitting.The predicted model can provide the VOC diffusive uptake rates under different sampling duration with an average deviation of less than 5%.This study can provide the basis for fast and accurate prediction of diffusive uptake rates for various VOC pollutants in built environments.
基金This work was supported by the National Natural Science Foundation of China(No.52078269).
文摘Sandstorm,which injects generous newly emerging microbes into the atmosphere covering cities,adversely affects the air quality in built environments.However,few studies have examined the change of airborne bacteria during severe sandstorm events.In this work,we analyzed the airborne bacteria during one of the strongest sandstorms in East Asia onMarch 15th,2021,which affected large areas of China and Mongolia.The characteristics of the sandstorm were compared with those of the subsequent clean and haze days.The composition of the bacterial community of air samples was investigated using quantitative polymerase chain reaction(qPCR)and high-throughput sequencing technology.During the sandstorm,the particulate matter(PM)concentration and bacterial richnesswere extremely high(PM_(2.5):207μg/m^(3);PM_(10):1630μg/m^(3);5700 amplicon sequence variants/m^(3)).In addition,the sandstorm brought 10 pathogenic bacterial genera to the atmosphere,posing a grave hazard to human health.As the sandstorm subsided,small bioaerosols(0.65–1.1μm)with a similar bacterial community remained suspended in the atmosphere,bringing possible long-lasting health risks.
基金The research was supported by the National Key Research and Devel-opment Program of China(No.2016YFC0207103)the Natural Science Foundation of China(Nos.51722807,and 51521005)Beijing Mu-nicipal Science&Technology Commission(No.Z191100009119007).
文摘High concentration particulate matter(PM)has been a serious environmental problem in China and other devel-oping countries.Electrostatic-based purification technology is a method to remove airborne particles,and can reduce the energy consumption of ventilation fans in buildings because of its low pressure drop.In this study,we developed a new pin-to-plate corona discharger with particle-free external air protection to prevent particles polluting the surface of discharge pins.By using an optical microscope,we observed a certain number of parti-cles deposited on the non-protected(exposed pins)and few particles deposited on the protected pins after they operating for 3 weeks.We experimentally studied the long-term performances of the exposed and protected pins in single-pass PM removal efficiency and ozone production.The results showed that the protected pins produce less ozone and have higher breakdown voltage than the exposed pins.Experimental results indicated that the im-proved pin-to-plate corona discharger has better long-term performance and is safer than the exposed one.The results of the research can give an understanding of how to improve electrostatic-based purification technologies toward stable discharging for high removal efficiency of particles.
基金financially supported by the National Natural Science Foundation of China (No.52078269,No.52178068).
文摘Considering that people spend more than 80%of their time indoors,ambient particulate matter(PM)in the built environment could pose severe environmental health risks to public health.PM sampling,a technique for the enrichment of PM in the air,is essential for ambient PM composition analysis to understand its environmental and health effect.The filtering method that is widely used features a complex post-processing and carries the risk of pore clogging.It is a great challenge to sample airborne PM efficiently for subsequent analysis.Here,we proposed a novel miniaturized electrostatic sampler based on corona discharge and a modified vertically focused electric field for efficient PM sampling.Four intercoupling physical fields in the developed sampler were analyzed,including corona discharge,airflow,particle charging and particle deposition.The collection efficiencies for particles with various sizes(0.01–10μm)were conducted by simulation and the lowest efficiency occurs at about 0.3–0.5μm.With an increase in discharging voltage from−6 kV to−9 kV,the lowest efficiency rises from 88.2%to 96.6%.An electrostatic sampler entity was manufactured to test the collection efficiency of PM and the results are in good agreement with the simulation.The induced ring plate can significantly improve the total collection efficiency from 35%to 90%under−6 kV discharging voltage in the experiment.The novel electrostatic sampler exhibits potential and enlightenment for efficient and convenient PM sampling.